SOME BOUNDS FOR THE SPECTRAL RADIUS OF THE HADAMARD PRODUCT OF MATRICES*

Guang-Hui Cheng, Xiao-Yu Cheng, Ting-Zhu Huang[†], Tin-Yau Tam[‡]

Received 22 February 2005

Abstract

Some bounds for the spectral radius of the Hadamard product of two nonnegative matrices are given. Some results involve *M*-matrices.

1 Introduction

For any two $n \times n$ matrices $A = (a_{ij})$ and $B = (b_{ij})$, the Hadamard product of A and B is $A \circ B := (a_{ij}b_{ij})$. It is known [6, p.358] that if $A, B \in \mathbb{R}_{n \times n}$ are nonnegative matrices, then

$$\rho(A \circ B) \le \rho(A)\rho(B),\tag{1}$$

where $\rho(A)$ denotes the spectral radius of A, and in this case it is equal to the Perron root of A. See [3] for some generalizations. It is a neat inequality and bears some symmetry, i.e., the inequality remains unchanged if A and B are switched (unlike the usual matrix multiplication, Hadamard product is commutative).

Due to the monotonicity of the Perron root of the nonnegative $B \in \mathbb{R}_{n \times n}$ [5, p.491], one has

$$\max_{i=1,\dots,n} b_{ii} \le \rho(B). \tag{2}$$

The lower bound is clearly attained when B is nonnegative diagonal. Is it possible to have a better bound like the following for $\rho(A \circ B)$, where $A, B \ge 0$?

$$\rho(A \circ B) \le \rho(A) \max_{i=1,\dots,n} b_{ii} \tag{3}$$

If the suspected inequality (3) is true, it would provide a better and computationally simpler upper bound. However the answer is negative in view of the following example.

EXAMPLE 1. Let

^{*}Mathematics Subject Classifications: 15A42, 15A48.

[†]Address of the first three authors: School of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China

 $^{^{\}ddagger} \text{Department}$ of Mathematics and Statistics, Auburn University, Auburn, AL 36849-5310, USA

Cheng et al.

$$A = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}, \quad B = egin{pmatrix} 1 & 2 \ 2 & 1 \end{pmatrix}, \quad A \circ B = egin{pmatrix} 0 & 2 \ 2 & 0 \end{pmatrix}.$$

Evidently $\rho(A) = 1$, $\rho(B) = 3$, $\rho(A \circ B) = 2$ and $\max_{i=1,2} b_{ii} = 1$. So

$$\rho(A \circ B) \not\leq \rho(A) \max_{1 \leq i \leq 2} b_{ii}.$$

This example can be extended to the $n \times n$ $(n \ge 3)$ case by attaching I_{n-2} via direct sum.

In the next section we will provide a necessary condition for (3) to be valid. It turns out the condition is satisfied by an important class of matrices called inverse M-matrices. In Section 3 we will provide another upper bound.

2 Some Bounds and Diagonal Dominance

A matrix A is said to be *diagonally dominant of its row entries* (respectively, of its columns entries) if

$$|a_{ii}| \ge |a_{ij}|$$
 (respectively $|a_{ii}| \ge |a_{ji}|$)

for each i = 1, ..., n and all $j \neq i$. Similarly we define *diagonally subdominant* of its row entries (respectively, of its columns entries) by reversing the inequalities. Strictly diagonal dominance is defined similarly [6, p.125].

THEOREM 1. Let $A \ge 0$, $B \ge 0$ be $n \times n$ nonnegative matrices. If there exists a positive diagonal D such that DBD^{-1} is diagonally dominant of its column (or row) entries, then

$$\rho(B) \le \operatorname{tr} B,\tag{4}$$

and

$$\rho(A \circ B) \le \rho(A) \max_{i=1,\dots,n} b_{ii}.$$
(5)

Similarly, if there exists a positive diagonal D such that DBD^{-1} is diagonally subdominant of its column (or row) entries, then

$$\rho(B) \ge \operatorname{tr} B$$

and

$$\rho(A)\min_{i=1,\dots,n}b_{ii} \le \rho(A \circ B).$$

PROOF. Notice that $A \circ (DBD^{-1}) = D(A \circ B)D^{-1}$ and hence $\rho(A \circ B) = \rho(A \circ (DBD^{-1}))$. Moreover the diagonal entries of B and DBD^{-1} are the same. So we may

assume that B is diagonally dominant of its column (or row) entries. Suppose B is diagonally dominant of its column entries. Then

$$A \circ B \le A \operatorname{diag} \left(b_{11}, \dots, b_{nn} \right) \le A \max_{i=1,\dots,n} b_{ii}.$$
(6)

By the monotonicity of the Perron root [5, p.491]

$$\rho(A \circ B) \le \rho(A \operatorname{diag}(b_{11}, \dots, b_{nn})) \le \rho(A) \max_{i=1,\dots,n} b_{ii}, \tag{7}$$

which yields (5) immediately. To obtain (4), set $A = J_n$ where J_n is the $n \times n$ matrix of all ones, in the first inequality of (7). Then

$$\rho(B) \le \rho(J_n \operatorname{diag}(b_{11}, \dots, b_{nn})) = \operatorname{tr} B,$$

since the nonnegative matrix $J_n \operatorname{diag}(b_{11}, \ldots, b_{nn})$ is at most rank 1.

If B is diagonally dominant of its row entries, consider $A^T \circ B^T = (A \circ B)^T$ and use the fact that the spectrum is invariant under transpose.

The proof of the second conclusion is similar.

REMARKS:

- The upper bound tr B in (4) is attainable by choosing $B = J_n$.
- Though $\max_{i=1,\dots,n} b_{ii} \leq \rho(B)$ is true for all nonnegative $B, \rho(B) \leq \operatorname{tr} B$ in (4) may not hold if the assumption in the theorem is dropped, for example, the irreducible

$$B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

• It is not true that if $A \ge 0$ and $B \ge 0$ are both diagonally dominant of its (column) row entries, then $\rho(A \circ B) \le \max_{i=1,\dots,n} a_{ii} \max_{i=1,\dots,n} b_{ii}$, for example,

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1.5 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \quad A \circ B = \begin{pmatrix} 4 & 1 \\ 1 & 3 \end{pmatrix},$$

with

$$\rho(A \circ B) \approx 4.6180 > 4 = \max_{i=1,2} a_{ii} \max_{i=1,2} b_{ii}$$

The following provides a representation of the maximum diagonal entry of B.

COROLLARY 1. Let $B \ge 0$ be an $n \times n$ nonnegative matrix. If there exists a positive diagonal D such that DBD^{-1} is diagonally dominant of its column (or row) entries, then

$$\max\{\rho(A \circ B) : A \ge 0, \ \rho(A) = 1\} = \max_{i=1,\dots,n} b_{ii}.$$

PROOF. Use Theorem 2 (1) and consider $A = I_n$, the $n \times n$ identity matrix.

Cheng et al.

Let $Z_n := \{A \in \mathbb{R}_{n \times n} : a_{ij} \leq 0, i \neq j\}$. A matrix $A \in Z_n$ is called an *M*-matrix [1, 6] if there exists an $P \geq 0$ and s > 0 such that

$$A = sI_n - P$$
 and $s > \rho(P)$,

where $\rho(P)$ is the spectral radius of the nonnegative P, I_n is the $n \times n$ identity matrix. Denote by \mathcal{M}_n the set of all $n \times n$ nonsingular M-matrices. The matrices in $\mathcal{M}_n^{-1} := \{A^{-1} : A \in \mathcal{M}_n\}$ are called inverse M-matrices. It is known that $A \in Z_n$ is in \mathcal{M}_n^{-1} if and only if A is nonsingular and $A \geq 0$ [6, p.114-115]. It is clear that \mathcal{M}_n and \mathcal{M}_n^{-1} are invariant under similarity via a positive diagonal matrix D, i.e., $D\mathcal{M}_n D^{-1} = \mathcal{M}_n$ and $D\mathcal{M}_n^{-1}D^{-1} = \mathcal{M}_n^{-1}$. It is also known that \mathcal{M}_n^{-1} is Hadamard-closed if and only if $n \leq 3$ [8].

Compare the following with [6, p.377].

COROLLARY 2. Let $A \ge 0$, $B \ge 0$ be $n \times n$ nonnegative matrices. If $B \in \mathcal{M}_n^{-1}$, then

$$\rho(B) \le \operatorname{tr} B,$$

and

$$\rho(A \circ B) \le \rho(A) \max_{i=1,\dots,n} b_{ii}.$$

Hence if $B \in \mathcal{M}_n^{-1}$, then

$$\max\{\rho(A \circ B) : A \ge 0, \ \rho(A) = 1\} = \max_{i=1,\dots,n} b_{ii}.$$

PROOF. Since $B^{-1} \in \mathcal{M}_n$, there exists a positive diagonal D such that $DB^{-1}D^{-1}$ is strictly row diagonally dominant [6, p.114-115]. Then the inverse DBD^{-1} is strictly diagonally dominant of its column entries [6, p.125], [9, Lemma 2.2] (or see Proposition 1 in the next section). Then apply Theorem 2 (1).

3 A Sharper Upper Bound When B^{-1} is an *M*-Matrix

The inequality in Corollary 2 has a resemblance of [6, Theorem 5.7.31, p.375] which asserts that if $A, B \in \mathcal{M}_n$, then

$$\tau(A \circ B^{-1}) \ge \tau(A) \min_{i=1,\dots,n} \beta_{ii},\tag{8}$$

where

$$\tau(A) = \min\{\operatorname{Re} \lambda : \lambda \in \sigma(A)\},\$$

and $\sigma(A)$ denotes the spectrum of $A \in \mathcal{M}_n$. It is known that [6, p.129-130]

$$\tau(A) = \frac{1}{\rho(A^{-1})},$$

and is a positive real eigenvalue of $A \in \mathcal{M}_n$. The number $\tau(A)$ is often called the *minimum eigenvalue* of the *M*-matrix *A*. Indeed

$$\tau(A) = s - \rho(P),$$

if $A = sI_n - P$ where $s > \rho(P)$, $P \ge 0$ [6, p.130]. So $\tau(A)$ is a measure of how close $A \in \mathcal{M}_n$ to be singular.

It is known that $A \circ B^{-1} \in \mathcal{M}_n$ if $A, B \in \mathcal{M}_n$ [6, p.359]. Chen [2] provides a sharper lower bound for $\tau(A \circ B^{-1})$ which clearly improves (8):

$$\tau(A \circ B^{-1}) \ge \tau(A)\tau(B) \min_{i=1,\dots,n} \left[\left(\frac{a_{ii}}{\tau(A)} + \frac{b_{ii}}{\tau(B)} - 1 \right) \frac{\beta_{ii}}{b_{ii}} \right].$$
(9)

Since $a_{ii} > \tau(A)$ for all i = 1, ..., n [1, p.159], (9) implies (8) immediately. Inequality (9) may be rewritten in the following form:

$$\rho((A \circ B^{-1})^{-1}) \le \frac{\rho(A^{-1})\rho(B^{-1})}{\min_{i=1,\dots,n}[(a_{ii}\rho(A^{-1}) + b_{ii}\rho(B^{-1}) - 1)\frac{\beta_{ii}}{b_{ii}}]}$$

However it is not an upper bound for $\rho(A \circ B^{-1})$. In view of Corollary 2 and motivated by Chen's bound and its proof, we provide a sharper upper bound for $\rho(A \circ B)$, where $A \ge 0$ and $B \in \mathcal{M}_n^{-1}$.

We will need a lemma in [9, Lemma 2.2] (a weaker version is found in [7, Lemma 2.2]). The following is a slight extension since if A is a strictly diagonally dominant matrix, then it is nonsingular by the well-known Gersgorin theorem [6, p.31].

PROPOSITION 1. Let $A \in \mathbb{C}_{n \times n}$ be a diagonally dominant nonsingular matrix by row (column respectively), i.e.,

$$|a_{ii}| \ge \sum_{j \ne i} |a_{ij}|$$
 ($|a_{ii}| \ge \sum_{j \ne i} |a_{ji}|$, respectively),

for all i = 1, ..., n. If $A^{-1} = (b_{ij})$, then

$$|b_{ji}| \le \frac{\sum_{k \ne j} |a_{jk}|}{|a_{jj}|} |b_{ii}| \qquad (|b_{ij}| \le \frac{\sum_{k \ne j} |a_{kj}|}{|a_{jj}|} |b_{ii}|, \text{ respectively}).$$

PROOF. Let $A \in \mathbb{C}_{n \times n}$ be a diagonally dominant nonsingular matrix by row. Each $a_{ii} \neq 0$ otherwise the whole *i*-th row would be zero and then A would be singular. Apply [6, p.129, Problem 17(a)] to yield

$$|b_{ji}| \le \frac{\sum_{k \ne j} |a_{jk}|}{|a_{jj}|} |b_{ii}|.$$

Consider A^T for the column version.

THEOREM 2. Suppose $A \ge 0$, $B \in \mathcal{M}_n^{-1}$. (i) If A is nilpotent, i.e., $\rho(A) = 0$, then $\rho(A \circ B) = 0$. (ii) If A is not nilpotent, then

$$\rho(A \circ B) \leq \frac{\rho(A)}{\rho(B)} \max_{i=1,\dots,n} \left[\left(\frac{a_{ii}}{\rho(A)} + \beta_{ii}\rho(B) - 1 \right) \frac{b_{ii}}{\beta_{ii}} \right] \leq \rho(A) \max_{i=1,\dots,n} b_{ii}.$$

Cheng et al.

PROOF. (i) If A is nilpotent nonnegative, then A is permutationally similar to a strictly upper triangular (nonnegative) matrix by [4, Theorem 3]. So is $A \circ B$. Hence $\rho(A \circ B) = 0$. (ii) For the second inequality, observe $\max_{i=1,...,n} a_{ii} \leq \rho(A)$ for the nonnegative matrix A, $b_{ii} \geq 0$ and [1, p.159]

$$\beta_{ii} > \tau(B^{-1}) > 0 \qquad \text{for all} \quad i = 1, \dots, n, \tag{10}$$

since $B^{-1} \in \mathcal{M}_n$. For the first inequality we essentially follow the idea of Chen's proof. Since $\rho(\cdot)$, Hadamard product, and taking inverse are continuous functions, we may assume that $A \ge 0$ and $B^{-1} = \alpha I - P \in \mathcal{M}_n$, where $P \ge 0$ with $\alpha > \rho(P)$, are irreducible (thus $B \ge 0$ is also irreducible since irreducibility is invariant under inverse operation), otherwise we place sufficiently small values $\epsilon > 0$ in the positions in which A and P have zeroes.

Let v and w be the right Perron eigenvectors of P^T and A respectively, i.e., $v, w \in \mathbb{R}^n$ are positive vectors such that

$$(B^{-1})^T v = \tau(B^{-1})v, \qquad Aw = \rho(A)w.$$

So $v^T B^{-1} = \tau(B^{-1}) v^T$, or equivalently,

$$\sum_{k=1}^{n} v_k \beta_{kj} = \tau(B^{-1}) v_j, \quad j = 1, \dots, n.$$

Define

$$C := VB^{-1}, \qquad V := \operatorname{diag}(v_1, \dots, v_n).$$

Since the off diagonal entries β_{ij} , $i \not\models j$, of B^{-1} are nonpositive and $\tau(B^{-1}) > 0$, C is strictly diagonally dominant by column. Apply Proposition 1 on $C^{-1} = BD^{-1}$ to have

$$\frac{b_{ij}}{v_j} = \frac{|b_{ij}|}{|v_j|} \le \frac{\sum_{k \neq j} |v_k \beta_{kj}|}{|v_j \beta_{jj}|} \cdot \frac{|b_{ii}|}{|v_i|} = \frac{-\sum_{k \neq j} v_k \beta_{kj}}{v_j \beta_{jj}} \cdot \frac{b_{ii}}{v_i} = \frac{(\beta_{jj} - \tau(B^{-1}))v_j}{v_j \beta_{jj}} \cdot \frac{b_{ii}}{v_i},$$

for all $i \neq j$, since $v_j > 0$, $\beta_{kj} \leq 0$ $(k \neq j)$, $\beta_{jj} > 0$. Hence for $i \neq j$,

$$b_{ij} \le \frac{(\beta_{jj} - \tau(B^{-1}))v_j b_{ii}}{\beta_{jj} v_i}.$$

Now define a positive vector $z \in \mathbb{R}^n$:

$$z_i := \frac{w_i \beta_{ii}}{v_i (\beta_{ii} - \tau(B^{-1}))} > 0, \quad i = 1, \dots, n.$$

$$\begin{split} [(A \circ B)z]_{i} &= a_{ii}b_{ii}z_{i} + \sum_{j \neq i} a_{ij}b_{ij}z_{j} \\ &\leq a_{ii}b_{ii}z_{i} + \sum_{j \neq i} a_{ij}\frac{(\beta_{jj} - \tau(B^{-1}))v_{j}b_{ii}}{\beta_{jj}v_{i}} \cdot \frac{w_{j}\beta_{jj}}{v_{j}(\beta_{jj} - \tau(B^{-1}))} \\ &= a_{ii}b_{ii}z_{i} + \frac{b_{ii}}{v_{i}}\sum_{j \neq i} a_{ij}w_{j} \\ &= a_{ii}b_{ii}z_{i} + \frac{b_{ii}}{v_{i}}(\rho(A) - a_{ii})w_{i} \\ &= b_{ii}z_{i} \left[a_{ii} + \frac{1}{\beta_{ii}}(\rho(A) - a_{ii})(\beta_{ii} - \tau(B^{-1}))\right] \\ &= \frac{b_{ii}}{\beta_{ii}}\rho(A)\tau(B^{-1}) \left[\frac{a_{ii}}{\rho(A)} + \frac{\beta_{ii}}{\tau(B^{-1})} - 1\right]z_{i} \\ &\leq \rho(A)\tau(B^{-1})\max_{i=1,\dots,n} \left[\left(\frac{a_{ii}}{\rho(A)} + \frac{\beta_{ii}}{\tau(B^{-1})} - 1\right)\frac{b_{ii}}{\beta_{ii}}\right]z_{i}. \end{split}$$

By [1, p.28, Theorem 2.1.11], we have the desired result, since $\tau(B^{-1}) = 1/\rho(B)$. Now by (2) we have

$$\left(\frac{a_{ii}}{\rho(A)} + \beta_{ii}\rho(B) - 1\right)\frac{b_{ii}}{\beta_{ii}} \le \beta_{ii}\rho(B)\frac{b_{ii}}{\beta_{ii}} = \rho(B)b_{ii}, \quad i = 1, \dots, n.$$

So the second inequality (see Corollary 2) follows immediately.

We reamrk that the first inequality in Theorem 2 is no long true if we merely assume that B is nonsingular nonnegative. For example, if

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix}, A \circ B = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 2 & 0 & 0 \end{pmatrix}, B^{-1} = \frac{1}{9} \begin{pmatrix} 1 & -2 & 4 \\ 4 & 1 & -2 \\ -2 & 4 & 1 \end{pmatrix},$$

then $\rho(A) = 1$, $\rho(B) = 3$, $\rho(A \circ B) = 2$, but

$$\frac{\rho(A)}{\rho(B)} \max_{i=1,\dots,n} \left[\left(\frac{a_{ii}}{\rho(A)} + \beta_{ii}\rho(B) - 1 \right) \frac{b_{ii}}{\beta_{ii}} \right] = -2.$$

Acknowledgment. The first three authors supported by NCET of China and Foundation of the Key Lab of Comp. Phy., Beijing Appl. Phy. and Comp. Math. Institute.

References

 A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics, 9, SIAM, Philadelphia, 1994.

- [2] S. C. Chen, A lower bound for the minimum eigenvalue of the Hadamard product of matrices, Linear Algebra Appl., 378(2004), 159–166.
- [3] L. Elsner, C. R. Johnson and J. A. Dias da Silva, The Perron root of a weighted geometric mean of nonnegative matrices, Linear and Multilinear Algebra, 24(1988), 1–13.
- [4] J. Z. Hearon, Compartmental matrices with single root and nonnegative nilpotent matrices, Math. Biosci., 14(1972), 135–142.
- [5] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985.
- [6] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
- [7] Y. Song, On an inequality for the Hadamard product of an *M*-matrix and its inverse, Linear Algebra Appl., 305(2000), 99–105.
- [8] B. Y. Wang, X. Zhang and F. Zhang, On the Hadamard product of inverse *M*-matrices, Linear Algebra Appl., 305(2000), 23–31.
- [9] X. Yong and Z. Wang, On a conjecture of Fiedler and Markham, Linear Algebra Appl., 288(1999), 259–267.