ISSN 1607-2510

The Steiner Formulas For The Open Planar Homothetic Motions^{*}

Salim Yüce[†], Nuri Kuruoğlu[‡]

Received 18 January 2005

Abstract

In this paper, we present the Steiner formula for one-parameter open planar homothetic motions. Using this area formula, the generalization of the Holditch Theorem given by W. Blaschke and H. R. Müller [4, p.142] is expressed during one-parameter open planar homothetic motions. Furthermore, we obtain another formula for the swept surface area.

1 Introduction

Let *E* and *E'* be moving and fixed Euclidean planes and $\{O; \mathbf{e_1}, \mathbf{e_2}\}$ and $\{O'; \mathbf{e'_1}, \mathbf{e'_2}\}$ be their orthonormal frames (ONFs), respectively. We suppose that $\{O'; \mathbf{e'_1}, \mathbf{e'_2}\}$ is fixed, whereas the vectors $\mathbf{e_1}, \mathbf{e_2}$ are functions of a real parameter *t*. Then we say that $\{O; \mathbf{e_1}, \mathbf{e_2}\}$ moves with respect to $\{O'; \mathbf{e'_1}, \mathbf{e'_2}\}$. Let \mathbf{x} and $\mathbf{x'}$ be the position vectors of a point $X \in E$ with respect to the moving and fixed ONFs, respectively. By taking

$$\mathbf{OO}' = \mathbf{u} = u_1(t)\mathbf{e_1} + u_2(t)\mathbf{e_2}, \quad u_1(t), \, u_2(t) \in \mathbf{R}, \, t \in I \subset \mathbf{R}$$
(1)

the motion defined by the transformation

$$\mathbf{x}' = h \, \mathbf{x} - \mathbf{u} \tag{2}$$

is called one-parameter planar homothetic motion with the homothetic scale h = h(t)and will be denoted by $H_1 = E/E'$ for a planar homothetic motion of E against E'(Fig. 1).Furthermore, at the initial time t = 0 we consider the moving and fixed ONFs of E and E' are coincident. Taking $\varphi = \varphi(t)$ as the rotation angle between $\mathbf{e_1}$ and $\mathbf{e'_1}$, the equation

^{*}Mathematics Subject Classifications: 53A17

 $^{^\}dagger Ondokuz$ Mayıs University, Faculty of Arts and Science, Department of Mathematics, Kurupelit 55139, Samsun, Turkey

[‡]University of Bahçeşhir, Faculty of Arts and Science, Department of Mathematics and Computer Sciences, Bahçeşehir 34538, Istanbul, Turkey

can be written.

During the homothetic motion H_1 , the homothetic scale h, the rotation angle φ and the vectors \mathbf{x} , \mathbf{x}' and \mathbf{u} are continuously differentiable functions of a real time parameter t.

If there exists a smallest real number T > 0 such that

$$u_j(t+T) = u_j(t), \quad j = 1, 2, \quad \varphi(t+T) = \varphi(t) + 2\pi\nu, \quad \nu \in \mathbf{Z}$$
$$h(t+T) = h(t), \quad h(0) = h(T) = 1, \quad \forall t \in \mathbf{R},$$

then H_1 is called one-parameter closed planar homothetic motion with the period Tand the number of rotations ν . Otherwise, H_1 is called one-parameter open planar homothetic motion. During the homothetic motion H_1 , to avoid the case of pure translation we assume that

$$\dot{\varphi}(t) = d\varphi/dt \neq 0.$$

If we differentiate eqs.(2) and (3) with respect to t, we get the *sliding velocity* of moving point $X = (x_1, x_2) \in E$ as

$$\mathbf{V}_f = \{ -\dot{u}_1 + (u_2 - hx_2)\dot{\varphi} + \dot{h}x_1 \} \mathbf{e_1} + \{ -\dot{u}_2 + (-u_1 + hx_1)\dot{\varphi} + \dot{h}x_2 \} \mathbf{e_2}.$$
 (4)

If $\mathbf{V}_f = 0$ (i.e. for the points that are fixed in both E and E'), then we obtain

$$p_1 = \frac{\dot{h}(\dot{u}_1 - u_2\dot{\varphi}) + h\dot{\varphi}(\dot{u}_2 + u_1\dot{\varphi})}{\dot{h}^2 + (h\dot{\varphi})^2}, \ p_2 = \frac{\dot{h}(\dot{u}_2 + u_1\dot{\varphi}) - h\dot{\varphi}(\dot{u}_1 - u_2\dot{\varphi})}{\dot{h}^2 + (h\dot{\varphi})^2} \tag{5}$$

where the point $P = (p_1, p_2)$ is called the *rotation pole* or *center of the instantaneous* rotation of the homothetic motion H_1 . Also the set of the pole points on E and E'are called *the moving* and *fixed pole curves* and denoted by (P) and (P'), respectively. Using the pole point we can rewrite eq.(4) as

$$\mathbf{V}_f = \{ (x_1 - p_1)\dot{h} - (x_2 - p_2)h\dot{\varphi} \} \mathbf{e_1} + \{ (x_1 - p_1)h\dot{\varphi} + (x_2 - p_2)\dot{h} \} \mathbf{e_2}.$$

2 The Steiner Formulas For The Open Planar Homothetic Motion

2.1 I.

We will study surface area swept out by the segment $\mathbf{Q}'\mathbf{X}$, which is occurred by a fixed point $X = (x_1, x_2) \in E$ and the fixed point $Q' \in E'$, under the open homothetic motion H_1 : If H_1 is restricted to time interval $[t_1, t_2]$, then, the segment $\mathbf{Q}'\mathbf{X}^{\mathbf{t}}$ $(t \in I = [t_1, t_2])$ sweeps a surface with the orientated area

$$F_X^{Q'} = \frac{1}{2} \int_{t_1}^{t_2} [\mathbf{x}' - \mathbf{q}', d\mathbf{x}'], \tag{6}$$

where the symbol $[\alpha, \beta]$ is used instead of the area of parallelogram constituted by the vectors α and β . From the sliding velocity of a fixed point $X = (x_1, x_2) \in E$ with respect to E', we have

$$d\mathbf{x}' = \{(x_1 - p_1)dh - (x_2 - p_2)hd\varphi\}\mathbf{e_1} + \{(x_1 - p_1)hd\varphi + (x_2 - p_2)dh\}\mathbf{e_2}.$$
 (7)

If we substitute eqs.(2), (5) and (7) into eq. (6), then we find

$$2F_X^{Q'} = (x_1^2 + x_2^2) \int_{t_1}^{t_2} h^2 d\varphi - x_1 \int_{t_1}^{t_2} (q_1 + p_1) h^2 d\varphi - x_2 \int_{t_1}^{t_2} (q_2 + p_2) h^2 d\varphi + \int_{t_1}^{t_2} [(q_1 p_1 + q_2 p_2) h^2 d\varphi + (q_1 p_2 - q_2 p_1) h dh] + x_1 \int_{t_1}^{t_2} (q_2 - p_2) h dh + x_2 \int_{t_1}^{t_2} (-q_1 + p_1) h dh$$
(8)

If X = O ($x_1 = x_2 = 0$) is taken, then for the swept surface area of the segment $\mathbf{Q'O}$, we get

$$2F_O^{Q'} = \int_{t_1}^{t_2} \left[(q_1p_1 + q_2p_2)h^2 d\varphi + (q_1p_2 - q_2p_1)hdh \right].$$
(9)

S. Yüce and N. Kuruoğlu

Moreover, since $\dot{\varphi}(t) \neq 0$ and $\dot{\varphi}(t)$ is a continuous function, we can say that $\dot{\varphi}(t) < 0$ or $\dot{\varphi}(t) > 0$, that is, $\dot{\varphi}(t)$ has the same sign in everywhere in the closed interval $[t_1, t_2]$. Hence using the mean value theorem of integral-calculus for time interval $[t_1, t_2]$, there exists at least one point $t_0 \in [t_1, t_2]$ such that

$$\int_{t_1}^{t_2} h^2 d\varphi = \int_{t_1}^{t_2} h^2 \dot{\varphi} \, dt = h^2(t_0)\delta, \tag{10}$$

where $\delta = \int_{t_1}^{t_2} d\varphi$ is total rotation angle (Gesamtdrehwinkel) of the motion. The Steiner point $S = (s_1, s_2)$, which is the center of gravity of the moving pole curve, is given by

$$s_{j} = \frac{\int_{t_{1}}^{t_{2}} h^{2} p_{j} d\varphi}{\int_{t_{1}}^{t_{2}} h^{2} d\varphi}, \ j = 1, 2.$$
(11)

Then from eqs.(8), (9) and (10), we get

$$F_X^{Q'} = F_O^{Q'} + h^2(t_0)\frac{\delta}{2}(x_1^2 + x_2^2 - 2a_1x_1 - 2a_2x_2) + \mu_1 x_1 + \mu_2 x_2,$$
(12)

such that

$$2h^{2}(t_{0})a_{j}\delta = \int_{t_{1}}^{t_{2}}(q_{j}+p_{j})h^{2}d\varphi, \ \mu_{1} = \frac{1}{2}\int_{t_{1}}^{t_{2}}(q_{2}-p_{2})h\,dh, \ \mu_{2} = \frac{1}{2}\int_{t_{1}}^{t_{2}}(-q_{1}+p_{1})h\,dh.$$

Eq.(12) is called the *Steiner formula* for the open planar homothetic motion H_1 .

So, using eq. (12), we can give the following theorems without proof.

THEOREM 1. During the open homothetic motion H_1 , all the fixed points $X = (x_1, x_2) \in E$ which have equal surface area $F_X^{Q'}$ lie on the same circle with the center

$$C = \left(s_1 - \frac{\mu_1}{h^2(t_0)\delta}, \ s_2 - \frac{\mu_2}{h^2(t_0)\delta}\right)$$

in the moving plane E.

Special case 1. In the case of homothetic scale $h \equiv 1$, from eq. (12), we get

$$F_X^{Q'} = F_O + \frac{\delta}{2}(x_1^2 + x_2^2 - 2s_1x_1 - 2s_2x_2)$$

which was given by Blaschke and Müller [4, p. 117]. If H_1 is the closed planar homothetic motion ($\delta = 2\pi \nu$), then from eq. (12), we get

$$F_X = F_O + h^2(t_0)\pi\nu(x_1^2 + x_2^2 - 2s_1x_1 - 2s_2x_2) + \mu_1x_1 + \mu_2x_2x_2$$

which was given by Tutar and Kuruoğlu [1].

THEOREM 2. Let A, B and X be three collinear points in E and Q' be a fixed point in E'. During the open homothetic motion H_1 , for orientated areas $F_A^{Q'}, F_B^{Q'}$ and $F_X^{Q'}$ of surfaces swept out by the segments $\mathbf{Q'A}, \mathbf{Q'B}$ and $\mathbf{Q'X}$, respectively, we get

$$F_X^{Q'} = [aF_B^{Q'} + bF_A^{Q'}]/(a+b) - h^2(t_0)ab\delta/2.$$
(13)

Special case 2. In the case of homothetic scale $h \equiv 1$, from eq. (13), we have

$$F_X^{Q'} = [aF_B^{Q'} + bF_A^{Q'}]/(a+b) - ab\delta/2,$$

which was given by Pottmann [2]. If H_1 is the closed planar homothetic motion ($\delta = 2\pi \nu$), then we obtain

$$F_X = [aF_B + bF_A]/(a+b) - h^2(t_0) \pi \nu ab,$$

which was given by Kuruoğlu and Yüce [3].

Moreover, if we choose another point instead of the fixed point $Q' \in E'$ on the fixed plane E', then eq. (13) is also valid.

2.2 II.

Under the open homothetic motion H_1 , we now calculate the area F_X^P of surface swept by the pole ray **PX**. If we divide the area element df of the swept surface into "*partial triangle*" as shown in Fig. 2, then from Fig. 3,

Fig. 2 and Fig. 3

we can write

$$df = \frac{1}{2} [\mathbf{x}' - \mathbf{p}', d\mathbf{x}'] + \frac{1}{2} [\mathbf{P'}_{\mathbf{1}} \mathbf{X'}_{1}, d\mathbf{p}']$$

or

$$df = \frac{1}{2}[\mathbf{x}' - \mathbf{p}', d\mathbf{x}'] + \frac{1}{2}[\mathbf{x}' + d\mathbf{x}' - \mathbf{p}' - d\mathbf{p}', d\mathbf{p}'].$$

S. Yüce and N. Kuruoğlu

Since $[d\mathbf{x}', d\mathbf{p}'] = 0$ and $[d\mathbf{p}', d\mathbf{p}'] = 0$, we have

$$df = \frac{1}{2} [\mathbf{x}' - \mathbf{p}', d\mathbf{x}'] + \frac{1}{2} [\mathbf{x}' - \mathbf{p}', d\mathbf{p}'].$$
 (14)

If we denote $|\mathbf{x} - \mathbf{p}| = a$, then we get

$$[\mathbf{x}' - \mathbf{p}', d\mathbf{x}'] = h^2 a^2 d\varphi.$$
(15)

Also, since $\mathbf{x}' - \mathbf{p}' = h(\mathbf{x} - \mathbf{p})$ and $d\mathbf{p}' = hd\mathbf{p}$, we get

$$\frac{1}{2}[\mathbf{x}' - \mathbf{p}', d\mathbf{p}'] = \frac{1}{2}h^2[\mathbf{p} - \mathbf{x}, d\mathbf{p}] = h^2(-d\Delta_P),$$
(16)

where $d\Delta_p$ is the area of "infinitesimal triangle" swept out by the pole ray **PX** on the moving plane *E*.

If we substitute eqs.(15) and (16) into eq. (14), we get

$$df = \frac{1}{2}h^2 a^2 d\varphi - h^2 d\Delta_P.$$
(17)

If we integrate the eq.(17) for $t \in [t_1, t_2]$, then we obtain

$$F_X^P = \frac{1}{2} \int_{t_1}^{t_2} h^2(t) a^2(t) d\varphi(t) - \int_{t_1}^{t_2} h^2(t) \ d\Delta_p(t).$$
(18)

Using the mean value theorem of integral-calculus for the interval $[t_1, t_2]$, there exists at least one point $t_0 \in [t_1, t_2]$ such that

$$\int_{t_1}^{t_2} h^2(t) a^2(t) d\varphi(t) = h^2(t_0) \int_{t_1}^{t_2} a^2(t) d\varphi(t)$$
(19)

and

$$\int_{t_1}^{t_2} h^2(t) \, d\Delta_p(t) = h^2(t_0) \Delta_P.$$
(20)

If we substitute eqs. (19) and (20) into eq (18), we get

$$F_X^P = h^2(t_0) \{ \frac{1}{2} \int_{t_1}^{t_2} a^2(t) d\varphi(t) - \Delta_P \},$$
(21)

where Δ_P is the area of triangle bounded by the pole rays $\mathbf{P_{t_1}X}, \mathbf{P_{t_2}X}$ of the moving plane E and the arc segment between the points P_{t_1}, P_{t_2} of the moving pole curve (P).

Special case 3. In the case of the homothetic scale $h \equiv 1$, we get

$$F_X^P = \frac{1}{2} \int_{t_1}^{t_2} a^2(t) d\varphi(t) - \Delta_P$$

which was given by Blaschke and Müller [4,p. 118].

References

- [1] A. Tutar and N. Kuruoğlu, The Steiner formula and the Holditch theorem for the homothetic motions on the planar kinematics, Mech. Mach. Theory, 34 (1999),1-6.
- [2] H. Pottmann, Zum Satz von Holditch in der euklidischen Ebene, El. Math., 41 (1986), 1-6.
- [3] N. Kuruoğlu and S. Yüce, The generalized Holditch theorem for the homothetic motions on the planar kinematics, Czech Math. J., 54(2) (2004), 337-340.
- [4] W. Blaschke and H. R. Müller, Ebene Kinematik, Oldenbourg, München, 1956.