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Abstract

A review on spectral and differential-geometric properties of Delsarte trans-
mutation operators in multi-dimension is given. Their differential geometrical
and topological structure in multi-dimension is analyzed, the relationships with
generalized De Rham-Hodge theory of differential complexes are stated. Some
applications to integrable dynamical systems theory in multi-dimension are pre-
sented.

1 Spectral Operators and Generalized Eigenfunctions
Expansions

1.1. Let H be a Hilbert space in which there is defined a linear closable operator L ∈
L(H) with a dense domain D(L) ⊂ H. Consider the standard quasi-nucleous Gelfand
rigging [12] of this Hilbert space H with corresponding positive H+ and negative H−
Hilbert spaces as follows:

D(L) ⊂ H+ ⊂ H ⊂ H− ⊂ D3(L), (1)
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which is suitable for the investigation of the spectral properties of the operator L in
H. We shall use below the following definition motivated by considerations from [12],
Section 5.

DEFINITION 1.1. An operator L ∈ L(H) will be called spectral if for all Borel
subsets ∆ ⊂ σ(L) of the spectrum σ(L) ⊂ C and for all pairs (u, v) ∈ H+ ×H+ there
are defined the following expressions:

L =
σ(L)

λdE(λ), (u,E(∆)v) =
∆

(u,P(λ)v)dρσ(λ), (2)

where ρσ is some finite Borel measure on the spectrum σ(L), E is some self-adjoint
projection operator measure on the spectrum σ(L), such that E(∆)E(∆3) = E(∆ ∩
∆3) for any Borel subsets ∆,∆3 ⊂ σ(L), and P(λ) : H+ → H−, λ ∈ σ(L), is the
corresponding family of nucleous integral operators from H+ into H−.
As a consequence of the expression (2) one can write down formally in the weak

topology of H that

E(∆) =
∆

P(λ)dρσ(λ) (3)

for any Borel subset ∆ ⊂ σ(L).
Similar to (2) and (3) one can write down the corresponding expressions for the

adjoint spectral operator L∗ ∈ L(H) whose domain D(L∗) ⊂ H is also assumed to be
dense in H :

(E∗(∆)u, v) =
∆

(P ∗(λ)u, v)dρ∗σ(λ), (4)

E∗(∆) =
∆

P ∗(λ)dρ∗σ(λ),

where E∗ is the corresponding projection spectral measure on Borel subsets ∆ ∈ σ(L∗),
P∗(λ) : H → H, λ ∈ σ(L∗), is the corresponding family of nucleous integral operators
in H and ρ∗σ is some finite Borel measure on the spectrum σ(L∗). We will assume,
moreover, that the following conditions

P(µ)(L− µI)v = 0, P∗(λ)(L∗ − λ̄I)u = 0 (5)

hold for all u ∈ D(L∗), v ∈ D(L), where λ̄ ∈ σ(L∗), µ ∈ σ(L). In particular, one
assumes also that σ(L∗) = σ̄(L).

1.2. We now proceed to a description of the generalized eigenfunctions correspond-
ing to operators L and L∗ via the approach devised in [12]. We shall say that an
operator L ∈ L(H) with a dense domain D(L) allows a rigging continuation, if one can
find another dense in H+ topological subspace D+(L

∗) ⊂ D(L∗), such that the adjoint
operator L∗ ∈ L(H) maps it continuously into H+.
DEFINITION 1.2. A vector ψλ ∈ H− is called a generalized eigenfunction of the

operator L ∈ L(H) corresponding to an eigenvalue λ ∈ σ(L) if

((L∗ − λ̄I)u,ψλ) = 0 (6)
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for all u ∈ D+(L∗).
It is evident that in the case when ψλ ∈ D(L), λ ∈ σ(L), then Lψλ = λψλ as usual.

The definition (6) is related [12] with some extension of the operator L : H :→ H. Since
the operator L∗ : D+(L∗) → H+ is continuous one can define the adjoint operator
Lext := L

∗,+ : H− → D−(L∗) with respect to the standard scalar product in H, that
is

(L∗v, u) = (v, L∗,+u) (7)

for any v ∈ D+(L∗) and u ∈ H− and coinciding with the operator L : H → H upon
D(L). Now the definition (6) of a generalized eigenfunction ψλ ∈ H− for λ ∈ σ(L) is
equivalent to the standard expression

Lextψλ = λψλ. (8)

If we define the scalar product

(u, v) := (u, v)+ + (L
∗u,L∗v)+ (9)

on the dense subspace D+(L
∗) ⊂ H+, then this subspace can be transformed naturally

into the Hilbert space D+(L
∗), whose adjoint “negative” space D3+(L∗) := D−(L∗) ⊃

H−. Take now any generalized eigenfunction ψλ ∈ Im P(λ) ⊂ H−, λ ∈ σ(L), of the
operator L : H → H. Then, as one can see from (5), L∗extϕλ = λ̄ϕλ for some function
ϕλ ∈ Im P∗(λ) ⊂ H−, λ̄ ∈ σ(L∗), and L∗ext : H− → D−(L) is the corresponding
extension of the adjoint operator L∗ : H → H by means of reducing, as above, the
domain D(L) to a new dense in H+ domain D+(L) ⊂ D(L) on which the operator
L : D+(L)→ H+ is continuous.

2 Semi-linear Forms, Generalized Kernels and Con-
gruence of Operators

2.1. Let us consider any continuous semi-linear form K : H×H→ C in a Hilbert space
H. The following classical theorem holds.

THEOREM 2.1. (Schwartz [12]) Consider a standard Gelfand rigged chain of
Hilbert spaces (1) which is invariant under the complex involution C :→ C∗. Then
any continuous semi-linear form K : H×H → C can be written down by means of a
generalized kernel K̂ ∈ H− ⊗H− as follows:

K[u, v] = (K̂, v ⊗ u)H⊗H (10)

for any u, v ∈ H+ ⊂ H. The kernel K̂ ∈ H− ⊗H− allows the representation

K̂ = (D⊗D)K̄,

where K̄ ∈ H ⊗H is a usual kernel and D : H → H− is the square root
√
J∗ from a

positive operator J∗ : H → H−, being a Hilbert-Schmidt embedding of H+ into H
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with respect to the chain (1). Moreover, the related kernels (D⊗I)K̄, (I⊗D)K̄ ∈ H×H
are the usual ones too.

Take now, as before, an operator L : H → H with a dense domain D(L) ⊂ H
allowing the Gelfand rigging continuation (1) introduced in the preceding Section.
Denote also by D+(L

∗) ⊂ D(L∗) the related dense in H+ subspace.
DEFINITION 2.2. A set of generalized kernels Ẑλ ⊂ H−⊗H− for λ ∈ σ(L)∩ σ̄(L∗)

will be called elementary concerning the operator L : H→ H if for any λ ∈ σ(L) ∩
σ̄(L∗), the norm ||Ẑλ||H−⊗H− <∞ and

(Ẑλ, ((∆− λI)v)⊗ u) = 0, (Ẑλ, v ⊗ (L∗ − λ I)u) = 0 (11)

for all (u, v) ∈ H− ⊗H−.
2.2. Assume further, as above, that all our functional spaces are invariant with

respect to the involution C :→ C∗ and put D+ := D+(L∗) = D+(L) ⊂ H+. Then one
can build the corresponding extensions Lext ⊃ L and L∗ext ⊃ L∗, being linear operators
continuously acting from H− into D− := D3+. The chain (1) is now extended to the
chain

D+ ⊂ H+ ⊂ H ⊂ H− ⊂ D− (12)

and is assumed also that the unity operator I : H− → H− ⊂ D− is extended naturally
as the imbedding operator from H− into D−. Then equalities (11) can be equivalently
written down [12] as follows:

(Lext ⊗ I) Ẑλ = λẐλ, (I⊗ L∗ext) Ẑλ = λẐλ (13)

for any λ ∈ σ(L) ∩ σ̄(L∗). Take now a kernel K̂ ∈ H− ⊗ H− and suppose that the
following operator equality

(Lext ⊗ I) K̂ = (I⊗ L∗ext) K̂ (14)

holds. Since the equation (13) can be written down in the form

(Lext ⊗ I) Ẑλ = (I⊗ L∗ext) Ẑλ (15)

for any λ ∈ σ(L) ∩ σ̄(L∗), the following characteristic theorem [12] holds.

THEOREM 2.3. (see Chapter 8, p.621 of [12]) Let a kernel K̂ ∈ H− ⊗H− satisfy
the condition (14). Then due to (15) there exists a finite Borel measure ρσ defined on
Borel subsets ∆ ⊂ σ(L) ∩ σ̄(L∗) such that the following weak spectral representation

K̂ =
σ(L)∩σ̄(L∗)

Ẑλdρσ(λ) (16)

holds. Moreover, due to (13) one can write down the following representation

Ẑλ = ψλ ⊗ ϕλ,
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where Lextψλ = λψλ, L
∗
extϕλ = λ̄ϕλ, (ψλ,ϕλ) ∈ H−−×H−− and λ ∈ σ(L) ∩ σ̄(L∗),

where

H++ ⊂ H+ ⊂ H ⊂ H− ⊂ H−− (17)

is some appropriate nucleous rigging extension of the Hilbert space H.
PROOF. It is easy to see owing to (15) that the kernel (16) satisfies the equation

(14). Consider now the Hilbert-Schmidt rigged chain (17) and construct a new Hilbert
space HK with the scalar product

(u, v)K := (|K̂|, v ⊗ u)H⊗H (18)

for all u, v ∈ H+, where |K̂| := K̂∗K̂ ∈ H− ⊗H− is a positive defined kernel. The
norm || · ||K in H+ is, evidently, weaker from the norm || · ||+ in H+ since for any

u ∈ H+, ||u||2+= (|K̂|,u ⊗ u)H⊗H ≤ ||K̂||−||u ⊗ u||+ = ||K̂||−||u||2+, thereby there
holds the embedding H+ ⊂ HK. Introduce now a related with the Hilbert space HK
rigged chain

H++ ⊂ (H+) ⊂ HK ⊂ H− −,K. (19)

and consider (see [12, 13]) the following expression

(u,E(∆)v)K =
∆

dρσ(λ)(u,P(λ)v)K, (20)

where ∆ ⊂ C, u, v ∈ H++, E :C→B(H++) is a generalized unity spectral expansion
for our spectral operator L : H→ H whose domain D(L) is reduced to H++ ⊂ D(L),
P:C → B2(H++;H− −,K) is a Hilbert-Schmidt operator of generalized projecting and
ρσ is some finite Borel measure on C. Assume now that our kernel K̂∈ H−⊗H− allows
the following representation:

(K̂,v⊗u)H⊗H = (|K|,S(r)K v⊗S(l)K u)H⊗H = (S(l)K u,S(r)K v)K (21)

for all u,v ∈ H++, where S(l)K and S
(r)
K ∈ B(H++) are some appropriate bounded

operators in H++. Then making use of (19) and (20) one finds that

(K̂,v⊗u)H⊗H =
σ(L)∩σ̄(L∗)

dρσ(λ)(S
(l),−1
K u,P(λ)S

(r),−1
K v)K. (22)

Since there exist [12, 13] two isometries JK :H− −,K → H++ and J : H−− → H++
related, respectively, with rigged chains (19) and (17), the scalar product on the right-
hand side of (22) can be transformed as

(S
(l),−1
K u,P(λ)S

(r),−1
K v)K = (S

(l),−1
K u, JKP(λ)S

(r),−1
K v)++ (23)

for all u,v ∈ H++, where JKSKP(λ) ∈B2(H++) as a product of the Hilbert-Schmidt
operator P(λ) ∈B2(H++;H− −,K), λ ∈ σ(L) ∩ σ̄(L∗), and bounded operators JK and
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SK. Then owing to a simple corollary from the Schwartz Theorem 2.1 one gets easily
that there exists a kernel Q̂λ ∈ H++ ⊗H++ for any λ ∈ σ(L) ∩ σ̄(L∗), such that

(S
(l),−1
K u, JKP(λ)S

(r),−1
K v)++= (Q̂λ, v⊗u)H⊗H (24)

for all u,v ∈ H++. Defining now the kernel Ẑλ:= (J−1⊗J−1)Q̂λ ∈ H−− ⊗ H−−, λ ∈
σ(L) ∩ σ̄(L∗), one finds finally from (22)-(24) that for all u,v ∈ H++,

(K̂,v⊗u)H⊗H =
σ(L)∩σ̄(L∗)

dρσ(λ)(Ẑλ, v⊗u)H⊗H. (25)

As the constructed kernel Ẑλ∈H−−⊗H−− satisfies, evidently, for every λ ∈ σ(L)∩σ̄(L∗)
the relationship (15), the theorem is proved.

The construction done above for a self-similar congruent kernel K̂ ∈ H− ⊗H− in
the form (16) related with a given operator L ∈ L(H) appears to be very inspiring if
the condition self-similarity to replace by a simple similarity. This topic will be in part
discussed below.

3 Congruent Kernel Operators and Related Delsarte
Transmutation Mappings

3.1. Consider in a Hilbert space H a pair of densely defined linear differential operators
L and L̃ ∈ L(H). The following definition will be useful.
Let a pair of kernels K̂s ∈ H− ⊗ H−, s = ±, satisfy the following congruence

relationships

(L̃ext ⊗ 1)K̂s = (1⊗ L∗ext)K̂s (26)

for a given pair of the respectively extended linear operators L, L̃ ∈ L(H). Then the
kernels K̂s ∈ H−⊗H−, s = ±, will be called congruent to this pair (L, L̃) of operators
in H.
Since not any pair of operators L, L̃ ∈ L(H) can be congruent, the natural problem

is how to describe the set of corresponding kernels K̂s ∈ H−⊗H−, s = ±, congruent to
a given pair (L, L̃) of operators in H. The next question is that of existence of kernels
K̂s ∈ H− ⊗ H−, s = ±, congruent to this pair. The question has an evident answer
for the case when L̃ = L and the congruence is then self-similar. The interesting case
when L̃ 9= L appears to be nontrivial and can be treated more or less successfully if
there exist such suitably defined bounded and invertible operators Ωs ∈ L(H), s = ±,
that the transmutation conditions

L̃Ωs = ΩsL (27)

hold.

DEFINITION 3.1. (Delsarte [1], Detsarte and Lions [2]) Let a pair of densely
defined differential closeable operators L, L̃ ∈ L(H) in a Hilbert space H is endowed
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with a pair of closed subspaces H0, H̃0 ⊂ H− subject to a rigged Hilbert spaces chain
(1). Then suitably defined and invertible operators Ωs ∈ L(H), s = ±, are called
Delsarte transmutations if the following conditions hold:
i) the operators Ωs and their inverse Ω

−1
s , s = ±, are continuous;

ii) the images Im Ωs|H0
= H̃0, s = ±;

iii) the relationships (27) are satisfied.

Suppose now that an operator pair (L, L̃) ⊂ L(H) is differential of the same order
n(L) ∈ Z+, that is, the following representations

L :=

n(L)

|α|=0
aα(x)

∂|α|

∂xα
, L̃ :=

n(L)

|α|=0
ãα(x)

∂|α|

∂xα
, (28)

hold, where x ∈ Q, Q ⊂ Rm is some open connected region in Rm, the smooth coeffi-
cients aα, ãα ∈ C∞(Q;End CN) for all α ∈ Zm+ , |α| = 0, n(L) and N ∈ Z+. The differen-
tial expressions (28) are defined and closeable on the dense domains in the Hilbert space

H := L2(Q;CN) domains D(L), D(L̃) ⊂Wn(L)
2 (Q;CN) ⊂ H. This, in particular, means

that there exists the corresponding to (28) pair of adjoint operators L∗, L̃∗ ∈ L(H)
which are defined also on dense domains D(L∗), D(L̃∗) ⊂Wn(L)

2 (Q;CN) ⊂ H.
Take now a pair of invertible bounded linear operators Ωs ∈ L(H), s = ±, and

look at the following Delsarte transformed operators

L̃s := ΩsLΩ
−1
s , (29)

s = ±, which, by definition, must persist to be also differential. An additional natural
constraint involved on operators Ωs ∈ L(H), s = ±, is the independence [9, 16] of dif-
ferential expressions for operators (29) on indices s = ±. The problem of constructing
such Delsarte transmutation operators Ωs ∈ L(H), s = ±, appeared to be very compli-
cated and in the same time dramatic as one could observe from special results obtained
in [9, 21] for two-dimensional Dirac and three-dimensional Laplace type operators.

3.2. Before proceeding to setting up our approach to treating the problem men-
tioned above, let us consider some formal generalizations of the results described before

in Section 2. Take an elementary kernel Z̃λ ∈ H− ⊗H− satisfying the conditions gen-
eralizing (13):

(L̃ext ⊗ I) Z̃λ = λZ̃λ, (I⊗ L∗ext) Z̃λ = λZ̃λ (30)

for λ ∈ σ(L̃) ∩ σ̄(L∗), being, evidently, well suitable for treating the equation (26).
Then one sees that an elementary kernel Zλ ∈ H− ⊗ H− for any λ ∈ σ(L) ∩ σ(L∗)
solves the equation (26), that is

(Lext ⊗ 1) Z̃λ = (1⊗ L∗ext) Z̃λ. (31)

Thereby one can expect that for kernels K̂s ∈ H− ⊗H−, s = ±, there exist the similar
to (18) spectral representations

K̂s =
σ(eL)∩σ̄(L∗) Z̃λdρσ,s(λ), (32)
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s = ±, with finite spectral measures ρσ,s, s = ±, localized upon the Borel subsets of the
common spectrum σ(L̃)∩ σ̄(L∗). Based of the spectral representation like (17) applied
separately to operators L̃ ∈ L(H) and L∗ ∈ L(H) one states similarly as before the
following theorem.

THEOREM 3.2. The equations (30) are compatible for any λ ∈ σ(L) ∩ σ̄(L∗) and,
moreover, for kernels K̂s ∈ H− ⊗H−, s = ±, satisfying the congruence condition (26)
there exists a kernel Z̃λ ∈ H− − ⊗H− − for a suitably Gelfand rigged Hilbert spaces
chain (20), such that the spectral representations (32) hold.

Now we will be interested in the inverse problem of constructing kernels K̂s ∈
H− ⊗H−, s = ±, like (32) a priori satisfying the congruence conditions (26) subject
to the same pair (L, L̃) of differential operators in H and related via the Delsarte
transmutation condition (27). In some sense we shall state that only for such Delsarte
related operator pairs (L, L̃) in H one can construct a dual pair {K̂s ∈ H− ⊗ H−
: s = ±} of the corresponding congruent kernels satisfying the conditions like (26),
that is

(L̃ext ⊗ 1) K̂± = K̂±(1⊗ L∗ext). (33)

3.3. Suppose now that there exists another pair of Delsarte transmutation operators
Ωs and Ω

~
s ∈ L(H), s = ±, satisfying condition ii) of Definition 3.2 subject to the

corresponding two pairs of differential operators (L, L̃) and (L∗, L̃∗) ⊂ L(H). This
means, in particular, that there exists an additional pair of closed subspace H~

0 and
H̃~
0 ⊂ H− such that

Im Ω~s |H~
0
= H̃~

0 (34)

s = ±, for the Delsarte transmutation operator Ω~s ∈ L(H), s = ±, satisfying the
obvious conditions

L̃∗ · Ω~s = Ω~s · L∗ (35)

s = ±, involving the adjoint operators L̃∗, L∗ ∈ L(H) defined before and given by the
following from (28) usual differential expressions:

L∗ =
n(L)

|α|=0
(−1)|α| ∂

|α|

∂xα
· ā|α(x), L̃∗ =

n(L)

|α|=0
(−1)|α| ∂

|α|

∂xα
· ã|α (x) (36)

for all x ∈ Q ⊂ Rm.
Construct now the following [22, 23] Delsarte transmutation operators of Volterra

type

Ω± := 1 + K±(Ω), (37)

corresponding to some two different kernels K̂+ and K̂− ∈ H−⊗H−, of integral Volter-
rian operators K+(Ω) and K−(Ω) related with them in the following way:

(u,K±(Ω)v) := (u χ(S
(m)
x,± ), K̂±v) (38)
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for all (u, v) ∈ H+ × H+, where χ(S(m)x,± ) are some characteristic functions of two m-

dimensional smooth hypersurfaces S
(m)
x,+ and S

(m)
x,− ∈ K(Q) from a singular simplicial

complex K(Q) of the open set Q ⊂ Rm, chosen such that the boundary ∂(S(m)x,+∪S(m)x,− ) =
∂Q. In the case when Q := Rm, it is assumed naturally that ∂Rm = �. Making use of
the Delsarte operators (37) and relationship like (27) one can construct the following
differential operator expressions:

L̃± − L = K±(Ω)L− L̃±K±(Ω). (39)

Since the left-hand sides of (39) are, by definition, purely differential expressions, one
follows right away that the local kernel relationships like (32) hold:

(L̃ext,± ⊗ 1) K̂± = (1⊗ L∗ext) K̂±. (40)

The expressions (39) define, in general, two different differential expressions L̃± ∈
L(H) depending respectively both on the kernels K̂± ∈ H− ⊗H− and on the chosen
hypersurfaces S

(m)
x,± ∈ K(Q). As will be stated later, the following important theorem

holds.

THEOREM 3.3. Let smooth hypersurfaces S
(m)
x,± ∈ K(Q) be chosen in such a

way that ∂(S
(m)
x,+ ∪ S(m)x,− ) = ∂Q and ∂S

(m)
x,± = ∓σ(m−1)x + σ

(m−1)
x± , where σ

(m−1)
x and

σ
(m−1)
x± are some homological subject to the homology group Hm−1(Q;C) simplicial
chains, parametrized, respectively, by a running point x ∈ Q and fixed points x± ∈ ∂Q

and satisfying the following homotopy condition: limx→x± σ
(m−1)
x = ∓σx± . Then the

operator equalities

L̃+ := Ω+LΩ
−1
+ = L̃ = Ω−LΩ−1− := L̃− (41)

are satisfied if the following commutation property

[Ω−1+ Ω−, L] = 0 (42)

or, equivalently, kernel relationship

(Lext ⊗ 1)Ω̂−1+ ∗ Ω̂− = (1⊗ L∗ext)Ω̂−1+ ∗ Ω̂− (43)

hold.

REMARK 3.4. It is noted here that special degenerate cases of Theorem 3.3 have
been proved in works [9, 21] for two-dimensional Dirac and three-dimensional Laplace
type differential operators. The constructions and tools devised there appeared to be
instructive and motivative for the approach developed here by us in the general case.

3.4. Consider now a pair (Ω+,Ω−) of Delsarte transmutation operators being in the
form (37) and respecting all of the conditions from Theorem 3.4. Then the following
lemma is true.

LEMMA 3.5. Let an invertible Fredholm operator Ω := 1 + Φ ∈ B(H)∩Aut(H)
with Φ ∈ B∞(H) allow the factorized representation

Ω = Ω−1+ Ω− (44)
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by means of two Delsarte operators Ω+ and Ω− ∈ L(H) in the form (37). Then
there exists the unique operator kernel Φ̂ ∈ H− ⊗H− corresponding naturally to the
compact operator Φ(Ω) ∈ B∞(H) and satisfying the following self-similar congruence
commutation condition:

(Lext ⊗ 1) Φ̂ = (1⊗ L∗ext) Φ̂, (45)

related to the properties (42 and (43).

¿From the equality (45) and Theorem 2.2 one gets the following corollary easily.

COROLLARY 3.6. There exists a finite Borel measure ρσ defined on the Borel
subsets of σ(L) ∩ σ(L∗) such that the following weak equality

Φ =
σ(L)∩σ(L∗)

Zλdρσ(λ) (46)

holds.

Concerning the differential expression L ∈ L(H) and the corresponding Volterra
type Delsarte transmutation operators Ω± ∈ L(H) the conditions (42) and (45) are
equivalent to the operator equation

[Φ(Ω), L] = 0. (47)

Really, since equalities (41) hold, one gets easily that

L(1 +Φ(Ω)) = L(Ω−1+ Ω−) = Ω
−1
+ (Ω+LΩ

−1
+ )Ω−

= Ω−1+ (Ω−LΩ−)Ω− = Ω−1+ Ω−L = (1 +Φ(Ω))L, (48)

meaning exactly (47).
Suppose also that, first, for another Fredholm operator Ω~ = 1 + Φ~(Ω) ∈ L(H)

with Φ~(Ω) ∈ B∞(H), there exist two Delsarte transmutation Volterra type operators
Ω~± ∈ L(H) in the form

Ω~± = 1 +K
~
±(Ω) (49)

with Volterrian [22] integral operators K~±(Ω) related naturally with some kernels K̂± ∈
H− ⊗H−, and, second, the factorization condition

1 +Φ~(Ω) = Ω~,−1+ Ω~− (50)

is satisfied, then the following theorem holds.

THEOREM 3.7. Let a pair of hypersurfaces S
(m)
x,± ⊂ K(Q) satisfy all of the con-

ditions from Theorem 3.2. Then the Delsarte transformed operators L̃∗± ∈ L(H) are
differential and equal, that is

L̃∗+ = Ω
~
+L
∗Ω~,−1+ = L̃∗ = Ω~−L

∗Ω~,−1− = L̃~−, (51)
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iff the following commutation condition

[Φ~(Ω), L∗] = 0 (52)

holds.

PROOF. A proof of this theorem is stated by reasonings similar to those done before
when analyzing the congruence condition for a given pair (L, L̃) ⊂ L(H) of differential
operators and their adjoint ones in H.
By means of the Delsarte transmutation from the differential operators L and L∗ ∈

L(H) we have obtained above two differential operators

L̃ = Ω±LΩ−1± , L̃
∗ = Ω~±L

∗Ω~,−1± , (53)

which must be compatible and, thereby, related as

(L̃)∗ = (L∗). (54)

The condition (54) due to (53) gives rise to the following additional commutation
expressions for kernels Ω~± and Ω

∗
± ∈ L(H) :

[L∗,Ω∗±Ω
~
±] = 0, (55)

being equivalent, obviously, to such a commutation relationship:

[L,Ω~,∗± Ω±] = 0. (56)

As a result of representations (56) one can formulate the following corollary.

COROLLARY 3.8. There exist finite Borel measures ρσ,± localized upon the
common spectrum σ(L) ∩ σ̄(L∗), such that the following weak kernel representations

Ω̂~,∗± ∗ Ω̂± =
σ(L)∩σ̄(L∗)

Ẑλdρσ,±(λ) (57)

hold, where Ω̂~,∗± and Ω̂± ∈ H−⊗H− are the corresponding kernels of integral Volter-
rian operators Ω~,∗± and Ω± ∈ L(H).
3.5. The integral operators of Volterra type (37) constructed above by means of

kernels in the form (32) are, as well known [17, 11, 9, 15, 14], very important for
studying many problems of spectral analysis and related integrable nonlinear dynami-
cal systems [16, 15, 10, 21, 30, 29] on functional manifolds. In particular, they serve
as factorizing operators for a class of Fredholm operators entering the fundamental
Gelfand-Levitan-Marchenko operator equations [17, 15, 16] whose solutions are exactly
kernels of Delsarte transmutation operators of Volterra type, related with the corre-
sponding congruent kernels subject to given pairs of closeable differential operators in a
Hilbert space H. Thereby it is natural to try to learn more of their structure properties
subject to their representations both in the form (32), (37), and in the dual form within
the general Gokhberg-Krein theory [22, 16, 23] of Volterra type operators.
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To proceed further we need to introduce some additional notions and definitions
from [22, 14] which are important for what will follow below. Define a set P of
projectors P2 = P : H → H which is called a projector chain if for any pair P1,P2 ∈
P, P1 9= P2, one has either P1 < P2 or P2 < P1, and P1P2 = min(P1,P2). The ordering
P1 < P2 above means, as usual, that P1H ⊂ P2H, P1H 9= P2H. If P1H ⊂ P2H, then
one writes P1 ≤ P2. The closure P of a chain P means, by definition, that set of all
operators being weak limits of sequences from P. The inclusion relationship P1 ⊂ P2 of
any two sets of projector chains possesses obviously the transitivity property allowing
to consider the set of all projector chains as a partially ordered set. A chain P is called
maximal if it cannot be extended. It is evident that a maximal chain is closed and
contains zero 0 ∈ P and unity 1 ∈ P operators. A pair of projectors (P−,P+) ⊂ P
is called a break of the chain P if P− < P+ and for all P ∈ P either P < P− or
P+ < P. A closed chain is called continuous if for any pair of projectors P1,P2 ⊂ P
there exist a projector P ∈ P, such that P1 < P < P2. A maximal chain P will
be called complete if it is continuous. A strongly ascending with respect to inclusion
projector valued function P : Q 6 ∆ → P is called a parametrization of a chain
P, if the chain P = Im(P : Q 6 ∆ → P). Such a parametrization of the self-adjoint
chain P is called smooth, if for any u ∈ H the positive value measure ∆→ (u,P(∆)u)
is absolutely continuous. It is well known [22, 23, 16] that every complete projector
chain allows a smooth parametrization. In what follows a projector chain P will be
self-adjoint, complete and endowed with a fixed smooth parametrization with respect
to an operator valued function F : P → B(H), the expressions like P F(P)dP and

P dPF(P) will be used for the corresponding [22] Riemann-Stiltjes integrals subject
to the corresponding projector chain. Take now a linear compact operator K ∈B∞(H)
acting in a separable Hilbert space H endowed with a projector chain P. A chain P is
also called proper subject to an operator K ∈ B∞(H) if PKP = KP for any projector
P ∈ P, meaning obviously that subspace PH is invariant with respect to the operator
K = B∞(H) for any P ∈ P. As before we denote by σ(K) the spectrum of any well
defined operator K ∈ L(H).
DEFINITION 3.9. An operator K ∈ B∞(H) is called Volterrian if σ(K) = {0}.
As can be shown [22], a Volterrian operator K ∈ B∞(H) possesses the maximal

proper projector chain P such that for any break (P−,P−) the following relationship

(P+ − P−) K (P+ − P−) = 0 (58)

holds. Since integral operators (37) constructed before are of Volterra type and con-

gruent to a pair (L,L) of closeable differential operators in H, we will be interested
in their properties with respect to the definition given above and to the corresponding
proper maximal projector chains P(Ω).
3.6. Suppose we are given a Fredholm operator Ω ∈ B(H)∩Aut(H) self-congruent

to a closeable differential operator L ∈ L(H). As we are also given with an elementary
kernel (15) in the spectral form (16), our present task will be a description of elementary
kernels Ẑλ, λ ∈ σ(L)∩ σ̄(L∗), by means of some smooth and complete parametrization
suitable for them. For treating this problem we will make use of very interesting recent
results obtained in [23] devoted to the factorization problem of Fredholm operators. As
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a partial case this work contains some aspects of our factorization problem for Delsarte
transmutation operators Ω ∈ (L(H)) in the form (37).
Let us formulate now some preliminary results from [22, 23] suitable for the problem

under regard. As before, we will denote by B(H) the Banach algebra of all linear
and continuous operators in H, and also by B∞(H) the Banach algebra of all compact
operators from B(H) and by B0(H) the linear subspace of all finite dimensional operator
from B∞(H). Put also, by definition,

B−(H) = {K ∈ B(H) : (1− P)KP = 0, P ∈ P},
B+(H) = {K ∈ B(H) : PK(1− P) = 0, P ∈ P}, (59)

and call an operator K ∈ B+, (K ∈ B−) up-triangle (respectively down-triangle)
with respect to the projector chain P. Denote also by Bp(H), p ∈ [1,∞], the so called
Neumann-Shattin ideals and put

B+∞(H) := B∞(H) ∩ B+(H), B−∞(H) := B∞(H) ∩ B−(H). (60)

Subject to Definition 3.4 Banach subspaces (60) are Volterrian, being closed in B∞(H)
and satisfying the condition

B+∞(H) ∩ B−∞(H) = ∅. (61)

Denote also by P+ (P−) the corresponding projectors of the linear space
B∞(H) := B+∞(H)⊕ B−∞(H) ⊂ B∞(H)

upon B+∞(H) (B−∞(H)), and call them after [22] by transformators of a triangle
shear. The transformators P+ and P− are known [22] to be continuous operators in
ideals Bp(H), p ∈ [1,∞]. From definitions above one gets that

P+(Φ) + P−(Φ) = Φ, P±(Φ) = τP∓τ(Φ) (62)

for any Φ ∈ B(H), where τ : Bp(H) → Bp(H) is the standard involution in Bp(H)
acting as τ(Φ) := Φ∗.
REMARK 3.10. It is clear and important that transformators P+ and P− strongly

depend on a fixed projector chain P.
Put now, by definition,

V±f := {1 + K± : K± ∈ B±∞(H)} (63)

and

Vf := {Ω−1+ · Ω− : Ω± ∈ V±f }. (64)

It is easy to check that V+f and V−f are subgroups of invertible operators from L(H)
and, moreover, V+f ∩ V−f = {1}. Consider also the following two operator sets:

W := {Φ ∈ B∞(H) : Ker(1 + PΦP) = {0}, P ∈ P},
Wf := {Φ ∈ B∞(H) : Ω := 1 +Φ ∈ Vf}, (65)



Prykarpatsky et al. 223

which are characterized by the following (see [22, 23]) theorem.

THEOREM 3.11. (Gokhberg and Krein [22]) The following conditions hold:
i) Wf ⊂W;
ii) Bω(H) ∩W ⊂Wf where Bω(H) ⊂ B(H) is the so called Macaev ideal;
iii) for any Φ ∈Wf it is necessary and sufficient that at least one of the integrals

K+(Ω) = −
P
dPΦP(1 + PΦP)−1, or (1 + K−(Ω))−1 − 1 = −

P
(1 + PΦP)−1PΦdP

(66)

is convergent in the uniform operator topology, and, moreover, if one integral of (49)
is convergent then the another one is convergent too;
iv) the factorization representation

Ω = 1 +Φ = (1 + K+(Ω))
−1(1 + K−(Ω)) (67)

for Φ ∈Wf is satisfied.

The theorem above is still abstract since it does not take into account the crucial
relationship (47) relating the operators representation (67) with a given differential
operator L ∈ L(H). Thus, it is necessary to satisfy the condition (47). If this condition
is, due to (26) and (41) satisfied, the following crucial equalities

(1 + K+(Ω))L(1 + K+(Ω))
−1 = L̃ = (1 + K−(Ω))L(1 + K−(Ω))−1 (68)

in H and the corresponding congruence relationships

(L̃ext ⊗ 1)K± = (1⊗ L∗ext)K± (69)

in H+ ⊗ H+ hold. Here by K̂± ∈ H− ⊗ H− we mean the corresponding kernels
of Volterra operators K±(Ω) ∈ B±∞(H). Since the factorization (67) is unique, the
corresponding kernels must a priori satisfy the conditions (68) and (69). Thereby the
self-similar congruence condition must be solved with respect to a kernel Φ̂ ∈ H−⊗H−
corresponding to the integral operator Φ ∈ B∞(H), and next, must be found the
corresponding unique factorization (67), satisfying a priori condition (68) and (69).

3.7 To realize this scheme, define preliminarily a unique positive Borel finite measure
on the Borel subsets ∆ ⊂ Q of the open set Q ⊂ Rm, satisfying for any projector
Px ∈ Px of a chain Px, marked by a running point x ∈ Q, the following condition

(u,Px(∆)v)H =
∆⊂Q

(u,Xx(y)v)dµPx(y) (70)

for all u, v ∈ H+, where Xx : Q → B2(H+,H−) is for any x ∈ Q a measurable with
respect to some Borel measure µPx on Borel subsets of Q operator-valued mapping of
Hilbert-Schmidt type. The representation (70) follows due to the reasoning similar to
that in [12], based on the standard Radon-Nikodym theorem [12, 37]. This means in
particular, that in the weak sense

Px(∆) =
∆

Xx(y)dµPx(y) (71)



224 Generalized De Rham-Hodge Theory

for any Borel set ∆ ∈ Q and a running point x ∈ Q. Making use now of the weak
representation (71) the integral expression like If,g(x) = Px f(Px)dPxg(Px), x ∈ Q,
for any continuous mappings f, g : Px → B(H) can be, obviously, represented as

If,g(x) =
Q

f(P(y))χx(y)g(P(y))dµPx(y). (72)

Thereby for the Volterrian operators (66) one can get the following expressions:

K+,x(Ω) = − Q
(1 + Px(y)ΦPx(y))

−1Px(y)ΦdµPx,+(y),
(1 + K+,x(Ω))

−1 = 1−
Q
dµPx,+(y)ΦPx(y)(1 + Px(y)ΦPx(y))

−1 (73)

for some Borel measure µPx,+ on Q and a given operator Φ ∈ B∞(H). The first expres-
sion of (73) can be written down for the corresponding kernels K̂+,x(y) ∈ H− ⊗H− as
follows

K̂+,x(y) = −
σ(L)∩σ(L∗)

dρσ,+(λ)ψ̃λ(x)⊗ ϕλ(y), (74)

where, due to the representation (46) and Theorem 2.2. we put for any running points
x, y and x3 ∈ Q the following convolution of two kernels:

((1 + Px(x
3)ΦPx(x3))−1) ∗ (ψλ(x3)⊗ ϕλ(y)) := ψ̃λ(x)⊗ ϕλ(y). (75)

for λ ∈ σ(L̃)∩ σ̄(L∗) and some ψ̃λ ∈ H− . Taking now into account the representation
(32) at s = “ + ”, from (74) one gets easily that the elementary congruent kernel

Zλ = ψ̃λ ⊗ ϕλ (76)

satisfies the important conditions (L̃ext ⊗ 1)Zλ = λZλ and (1 ⊗ L∗)Zλ = λZλ for any
λ ∈ σ(L̃)∩σ̄(L∗). Now for the operator K+(Ω) ∈ B+∞(H) one finds the following integral
representation

K+(Ω) = −
S
(m)
+,x

dy
σ(eL)∩σ̄(L∗) dρσ,+(λ)ψ̃λ(x)ϕ̄

|
λ(y)(·), (77)

satisfying, evidently the congruence condition (26), where we put, by definition,

dµPx,+(y) = χ
S
(m)
+,x

dy, (78)

with χ
S
(m)
+,x

being the characteristic function of the support of the measure dµPx , that

is supp µPx,+ := S
(m)
+,x ∈ K(Q). Completely similar reasonings can be applied for

describing the structure of the second factorizing operator K−(Ω) ∈ B−∞(H) :

K−(Ω) = −
S
(m)
−,x

dy
σ(eL)∩σ̄(L∗) dρσ,−(λ)ψ̃λ(x)ϕ̄

|
λ(y)(·), (79)
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where, by definition, S
(m)
−,x ⊂ Q, x ∈ Q, is, as before, the support suppµPx,− := S(m)−,x ∈

K(Q) of the corresponding to the operator (79) finite Borel measure µPx,− defined on
the Borel subsets of Q⊂ Rm.
It is natural to put now x ∈ ∂S

(m)
+,x ∩∂S(m)−,x , being an intrinsic point of the boundary

∂S
(m)
+,x\∂Q = −∂S(m)−,x\∂Q := σ

(m−1)
x ∈ K(Q), where K(Q) is, as before, some singular

simplicial complex generated by the open set Q ⊂ Rm. Thus, for our Fredholm operator
Ω := 1 +Φ ∈ Vf the corresponding factorization is written down as

Ω = (1 + K+(Ω))
−1(1 + K−(Ω)) := Ω−1+ Ω−, (80)

where integral operators K±(Ω) ∈ B±∞(H) are given by expression (77) and (79)
parametrized by a running intrinsic point x ∈ Q.

4 The Differential-Geometric Structure of a Lagrangian
Identity and Related Delsarte Transmutation Op-
erators

4.1. In Section 3 above we have studied in detail the spectral structure of Delsarte
transmutation Volterrian operators Ω± ∈ L(H) factorizing some Fredholm operator
Ω = Ω−1+ Ω− and stated their relationships with the approach suggested in [22, 23].
In particular, we demonstrated the existence of some Borel measures µPx,± localized
upon hypersurfaces S

(m)
±,x ∈ K(Q) and related naturally with the corresponding integral

operators K±(Ω), whose kernels K̂±(Ω) ∈ H− ⊗H− are congruent to a pair of given
differential operators (L, L̃) ⊂ L(H), satisfying the relationships (37). In what will
follow below we shall study some differential-geometric properties of the Lagrange
identity naturally associated with two Delsarte related differential operators L and L̃
in H and describe by means of some specially constructed integral operator kernels the
corresponding Delsarte transmutation operators exactly in the same spectral form as
it was studied in Section 3 above.

Let a multi-dimensional linear differential operator L : H→ H of order n(L) ∈ Z+
be of the form

L(x|∂) :=
n(L)

|α|=0
aα(x)

∂|α|

∂xα
, (81)

and defined on a dense domain D(L) ⊂ H, where, as usual, α ∈ Zm+ is a multi-
index, x ∈ Rm, and for brevity one assumes that coefficients aα ∈ S(Rm;EndCN ),
α ∈ Zm+ . Consider the following easily derivable generalized Lagrangian identity for the
differential expression (81):

< L∗ϕ,ψ > − < ϕ,Lψ >=
m

i=1

(−1)i+1 ∂

∂xi
Zi[ϕ,ψ], (82)
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where (ϕ,ψ) ∈ H∗ ×H, mappings Zi : H∗ × H → C, i = 1,m, are semilinear due to
the construction and L∗ : H∗ → H∗ is the corresponding formally conjugated to (81)
differential expression, that is

L∗(x|∂) :=
n(L)

|α|=0
(−1)|α| ∂

|α|

∂xα
· ā|α(x).

Bymultiplying the identity (82) by the usual oriented Lebesgue measure dx = ∧j=−−→1,mdxj ,
we get

< L∗ϕ,ψ > dx− < ϕ,Lψ > dx = dZ(m−1)[ϕ,ψ] (83)

for all (ϕ,ψ) ∈ H∗ ×H, where

Z(m−1)[ϕ,ψ] :=
m

i=1

dx1 ∧ dx2 ∧ ... ∧ dxi−1 ∧ Zi[ϕ,ψ]dxi+1 ∧ ... ∧ dxm (84)

is a (m− 1)-differential form on Rm.
4.2. Consider now all such pairs (ϕ(λ),ψ(µ)) ∈ H∗0 × H0 ⊂ H− × H−, λ, µ ∈ Σ,

where as before

H+ ⊂ H ⊂ H− (85)

is the usual Gelfand triple of Hilbert spaces [12, 13] related with our Hilbert-Schmidt
rigged Hilbert space H, Σ ∈ Cp, p ∈ Z+, is some fixed measurable space of parameters
endowed with a finite Borel measure ρ, that the differential form (84) is exact, that
is there exists a set of (m − 2)-differential forms Ω(m−2)[ϕ(λ),ψ(µ)] ∈ Λm−2(Rm;C),
λ, µ ∈ Σ, on Rm satisfying the condition

Z(m−1)[ϕ(λ),ψ(µ)] = dΩ(m−2)[ϕ(λ),ψ(µ)]. (86)

A way to realize this condition is to take some closed subspaces H∗0 and H0 ⊂ H−
as solutions to the corresponding linear differential equations under some boundary
conditions:

H0 : = {ψ(λ) ∈ H− : Lψ(λ) = 0, ψ(λ)|x∈Γ = 0, λ ∈ Σ},
H∗0 : = {ϕ(λ) ∈ H∗− : L∗ϕ(λ) = 0, ϕ(λ)|x∈Γ = 0, λ ∈ Σ}.

The triple (85) allows us to determine properly a set of generalized eigenfunctions for
extended operators L ,L∗ : H− → H−, if Γ ⊂ Rm is taken as some (n−1)-dimensional
piecewise smooth hypersurface embedded into the configuration space Rm. There can
exist, evidently, situations [17, 11, 9] when boundary conditions are not necessary.

Let now S±(σ
(m−2)
x ,σ

(m−2)
x0 ) ∈ Cm−1(M ;C) denote some two non-intersecting (m−

1)-dimensional piecewise smooth hypersurfaces from the singular simplicial chain group
Cm−1(M ;C) ⊂ K(M) of some topological compactification M := R̄m, such that their
boundaries are the same, that is ∂S±(σ

(m−2)
x , σ

(m−2)
x0 ) = σ

(m−2)
x − σ

(m−2)
x0 and,
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additionally, ∂(S+(σ
(m−2)
x ,σ

(m−2)
x0 ) ∪ S−(σ(m−2)x ,σ

(m−2)
x0 )) = �, where σ

(m−2)
x and

σ
(m−2)
x0 ∈ Cm−2(Rm;C) are some (m− 2)-dimensional homological cycles from a suit-
able chain complex K(M) parametrized yet formally by means of two points x, x0 ∈M
and related in some way with the above chosen hypersurface Γ ⊂ M. Then from (86)
based on the general Stokes theorem [31, 32, 35, 33], one respectively gets easily that

S±(σ
(m−2)
x ,σ

(m−2)
x0

)

Z(m−1)[ϕ(λ),ψ(µ)] =
∂S±(σ

(m−2)
x ,σ

(m−2)
x0

)

Ω(m−2)[ϕ(λ),ψ(µ)]

=
σ
(m−2)
x

Ω(m−2)[ϕ(λ),ψ(µ)]−
σ
(m−2)
x0

Ω(m−2)[ϕ(λ),ψ(µ)]

: = Ωx(λ, µ)− Ωx0(λ, µ),

S±(σ
(m−2)
x ,σ

(m−2)
x0

)
Z
(m−1),|

[ϕ(λ),ψ(µ)] =
∂S±(σ

(m−2)
x ,σ

(m−2)
x0

)

Ω̄(m−2),|[ϕ(λ),ψ(µ)]

=
σ
(m−2)
x

Ω̄(m−2),|[ϕ(λ),ψ(µ)]−
σ
(m−2)
x0

Ω̄(m−2),|[ϕ(λ),ψ(µ)]

: = Ω~x (λ, µ)− Ω~x0(λ, µ)

for the set of functions (ϕ(λ),ψ(µ)) ∈ H∗0×H0, λ, µ ∈ Σ, with operator kernels Ωx(λ, µ),
Ω~x (λ, µ) and Ωx0(λ, µ), Ω

~
x (λ, µ), λ, µ ∈ Σ, acting naturally in the Hilbert space

L
(ρ)
2 (Σ;C). These kernels are assumed further to be nondegenerate in L(ρ)2 (Σ;C) and
satisfying the homotopy conditions

lim
x→x0

Ωx(λ, µ) = Ωx0(λ, µ), lim
z→x0

Ω~x (λ, µ) = Ω
~
x0(λ, µ).

4.3. Define now actions of the following two linear Delsarte permutations operators
Ω± : H → H and Ω~± : H∗ → H∗ still upon a fixed set of functions (ϕ(λ),ψ(µ)) ∈
H∗0 ×H0, λ, µ ∈ Σ :

ψ̃(λ) = Ω±(ψ(λ)) := Σ
dρ(η)

Σ
dρ(µ)ψ(η)Ω−1x (η, µ)Ωx0(µ,λ),

ϕ̃(λ) = Ω~±(ϕ(λ)) := Σ
dρ(η)

Σ
dρ(µ)ϕ(η)Ω~,−1x (µ, η)Ω~x0(λ, µ).

(87)

Making use of the expressions (87), based on arbitrariness of the chosen set of functions
(ϕ(λ),ψ(µ)) ∈ H∗0 × H0, λ, µ ∈ Σ, we can easily retrieve the corresponding operator
expressions for operators Ω± and Ω~± : H−→ H−, forcing the kernels Ωx0(λ, µ) and
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Ω~x0(λ, µ), λ, µ ∈ Σ, to variate:

ψ̃(λ) =
Σ

dρ(η)
Σ

dρ(µ)ψ(η)Ωx(η, µ)Ω
−1
x (µ,λ)

−
Σ

dρ(η)
Σ

dρ(µ)ψ(η)Ω−1x (η, µ)]×

×
S±(σ

(m−2)
x ,σ

(m−2)
x0

)

Z(m−1)[ϕ(µ),ψ(λ)])

= ψ(λ)−
Σ

dρ(η)
Σ

dρ(µ)
Σ

dρ(ν)
Σ

dρ(ξ)ψ(η)Ω−1x (η, ν)×

×Ωx0(ν, ξ)]Ω−1x0 (ξ, µ)
S±(σ

(m−2)
x ,σ

(m−2)
x0

)

Z(m−1)[ϕ(µ),ψ(λ)]

= ψ(λ)−
Σ

dρ(η)
Σ

dρ(µ)ψ̃(η)Ω−1x0 (η, µ)]
S±(σ

(m−2)
x ,σ

(m−2)
x0

)

Z(m−1)[ϕ(µ),ψ(λ)]

= (1−
Σ

dρ(η)
Σ

dρ(µ)ψ̃(η)Ω−1x0 (η, µ)×

×
S±(σ

(m−2)
x ,σ

(m−2)
x0

)

Z(m−1)[ϕ(µ), (·)]) ψ(λ)

: = Ω± · ψ(λ);

ϕ̃(λ) =
Σ

dρ(η)
Σ

dρ(µ)ϕ(η)Ω~,−1x (µ, η)Ω~x (λ, µ)

−
Σ

dρ(η)
Σ

dρ(µ)ϕ(η)Ω~,−1x (µ, η)
S±(σ

(m−2)
x ,σ

(m−2)
x0

)

Z̄(m−1),|[ϕ(λ),ψ(µ)]

= ϕ(λ)−
Σ

dρ(η)
Σ

dρ(ν)
Σ

dρ(ξ)
Σ

dρ(µ)ϕ(η)Ω~,−1x (ξ, η)×

×Ω~x0 (ν, ξ)Ω
~,−1
x0 (µ, ν)

S±(σ
(m−2)
x ,σ

(m−2)
x0

)

Z̄(m−1),|[ϕ(λ),ψ(µ)]

= (1−
Σ

dρ(η)
Σ

dρ(µ)ϕ̃(η)Ω~,−1x0
(µ, η)×

×
S±(σ

(m−2)
x ,σ

(m−2)
x0

)

Z̄(m−1),|[(·),ψ(µ)]) ϕ(λ)

: = Ω~± · ϕ(λ),
where, by definition,

Ω± := 1− Σ
dρ(η)

Σ
dρ(µ)ψ̃(η)Ω−1x0 (η, µ) S±(σ

(m−2)
x ,σ

(m−2)
x0

)
Z(m−1)[ϕ(µ), (·)],

Ω~± := 1− Σ
dρ(η)

Σ
dρ(µ)ϕ̃(η)Ω~,−1x0

(µ, η)
S±(σ

(m−2)
x ,σ

(m−2)
x0

)
Z̄(m−1),|[(·),ψ(µ)]

(88)

are of Volterra type multidimensional integral operators. It is to be noted here that
now elements (ϕ(λ),ψ(µ)) ∈ H∗0 × H0 and (ϕ̃(λ), ψ̃(µ)) ∈ H̃∗0 × H̃0, λ, µ ∈ Σ, inside
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the operator expressions (88) are not arbitrary but now fixed. Therefore, the operators
(88) realize an extension of their actions (87) on a fixed pair of functions (ϕ(λ),ψ(µ)) ∈
H∗0 ×H0, λ, µ ∈ Σ, upon the whole functional space H∗ ×H.
4.4. Due to the symmetry of expressions (87) and (88) with respect to two sets of

functions (ϕ(λ),ψ(µ)) ∈ H∗0×H0 and (ϕ̃(λ), ψ̃(µ)) ∈ H̃∗0×H̃0, λ, µ ∈ Σ, it is very easy
to state the following lemma.

LEMMA 4.1. Operators (88) are bounded and invertible of Volterra type expres-
sions in H∗ ×H whose inverse are given as follows:

Ω−1± := 1−
Σ
dρ(η)

Σ
dρ(µ)ψ(η)Ω̃−1x0 (η, µ) S±(σ

(m−2)
x ,σ

(m−2)
x0

)
Z(m−1)[ϕ̃(µ), (·)]

Ω~,−1± := 1−
Σ
dρ(η)

Σ
dρ(µ)ϕ(η)Ω~,−1x

0
(µ, η)

S±(σ
(m−2)
x ,σ

(m−2)
x0

)
Z̄(m−1),|[(·), ψ̃(µ)]

(89)

where two sets of functions (ϕ(λ),ψ(µ)) ∈ H∗0 × H0 and (ϕ̃(λ), ψ̃(µ)) ∈ H̃∗0 × H̃0,
λ, µ ∈ Σ, are taken arbitrary but fixed.
For the expressions (89) to be compatible with mappings (87) the following actions

must hold:

ψ(λ) = Ω−1± · ψ̃(λ) =
Σ
dρ(η)

Σ
dρ(µ)ψ̃(η)Ω̃−1x (η, µ)]Ω̃x0(µ,λ),

ϕ(λ) = Ω~,−1± · ϕ̃(λ) =
Σ
dρ(η)

Σ
dρ(µ)ϕ̃(η)Ω̃~,−1x (µ, η)Ω̃~x0(λ, µ),

(90)

where for any two sets of functions (ϕ(λ),ψ(µ)) ∈ H∗0×H0 and (ϕ̃(λ), ψ̃(µ)) ∈ H̃∗0×H̃0,
λ, µ ∈ Σ, the next relationship is satisfied:

(< L̃∗ϕ̃(λ), ψ̃(µ) > − < ϕ̃(λ), L̃ψ̃(µ) >)dx = d(Z̃(m−1)[ϕ̃(λ), ψ̃(µ)]),

Z̃(m−1)[ϕ̃(λ), ψ̃(µ)] = dΩ̃(m−2)[ϕ̃(λ), ψ̃(µ)] (91)

when

L̃ := Ω±LΩ−1± , L̃∗ := Ω~±L
∗Ω~,−1± . (92)

Moreover, the expressions above for L̃ : H → H and L̃∗ : H∗ → H∗ do not depend on
the choice of the indexes below of operators Ω+ or Ω− and are in the result differential.
Since the last condition determines properly Delsarte transmutation operators (89), we
need to state the following theorem.

THEOREM 4.2. The pair (L̃, L̃∗) of operator expressions L̃ := Ω±LΩ−1± and

L̃∗ := Ω~±L∗Ω
~,−1
± acting in the space H × H∗ is purely differential for any suitably

chosen hyper-surfaces S±(σ
(m−2)
x ,σ

(m−2)
x0 ) ∈ Cm−1(M ;C) from the homology group

Cm−1(M ;C).
PROOF. For proving the theorem it is necessary to show that the formal pseudo-

differential expressions corresponding to operators L̃ and L̃∗ contain no integral ele-
ments. Making use of an idea devised in [27, 21], one can formulate such a lemma.
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LEMMA 4.3. A pseudo-differential operator L : H→ H is purely differential iff the
following equality

(h, (L
∂|α|

∂xα
)+f) = (h,L+

∂|α|

∂xα
f) (93)

holds for any |α| ∈ Z+ and all (h, f) ∈ H∗ ×H, that is the condition (93) is equivalent
to the equality L+ = L, where, as usual, the sign “(...)+” means the purely differential
part of the corresponding expression inside the bracket.

Based now on this Lemma and exact expressions of operators (88), similar to the
calculations done in [27], one shows right away that operators L̃ and L̃∗, depending
respectively only both on the homological cycles σ

(m−2)
x ,σ

(m−2)
x0 ∈ Cm−2(M ;C) from

a simplicial chain complex K(M), marked by points x, x0 ∈ Rm, and on two sets of
functions (ϕ(λ),ψ(µ)) ∈ H∗0 × H0 and (ϕ̃(λ), ψ̃(µ)) ∈ H̃∗0 × H̃0, λ, µ ∈ Σ, are purely
differential thereby finishing the proof.

The differential-geometric construction suggested above can be nontrivially general-
ized for the case of m ∈ Z+ commuting to each other differential operators in a Hilbert
space H giving rise to a new look at theory of Delsarte transmutation operators based
on differential-geometric and topological de Rham-Hodge techniques. These aspects
will be discussed in detail in the next two Sections.

5 The General Differential-Geometric and Topolog-
ical Structure of Delsarte Transmutation Opera-
tors: the Generalized De Rham-Hodge Theory

5.1. Below we shall explain the corresponding differential-geometric and topological
nature of these spectral related results obtained above and generalize them to a set
L of commuting differential operators Delsarte related with another commuting set L̃
of differential operators in H. These results are deeply based on the generalized De
Rham-Hodge theory [33, 34, 32, 3, 35] of special differential complexes giving rise to
effective analytical expressions for the corresponding Delsarte transmutation Volterra
type operators in a given Hilbert space H. As a by-product one obtains the integral
operator structure of Delsarte transmutation operators for polynomial pencils of differ-
ential operators in H having many applications both in spectral theory of such multi-
dimensional operator pencils [25, 26, 28, 38] and in soliton theory [21, 16, 10, 30, 15]
of multidimensional integrable dynamical systems on functional manifolds, being very
important for diverse applications in modern mathematical physics.
Let M := R̄m denote as before a suitably compactified metric space of dimen-

sion m = dimM ∈ Z+ (without boundary) and define some finite set L of smooth
commuting to each other linear differential operators

Lj(x|∂) :=
n(Lj)

|α|=0
a(j)α (x)∂

|α|/∂xα (94)
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with respect to x ∈ M, having smooth enough coefficients a
(j)
α ∈ S(M ;EndCN ),

|α| = 0, n(Lj), n(Lj) ∈ Z+, j = 1,m, and acting in the Hilbert space H := L2(M ;CN ).
It is assumed also that domains D(Lj) := D(L) ⊂ H, j = 1,m, are dense in H.
Consider now a generalized external anti-differentiation operator

dL : Λ(M ;H)→Λ(M ;H)
acting in the Grassmann algebra Λ(M ;H) as follows: for any β(k) ∈ Λk(M ;H), k =
0,m,

dLβ(k) :=
m

j=1

dxj ∧ Lj(x|∂)β(k) ∈ Λk+1(M ;H). (95)

It is easy to see that the operation (95) in the case Lj(x|∂) := ∂/∂xj , j = 1,m,
coincides exactly with the standard external differentiation d = m

j=1 dxj ∧ ∂/∂xj on
the Grassmann algebra Λ(M ;H). Making use of the operation (95) on Λ(M ;H), one
can construct the following generalized de Rham co-chain complex

H→ Λ0(M ;H) dL→ Λ1(M ;H) dL→ ...
dL→ Λm(M ;H) dL→ 0. (96)

The following important property concerning the complex (96) holds.

LEMMA 5.1. The co-chain complex (96) is exact.

It follows easily from the equality dLdL = 0 holding due to the commutation of
operators (94).

5.2. Below we will follow the ideas developed before in [3, 34]. A differential form
β ∈ Λ(M ;H) will be called dL-closed if dLβ = 0, and a form γ ∈ Λ(M ;H) will be called
dL-homological to zero if there exists on M such a form ω ∈ Λ(M ;H) that γ = dLω.
Consider now the standard algebraic Hodge star-operation

B : Λk(M ;H)→Λm−k(M ;H), (97)

k = 0,m, as follows [8, 33, 34, 35]: if β ∈ Λk(M ;H), then the form Bβ ∈ Λm−k(M ;H)
is such that:
i) (m − k)-dimensional volume | B β| of the form Bβ equals k-dimensional volume

|β| of the form β;
ii) the m-dimensional measure β̄| ∧ Bβ > 0 under the fixed orientation on M.
Define also on the space Λ(M ;H) the following natural scalar product: for any

β, γ ∈ Λk(M ;H), k = 0,m,

(β, γ) :=
M

β̄| ∧ Bγ. (98)

Subject to the scalar product (98) we can naturally construct the corresponding Hilbert
space

HΛ(M) :=
m

k=0

Hk
Λ(M)
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well suitable for our further consideration. Notice also here that the Hodge star B-
operation satisfies the following easily verifiable property: for any β, γ ∈ Hk

Λ(M),
k = 0,m,

(β, γ) = (Bβ, Bγ), (99)

that is, the Hodge operation B : HΛ(M)→ HΛ(M) is isometry and its standard adjoint
with respect to the scalar product (98) operation satisfies the condition (B)

3
= (B)−1.

Denote by d3L the formally adjoint expression to the external weak differential oper-
ation dL : HΛ(M)→ HΛ(M) in the Hilbert space HΛ(M).Making use of the operations
d3L and dL in HΛ(M) one can naturally define [8, 34, 35] the generalized Laplace-Hodge
operator ∆L : HΛ(M)→ HΛ(M) as

∆L := d3LdL + dLd
3
L. (100)

Take a form β ∈ HΛ(M) satisfying the equality
∆Lβ = 0. (101)

Such a form is called harmonic. One can also verify that a harmonic form β ∈ HΛ(M)
satisfies simultaneously the following two adjoint conditions:

d3Lβ = 0, dLβ = 0, (102)

easily stemming from (100) and (102).

It is not hard to check that the following differential operation in HΛ(M)
d∗L := Bd3L(B)

−1 (103)

defines also a usual [31, 32, 33] external anti-differential operation in HΛ(M). The
corresponding dual to (96) co-chain complex

H→ Λ0(M ;H) d
∗
L→ Λ1(M ;H) d

∗
L→ ...

d∗L→ Λm(M ;H) d
∗
L→ 0 (104)

is evidently exact too, as the property d∗Ld
∗
L = 0 holds due to the definition (103).

5.3. Denote further by Hk
Λ(L)(M), k = 0,m, the cohomology groups of dL-closed

and by Hk
Λ(L∗)(M), k = 0,m, the cohomology groups of d∗L-closed differential forms,

respectively, and by Hk
Λ(L∗L)(M), k = 0,m, the abelian groups of harmonic differential

forms from the Hilbert sub-spaces Hk
Λ(M), k = 0,m. Before formulating next results,

define the standard Hilbert-Schmidt rigged chain [12] of positive and negative Hilbert
spaces of differential forms

Hk
Λ,+(M) ⊂ Hk

Λ(M) ⊂ Hk
Λ,−(M), (105)

the corresponding rigged chains of Hilbert sub-spaces for harmonic forms

Hk
Λ(L∗L),+(M) ⊂ Hk

Λ(L∗L)(M) ⊂ Hk
Λ(L∗L),−(M) (106)
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and cohomology groups:

Hk
Λ(L),+(M) ⊂ Hk

Λ(L)(M) ⊂ Hk
Λ(L),−(M),

Hk
Λ(L∗),+(M) ⊂ Hk

Λ(L∗)(M) ⊂ Hk
Λ(L∗),−(M)

(107)

for any k = 0,m. Assume also that the Laplace-Hodge operator (100) is elliptic in
H0
Λ(M). Now by reasonings similar to those in [8, 32, 33, 35] one can formulate the

following generalized de Rham-Hodge theorem.

THEOREM 5.2. The groups of harmonic forms Hk
Λ(L∗L),−(M), k = 0,m, are,

respectively, isomorphic to the cohomology groups (Hk(M ;C))|Σ|, k = 0,m, where
Hk(M ;C) is the k-th cohomology group of the manifold M with complex coefficients,
Σ ⊂ Cp, p ∈ Z+, |Σ| := card Σ, is a set of suitable “spectral” parameters marking the
linear space of independent d∗L-closed 0-forms from H0

Λ(L),−(M) and, moreover, the
following direct sum decompositions

Hk
Λ(L∗L),−(M)⊕∆Hk

Λ,−(M) = Hk
Λ,−(M)

= Hk
Λ(L∗L),−(M)⊕ dLHk−1

Λ,−(M)⊕ d
3
LHk+1Λ,−(M)

hold for any k = 0,m.

Another variant of the statement similar to that above was formulated in [3, 4, 5, 6]
and reads as the following generalized De Rham-Hodge theorem.

THEOREM 5.3. (Skrypnik [3]) The generalized cohomology groups Hk
Λ(L),−(M),

k = 0,m, are isomorphic, respectively, to the cohomology groups (Hk(M ;C))|Σ|, k =
0,m.

A proof of this theorem is based on some special sequence [3] of differential Lagrange
type identities.

Define the following closed subspace

H∗0 := {ϕ(0)(λ) ∈ H0
Λ(L∗),−(M) : d

∗
Lϕ

(0)(λ) = 0, ϕ(0)(λ)|Γ = 0, λ ∈ Σ} (108)

for some smooth (m− 1)-dimensional hypersurface Γ ⊂M and Σ ⊂ (σ(L) ∩ σ̄(L∗))×
Σσ ⊂ Cp, where H0

Λ(L∗),−(M) is, as above, a suitable Hilbert-Schmidt rigged [12, 13]
zero-order cohomology group space from the co-chain given by (107), σ(L) and σ(L∗)
are, respectively, mutual spectra of the sets of commuting operators L and L∗ in H.
Thereby the dimension dim H∗0 = card Σ is assumed to be known. The next lemma
stated by Skrypnik being fundamental for the proof holds.

LEMMA 5.4. (Skrypnik [3, 4, 5, 6]) There exists a set of differential (k + 1)-forms
Z(k+1)[ϕ(0)(λ), dLψ(k)] ∈ Λk+1(M ;C), k = 0,m, and a set of k-forms Z(k)[ϕ(0)(λ),ψ(k)]
∈ Λk(M ;C), k = 0,m, parametrized by a set Σ 6 λ and semilinear in (ϕ(0)(λ),ψ(k)) ∈
H∗0 ×Hk

Λ,−(M), such that

Z(k+1)[ϕ(0)(λ), dLψ(k)] = dZ(k)[ϕ(0)(λ),ψ(k)] (109)

for all k = 0,m and λ ∈ Σ.
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PROOF. A proof is based on the following generalized Lagrange type identity hold-
ing for any pair (ϕ(0)(λ),ψ(k)) ∈ H∗0 ×Hk

Λ,−(M) :

0 = < d∗Lϕ
(0)(λ), B(ψ(k) ∧ γ̄) >

: =< Bd3L(B)
−1ϕ(0)(λ), B(ψ(k) ∧ γ̄) >

= < d3L(B)
−1ϕ(0)(λ),ψ(k) ∧ γ̄ >=< (B)−1ϕ(0)(λ), dLψ(k) ∧ γ̄ >

+Z(k+1)[ϕ(0)(λ), dLψ(k)] ∧ γ̄
= < (B)−1ϕ(0)(λ), dLψ(k) ∧ γ̄ > +dZ(k)[ϕ(0)(λ),ψ(k)] ∧ γ̄, (110)

where

Z(k+1)[ϕ(0)(λ), dLψ(k)] ∈ Λk+1(M ;C), k = 0,m,
and

Z(k)[ϕ(0)(λ),ψ(k)] ∈ Λk−1(M ;C), k = 0,m,
are some semilinear differential forms parametrized by a parameter λ ∈ Σ, and γ̄ ∈
Λm−k−1(M ;C) is arbitrary constant (m − k − 1)-form. Thereby, the semilinear dif-
ferential (k + 1)-forms Z(k+1)[ϕ(0)(λ), dLψ(k)] ∈ Λk+1(M ;C), k = 0,m, and k-forms
Z(k)[ϕ(0)(λ),ψ(k)] ∈ Λk(M ;C), k = 0,m, λ ∈ Σ, constructed above exactly constitute
those searched for in the Lemma.

Based now on this ?? one can construct the cohomology group isomorphism claimed
in Theorem 3.2 formulated above. Namely, following [3, 4, 6, 5, 7], let us take some
singular simplicial [32, 33, 35, 19] complex K(M) of the manifold M and introduce

linear mappings B
(k)
λ : Hk

Λ,−(M) → Ck(M ;C)), k = 0,m, λ ∈ Σ, where Ck(M ;C),
k = 0,m, are as before free abelian groups over the field C generated, respectively,
by all k-chains of simplexes S(k) ∈ Ck(M ;C), k = 0,m, from the singular simplicial
complex K(M), as follows:

B
(k)
λ (ψ(k)) :=

S(k)∈Ck(M ;C))
S(k)

S(k)
Z(k)[ϕ(0)(λ),ψ(k)] (111)

with ψ(k) ∈ Hk
Λ,−(M), k = 0,m. The following theorem based on mappings (111) holds.

THEOREM 5.5. (Skrypnik [3] ) The set of operations (111) parametrized by λ ∈ Σ
realizes the cohomology groups isomorphism formulated in Theorem 5.3.

PROOF. A proof of this theorem one can get passing over in (111) to the corre-
sponding cohomology Hk

Λ(L),−(M) and homology Hk(M ;C) groups of M for every

k = 0,m. If we take an element ψ(k) := ψ(k)(µ) ∈ Hk
Λ(L),−(M), k = 0,m, solving the

equation dLψ(k)(µ) = 0 with µ ∈ Σk being some set of the related “spectral” parame-
ters marking elements of the subspace Hk

Λ(L),−(M), then we find easily from (111) and

the identity (110) that

dZ(k)[ϕ(0)(λ),ψ(k)(µ)] = 0 (112)
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for all pairs (λ, µ) ∈ Σ× Σk, k = 0,m. This, in particular, means due to the Poincare
lemma [31, 32, 35, 33] that there exist differential (k−1)-forms Ω(k−1)[ϕ(0)(λ),ψ(k)(µ)] ∈
Λk−1(M ;C), k = 0,m, such that

Z(k)[ϕ(0)(λ),ψ(k)(µ)] = dΩ(k−1)[ϕ(0)(λ),ψ(k)(µ)] (113)

for all pairs (ϕ(0)(λ),ψ(k)(µ)) ∈ H∗0 ×Hk
Λ(L),−(M) parametrized by (λ, µ) ∈ Σ× Σk,

k = 0,m. As a result of passing on the right-hand side of (111) to the homology groups
Hk(M ;C), k = 0,m, one gets due to the standard Stokes theorem [31, 35, 33, 32] that
the mappings

B
(k)
λ : HkΛ(L),−(M) Hk(M ;C) (114)

are isomorphisms for every λ ∈ Σ and λ ∈ Σ.Making further use of the Poincare duality
[32, 33, 35, 19] between the homology groups Hk(M ;C), k = 0,m, and the cohomology
groups Hk(M ;C), k = 0,m, respectively, one obtains finally the statement claimed in
Theorem 5.3, that is Hk

Λ(L),−(M) * (Hk(M ;C))|Σ|.

5.4. Assume thatM := Tr×R̄s, dimM = s+r ∈ Z+, andH := L2(T
r;L2(Rs;CN )),

where Tr := r
j=1Tj , Tj := [0, Tj) ⊂ R+, j = 1, r, and put

dL =
r

j=1

dtj ∧ Lj(t;x|∂), Lj(t;x|∂) := ∂/∂tj − Lj(t;x|∂), (115)

with

Lj(t;x|∂) =
n(Lj)

|α|=0
a(j)α (t;x)∂

|α|/∂xα, (116)

j = 1, r, being differential operations parametrically dependent on t ∈ Tr and defined
on dense subspaces D(Lj) = D(L) ⊂ L2(Rs;CN ), j = 1, r. It is assumed also that
operators Lj : H→ H, j = 1, r, are commuting to each other.
Take now such a fixed pair (ϕ(0)(λ),ψ(0)(µ)dx) ∈ H∗0 ×Hs

Λ(L),−(M), parametrized
by elements (λ, µ) ∈ Σ×Σ, for which due to both Theorem 5.5 and the Stokes theorem
[31, 32, 35, 33, 19] the following equality

B
(s)
λ (ψ(0)(µ)dx) = S

(s)
(t;x)

∂S
(s)

(t;x)

Ω(s−1)[ϕ(0)(λ),ψ(0)(µ)dx] (117)

holds, where S
(s)
(t;x) ∈ Cs(M ;C) is some fixed element parametrized by an arbitrarily

chosen point (t;x) ∈M ∩ S(s)(t;x). Consider the next integral expressions

Ω(t;x)(λ, µ) := ∂S
(s)

(t;x)

Ω(s−1)[ϕ(0)(λ),ψ(0)(µ)dx],

Ω(t0;x0)(λ, µ) := ∂S
(s)

(t0;x0)

Ω(s−1)[ϕ(0)(λ),ψ(0)(µ)dx],
(118)
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with a point (t0;x0) ∈M ∩ S(s)(t0;x0) being taken fixed, λ, µ ∈ Σ, and interpret them as

the corresponding kernels [12] of the integral invertible operators of Hilbert-Schmidt

type Ω(t;x),Ω(t0;x0) : L
(ρ)
2 (Σ;C) → L

(ρ)
2 (Σ;C), where ρ is some finite Borel measure

on the parameter set Σ. It assumes also above that the boundaries ∂S
(s)
(t;x) := σ

(s−1)
(t;x)

and ∂S
(s)
(t0;x0)

:= σ
(s−1)
(t0;x0)

are taken homological to each other as (t;x) → (t0;x0) ∈ M.
Define now the expressions

Ω± : ψ(0)(η)→ ψ̃(0)(η) (119)

for ψ(0)(η)dx ∈ Hs
Λ(L),−(M), η ∈ Σ, and some ψ̃(0)(η)dx ∈ Hs

Λ,−(M), where, by
definition, for any η ∈ Σ

ψ̃(0)(η) := ψ(0)(η) · Ω−1(t;x)Ω(t0;x0) =
Σ

dρ(µ)
Σ

dρ(ξ)ψ(0)(µ)Ω−1(t;x)(µ, ξ)Ω(t0;x0)(ξ, η),

(120)

being motivated by the expression (117). Suppose now that the elements (120) are ones
being related to some another Delsarte transformed cohomology group Hs

Λ(L̃),−(M)
that is the following condition

dL̃ψ̃
(0)(η)dx = 0 (121)

for ψ̃(0)(η)dx ∈ Hs
Λ(L̃),−(M), η ∈ Σ, and some new external anti-differentiation opera-

tion in HΛ,−(M)

dL̃ :=
m

j=1

dxj ∧ L̃j(t;x|∂), L̃j(t;x|∂) := ∂/∂tj − L̃j(t;x|∂) (122)

holds, where expressions

L̃j(t;x|∂) =
n(Lj)

|α|=0
ã(j)α (t;x)∂

|α|/∂xα, (123)

j = 1, r, are differential operations in L2(Rs;CN ) parametrically dependent on t ∈ Tr.
5.5. Put

L̃j := Ω±LjΩ−1± (124)

for each j = 1, r, where Ω± : H→H are the corresponding Delsarte transmutation

operators related with some elements S±(σ
(s−1)
(x;t) ,σ

(s−1)
(x0;t0)

) ∈ Cs(M ;C) related naturally
with homological to each other boundaries ∂S

(s)
(x;t) = σ

(s−1)
(x;t) and ∂S

(s)
(x0;t0)

= σ
(s−1)
(x0;t0)

.

Since all of operators Lj : H→H, j = 1, r, were taken commuting, the same property
also holds for the transformed operators (124), that is [L̃j , L̃k] = 0, k, j = 0,m. The
latter is, evidently, equivalent due to (124) to the following general expression:

dL̃ = Ω±dLΩ
−1
± . (125)
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For the condition (125) and (121) to be satisfied, let us consider the corresponding to
(117) expressions

B̃
(s)
λ (ψ̃(0)(η)dx) = S

(s)
(t;x)Ω̃(t;x)(λ, η), (126)

related with the corresponding external differentiation (125), where S
(s)
(t;x) ∈ Cs(M ;C)

and (λ, η) ∈ Σ×Σ. Assume further that there are also defined mappings
Ω~± : ϕ

(0)(λ)→ ϕ̃(0)(λ) (127)

with Ω~± : H∗→ H∗ being some operators associated (but not necessary adjoint!) with
the corresponding Delsarte transmutation operators Ω± : H→ H and satisfying the
standard relationships L̃∗j := Ω

~
±L
∗
jΩ

~,−1
± , j = 1, r. The proper Delsarte type operators

Ω± : H0
Λ(L),−(M) → H0

Λ(L̃),−(M) are related with two different realizations of the

action (120) under the necessary conditions

dL̃ψ̃
(0)(η)dx = 0, d∗L̃ϕ̃

(0)(λ) = 0, (128)

needed to be satisfied and meaning that the embeddings ϕ̃(0)(λ) ∈ H0
Λ(L̃∗),−(M), λ ∈ Σ,

and ψ̃(0)(η)dx ∈ Hs
Λ(L̃),−(M), η ∈ Σ, are satisfied. Now we need to formulate a lemma

being important for the conditions (128) to hold.

LEMMA 5.6. The following invariance property

Z̃(s) = Ω(t0;x0)Ω
−1
(t;x)Z

(s)Ω−1(t;x)Ω(t0;x0) (129)

holds for any (t;x) and (t0;x0) ∈M.
As a result of (129) and the symmetry invariance between cohomology spaces

H0
Λ(L),−(M) and H0

Λ(L̃),−(M) one obtains the following pairs of related mappings:

ψ(0) = ψ̃(0)Ω̃−1(t;x)Ω̃(t0;x0), ϕ(0) = ϕ̃(0)Ω̃~,−1(t;x) Ω̃
~
(t0;x0)

,

ψ̃(0) = ψ(0)Ω−1(t;x)Ω(t0;x0), ϕ̃(0) = ϕ(0)Ω~,−1(t;x) Ω
~
(t0;x0)

,
(130)

where the integral operator kernels from L
(ρ)
2 (Σ;C)⊗ L(ρ)2 (Σ;C) are defined as

Ω̃(t;x)(λ, µ) := σ
(s)

(t;x)

Ω̃(s−2)[ϕ̃(0)(λ), ψ̃(0)(µ)dx],

Ω̃~(t;x)(λ, µ) := σ
(s)

(t;x)

Ω̃
(s−2),|

[ϕ̃(0)(λ), ψ̃(0)(µ)dx]
(131)

for all (λ, µ) ∈ Σ × Σ, giving rise to finding proper Delsarte transmutation operators
ensuring the pure differential nature of the transformed expressions (124).
Note here also that due to (129) and (130) the following operator property

Ω(t0;x0)Ω
−1
(t;x)Ω(t0;x0) + Ω̃(t0;x0)Ω

−1
(t;x)Ω(t0;x0) = 0 (132)

holds for any (t0;x0) and (t;x) ∈M meaning that Ω̃(t0;x0) = −Ω(t0;x0).
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5.6. One can now define similar to (108) the additional closed and dense inH0
Λ,−(M)

three subspaces

H0 := {ψ(0)(µ) ∈ H0
Λ(L),−(M) : dLψ

(0)(µ) = 0, ψ(0)(µ)|Γ = 0, µ ∈ Σ},
H̃0 := {ψ̃(0)(µ) ∈ H0

Λ( eL),−(M) : d eLψ̃(0)(µ) = 0, ψ̃(0)(µ)|Γ̃ = 0, µ ∈ Σ},
H̃∗0 := {ϕ̃(0)(η) ∈ H0

Λ(L̃∗),−(M) : d
∗eLψ̃(0)(η) = 0, ϕ̃(0)(η)|Γ̃ = 0, η ∈ Σ},

(133)

where Γ and Γ̃ ⊂M are some smooth (s−1)-dimensional hypersurfaces, and construct
the actions

Ω± : ψ(0) → ψ̃(0) := ψ(0)Ω−1(t;x)Ω(t;x), Ω~± : ϕ
(0) → ϕ̃(0) := ϕ(0)Ω~,−1(t;x) Ω

~
(t0;x0)

(134)

on arbitrary but fixed pairs of elements (ϕ(0)(λ),ψ(0(µ)) ∈ H∗0 ×H0, parametrized by
the set Σ, where by definition, one needs that all obtained pairs (ϕ̃(0)(λ), ψ̃(0)(µ)dx),
λ, µ ∈ Σ, belong to H0

Λ(L̃∗),−(M)×Hs
Λ(L̃),−(M). Note also that related operator prop-

erty (132) can be compactly written down as follows:

Ω̃(t;x) = Ω̃(t0;x0)Ω
−1
(t;x)Ω(t0;x0) = −Ω(t0;x0)Ω−1(t;x)Ω(t0;x0). (135)

Construct now from the expressions (134) the following operator kernels from the

Hilbert space L
(ρ)
2 (Σ;C)⊗ L(ρ)2 (Σ;C) :

Ω(t;x)(λ, µ)− Ω(t0;x0)(λ, µ) =
∂S

(s)

(t;x)

Ω(s−1)[ϕ(0)(λ),ψ(0)(µ)dx]

−
∂S

(s)

(t0;x0)

Ω(s−1)[ϕ(0)(λ),ψ(0)(µ)dx]

=
S
(s)
± (σ

(s−1)
(t;x)

,σ
(s−1)
(t0;x0)

)

dΩ(s−1)[ϕ(0)(λ),ψ(0)(µ)dx]

=
S
(s)
± (σ

(s−1)
(t;x)

,σ
(s−1)
(t0;x0)

)

Z(s)[ϕ(0)(λ),ψ(0)(µ)dx], (136)

and, similarly,

Ω~(t;x)(λ, µ)− Ω~(t0;x0)(λ, µ) =
∂S

(s)

(t;x)

Ω̄(s−1),|[ϕ(0)(λ),ψ(0)(µ)dx]

−
∂S

(s)

(t0;x0)

Ω̄(s−1),|[ϕ(0)(λ),ψ(0)(µ)dx]

=
S
(s)
± (σ

(s−1)
(t;x)

,σ
(s−1)
(t0;x0)

)

dΩ̄(s−1),|[ϕ(0)(λ),ψ(0)(µ)dx]

=
S
(s)
± (σ

(s−1)
(t;x)

,σ
(s−1)
(t0;x0)

)

Z̄(s−1),|[ϕ(0)(λ),ψ(0)(µ)dx],(137)
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where λ, µ ∈ Σ, and by definition, s-dimensional surfaces S(s)+ (σ
(s−1)
(t;x) ,σ

(s−1)
(t0;x0)

) and

S
(s)
− (σ

(s−1)
(t;x) ,σ

(s−1)
(t0;x0)

) ⊂ Cs−1(M) are spanned smoothly without self-intersection be-

tween two homological cycles σ
(s−1)
(t;x) = ∂S

(s)
(t;x) and σ

(s−1)
(t0;x0)

:= ∂S
(s)
(t0;x0)

∈ Cs−1(M ;C)
in such a way that the boundary ∂(S

(s)
+ (σ

(s−1)
(t;x) ,σ

(s−1)
(t0;x0)

) ∪ S(s)− (σ(s−1)(t;x) ,σ
(s−1)
(t0;x0)

)) = �.
Since the integral operator expressions Ω(t0;x0),Ω

~
(t0;x0)

: L
(ρ)
2 (Σ;C) → L

(ρ)
2 (Σ;C) are

at a fixed point (t0;x0) ∈ M, evidently, constant and assumed to be invertible, for
extending the actions given (134) on the whole Hilbert space H×H∗ one can apply to
them the classical constants variation approach, making use of the expression (137).
As a result, we obtain easily the following Delsarte transmutation integral operator
expressions

Ω± = 1− Σ×Σ dρ(ξ)dρ(η)ψ̃(x; ξ)Ω
−1
(t0;x0)

(ξ, η)
S
(s)
± (σ

(s−1)
(t;x)

,σ
(s−1)
(t0;x0)

)
Z(s)[ϕ(0)(η), ·],

Ω~± = 1− Σ×Σ dρ(ξ)dρ(η)ϕ̃(x; η)Ω
~,−1
(t0;x0)

(ξ, η)
S
(s)
± (σ

(s−1)
(t;x)

,σ
(s−1)
(t0;x0)

)
Z̄(s),|[·,ψ(0)(ξ)dx]

(138)

for fixed pairs (ϕ(0)(ξ),ψ(0)(η)) ∈ H∗0×H0 and (ϕ̃(0)(λ), ψ̃(0)(µ)) ∈ H̃∗0×H̃0, λ, µ ∈ Σ,
being bounded invertible integral operators of Volterra type on the whole spaceH×H∗.
Applying the same arguments as in Section 1, one can show also that respectively
transformed sets of operators L̃j := Ω±LjΩ−1± , j = 1, r, and L̃∗k := Ω

~
±L
∗
kΩ

~,−1
± ,

k = 1, r, prove to be purely differential too. Thereby, one can formulate the following
final theorem.

THEOREM 5.7. The expressions (138) are bounded invertible Delsarte transmu-
tation integral operators of Volterra type onto H × H∗, transforming, respectively,
given commuting sets of operators Lj , j = 1, r, and their formally adjoint ones L∗k,
k = 1, r, into the pure differential sets of operators L̃j := Ω±LjΩ−1± , j = 1, r, and

L̃∗k := Ω~±L
∗
kΩ

~,−1
± , k = 1, r. Moreover, the suitably constructed closed subspaces

H0 ⊂ H and H̃0 ⊂ H, such that the operator Ω ∈ L(H) depend strongly on the topo-
logical structure of the generalized cohomology groups H0

Λ(L),−(M) and H0
Λ(L̃),−(M),

being parametrized by elements S
(s)
± (σ

(s−1)
(t;x) ,σ

(s−1)
(t0;x0)

) ∈ Cs(M ;C).
5.7. Suppose now that all differential operators Lj := Lj(x|∂), j = 1, r, considered

above donnot depend on the variable t ∈ Tr ⊂ Rr+. Then, evidently, one can take
H0 : = {ψ(0)µ (ξ) ∈ L2,−(Rs;CN) : Ljψ(0)µ (ξ) = µjψ

(0)
µ (ξ), j = 1, r,

ψ(0)µ (ξ)|Γ = 0, µ := (µ1, ..., µr) ∈ σ(L̃) ∩ σ̄(L∗), ξ ∈ Σσ},

H̃0 : = {ψ̃(0)µ (ξ) ∈ L2,−(Rs;CN ) : L̃jψ̃(0)µ (ξ) = µjψ̃
(0)
µ (ξ), j = 1, r,

ψ̃(0)µ (ξ)|Γ̃ = 0, µ := (µ1, ..., µr) ∈ σ(L̃) ∩ σ̄(L∗), ξ ∈ Σσ},

H∗0 : = {ϕ(0)λ (η) ∈ L2,−(Rs;CN ) : L∗jϕ(0)λ (η) = λ̄jϕ
(0)
λ (η), j = 1, r,

ϕ
(0)
λ (η)|Γ = 0, λ := (λ1, ...,λr) ∈ σ(L̃) ∩ σ̄(L∗), η ∈ Σσ},
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H̃∗0 : = {ϕ̃(0)λ (η) ∈ L2,−(Rs;CN ) : L̃∗j ϕ̃(0)λ (η) = λ̄jϕ̃
(0)
λ (η), j = 1, r,

ϕ̃
(0)
λ (η)|Γ̃ = 0, λ := (λ1, ...,λr) ∈ σ(L̃) ∩ σ̄(L∗), η ∈ Σσ}

and construct the corresponding Delsarte transmutation operators

Ω± = 1−
σ(L̃)∩σ̄(L∗)

dρσ(λ)
Σσ×Σσ

dρΣσ (ξ)dρΣσ(η)

×
S
(s)
± (σ

(s−1)
x ,σ

(s−1)
x0

)

dxψ̃
(0)
λ (ξ)Ω−1(x0)(λ; ξ, η)ϕ̄

(0),|
λ (η)(·) (139)

and

Ω~± = 1−
σ(L̃)∩σ̄(L∗)

dρσ(λ)
Σ

dρΣσ(ξ)dρΣσ(η)

×
S
(s)
± (σ

(s−1)
x ,σ

(s−1)
x0

)

dxϕ̃
(0)
λ (ξ)Ω̄|,−1(x0)

(λ; ξ, η)× ψ̄
(0),|
λ (η)(·), (140)

acting already in the Hilbert space L2(Rs;CN ), where for any (λ; ξ, η) ∈ (σ(L̃) ∩
σ̄(L∗))×Σ2σ kernels

Ω(x0)(λ; ξ, η) := σ
(s−1)
x0

Ω(s−1)[ϕ(0)λ (ξ),ψ
(0)
λ (η)dx],

Ω~(x0)(λ; ξ, η) := σ
(s−1)
x0

Ω̄(s−1),|[ϕ(0)λ (ξ),ψ
(0)
λ (η)dx]

(141)

belong to L
(ρ)
2 (Σσ;C) × L(ρ)2 (Σσ;C) for every λ ∈ σ(L̃) ∩ σ̄(L∗) considered as a pa-

rameter. Moreover, as ∂Ω±/∂tj = 0, j = 1, r, one gets easily the set of differential
expressions

R(L̃) := {L̃j(x|∂) := Ω±Lj(x|∂)Ω−1± : j = 1, r}, (142)

being a ring of commuting to each other differential operators acting in L2(Rs;CN ),
generated by the corresponding initial ring R(L).
Thus we have described above a ring R(L̃) of commuting to each other multi-

dimensional differential operators, generated by an initial ring R(L). This problem in
the one-dimensional case was treated before in detail and effectively solved in [10, 20] by
means of algebro-geometric and inverse spectral transform techniques. Our approach
gives another look at this problem in multidimension and is of special interest due to
its clear and readable dependence on dimension of differential operators.

6 A Special Case: Soliton Theory

6.1. Consider our de Rham-Hodge theory of a commuting set L of two differential
operators in a Hilbert space H := L2(T

2;H), H := L2(Rs;CN ), for the special case
when M := T2 × R̄s and

L := {Lj := ∂/∂tj − Lj(t;x|∂) : tj ∈ Tj := [0, Tj) ⊂ R+, j = 1, 2},
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where, by definition, T2 := T1 ×T2,

Lj(t;x|∂) :=
n(Lj)

|α|=0
a(j)α (t;x)∂

|α|/∂xα (143)

with coefficients a
(j)
α ∈ C1(T2;S(Rs;EndCN )), α ∈ Zs+, |α| = 0, n(Lj), j = 1, 2. The

corresponding scalar product is given now as

(ϕ,ψ) :=
T2
dt

Rs
dx < ϕ,ψ > (144)

for any pair (ϕ,ψ) ∈ H×H and the generalized external differential

dL :=
2

j=1

dtj ∧ Lj , (145)

where one assumes that for all t ∈ T2 and x ∈ Rs the commutator
[L1,L2] = 0. (146)

This means, obviously, that the corresponding generalized De Rham-Hodge co-chain
complexes

H→ Λ0(M ;H) dL→ Λ1(M ;H) dL→ ...
dL→ Λm(M ;H) dL→ 0,

H→ Λ0(M ;H) d
∗
L→ Λ1(M ;H) d

∗
L→ ...

d∗L→ Λm(M ;H) d
∗
L→ 0

(147)

are exact. Define now due to (108) and (133) the closed subspaces H0 and H0 ⊂ H−
as follows: H0 is the set of ψ(0)(λ; η) ∈ H0

Λ(L),−(M) such that

∂ψ(0)(λ; η)/∂tj = Lj(t;x|∂)ψ(0)(λ; η), j = 1, 2,
ψ(0)(λ; η)|t=t0 = ψλ(η) ∈ H−, ψ(0)(λ; η)|Γ = 0,

(λ; η) ∈ Σ ⊂ (σ(L) ∩ σ̄(L∗))×Σσ,
and H∗0 is the set of ϕ(0)(λ; η) ∈ H0

Λ(L),−(M) such that

−∂ϕ(0)(λ; η)/∂tj = L∗j (t;x|∂)ϕ(0)(λ; η), j = 1, 2,
ϕ(0)(λ; η)|t=t0 = ϕλ(η) ∈ H−, ϕ(0)(λ; η)|Γ = 0,

(λ; η) ∈ Σ ⊂ (σ(L) ∩ σ̄(L∗))×Σσ,
for some hypersurface Γ ⊂ M and a “spectral” degeneration set Σσ ∈ Cp−1. By
means of subspaces H0 and H∗0, one can now proceed to construction of Delsarte
transmutation operators Ω± : H H in the general form like (140) with kernels

Ω(t0;x0)(λ; ξ, η) ∈ L(ρ)2 (Σσ;C) ⊗ L(ρ)2 (Σσ;C) for every λ ∈ σ(L) ∩ σ̄(L∗), being defined
as

Ω(t0;x0)(λ; ξ, η) := σ
(s−1)
(t0;x0)

Ω(s−1)[ϕ(0)(λ; ξ),ψ(0)(λ; η)dx],

Ω~(t0;x0)(λ; ξ, η) := σ
(s−1)
(t0;x0)

Ω̄(s−1),|[ϕ(0)(λ; ξ),ψ(0)(λ; η)dx]
(148)
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for all (λ; ξ, η) ∈ (σ(L)∩σ̄(L∗))×Σ2σ. As a result one gets for the corresponding product
ρ := ρσ � ρΣ2σ such integral expressions:

Ω± = 1−
σ(L)∩σ̄(L∗)

dρσ(λ)
Σσ×Σσ

dρΣσ (ξ)dρΣσ(η)

×
S
(s)
± (σ

(s−1)
(t0;x)

,σ
(s−1)
(t0;x0)

)

dxψ̃(0)(λ; ξ)Ω−1(t0;x0)(λ; ξ, η)ϕ̄
(0),|(λ; η)(·), (149)

Ω~± = 1−
σ(L)∩σ̄(L∗)

dρσ(λ)
Σσ×Σσ

dρΣσ (ξ)dρΣσ(η)

×
S
(s)
± (σ

(s−1)
(t0;x)

,σ
(s−1)
(t0;x0)

)

dxϕ̃
(0)
λ (ξ)Ω̄|,−1(t0;x0)

(λ; ξ, η)× ψ̄(0),|(λ; η)(·), (150)

where S
(s)
+ (σ

(s−1)
(t0;x)

,σ
(s−1)
(t0;x0)

) ∈ Cs(M ;C) is some smooth s-dimensional surface spanned
between two homological cycles σ

(s−1)
(t0;x)

and σ
(s−1)
(t0;x0)

∈ K(M) and S(s)− (σ(s−1)(t0;x)
,σ
(s−1)
(t0;x0)

) ∈
Cs(M ;C) is its smooth counterpart such that

∂(S
(s)
+ (σ

(s−1)
(t0;x)

,σ
(s−1)
(t0;x0)

) ∪ S(s)− (σ(s−1)(t0;x)
,σ
(s−1)
(t0;x0)

)) = ∅.

Concerning the related results of Section 3 one can construct from (149) and (150) the
corresponding factorized Fredholm operators Ω and Ω~ : H → H, H = L2(R;CN ), as
follows:

Ω := Ω−1+ Ω−, Ω~:= Ω~−1+ Ω~−. (151)

It is also important to notice here that kernels K̂±(Ω) and K̂±(Ω~) ∈ H−⊗H− satisfy
exactly the generalized [12] determining equations in the following tensor form

(L̃ext ⊗ 1)K̂±(Ω) = (1⊗L∗ext)K̂±(Ω),
(L̃∗ext ⊗ 1)K̂±(Ω~) = (1⊗Lext)K̂±(Ω~).

(152)

Since, evidently, suppK̂+(Ω)∩suppK̂−(Ω) = � and suppK̂+(Ω
~)∩suppK̂−(Ω~) = �,

one derives from results [23, 26, 25] that corresponding Gelfand-Levitan-Marchenko
equations

K̂+(Ω) + Φ̂(Ω)+K̂+(Ω) ∗ Φ̂(Ω) =K̂−(Ω),
K̂+(Ω

~) + Φ̂(Ω~)+K̂+(Ω
~) ∗ Φ̂(Ω~) =K̂−(Ω~), (153)

where, by definition, Ω : = 1 + Φ̂(Ω), Ω~ := 1 + Φ̂(Ω~), can be solved [23, 22] in the
space B±∞(H) for kernels K̂±(Ω) and K̂±(Ω~) ∈ H− ⊗H− depending parametrically
on t ∈ T2. Thereby, Delsarte transformed differential operators L̃j : H → H, j =
1, 2, will be, evidently, commuting to each other too, satisfying the following operator
relationships:

L̃j = ∂/∂tj − Ω±LjΩ−1± − (∂Ω±/∂tj)Ω−1± := ∂/∂tj − L̃j , (154)
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where operator expressions for L̃j ∈ L(H), j = 1, 2, prove to be purely differential.
The latter property makes it possible to construct some nonlinear in general partial
differential equations on coefficients of differential operators (154) and solve them by
means of the standard procedures either of inverse spectral [10, 15, 17, 11] or the
Darboux-Backlund [18, 24, 28] transforms, producing a wide class of exact soliton like
solutions. Another not simple and very interesting aspect of the approach devised
in this paper concerns regular algorithms of treating differential operator expressions
depending on a “spectral” parameter λ ∈ C, which was recently discussed in [26, 25].

7 Conclusion

The review done above presents recent results devoted to the development of the gen-
eralized De Rham-Hodge theory [33, 34, 32, 3, 35] of special differential complexes
which give rise to effective analytical expressions for the corresponding Delsarte trans-
mutation Volterra type operators in a given Hilbert space H. In particular, it was
shown that they can be effectively applied to studying the integral operator structure
of Delsarte transmutation operators for polynomial pencils of differential operators in
H having many applications both in spectral theory of such multidimensional operator
pencils and in soliton theory [21, 16, 10, 26, 30] of multidimensional integrable dynam-
ical systems on functional manifolds, being very important for diverse applications in
modern mathematical physics. If one considers a differential operator L : H → H,
by means of the general form of the Delsarte transmutation operators described in
Sections 4 and 5, one can construct a new and more complicated differential opera-
tor L̃ := Ω±LΩ−1± in H, such that its spectrum is related with that of the operator
L : H → H. Thereby these Delsarte transformed operators can be effectively used
for both studying generalized spectral properties of differential operators and operator
pencils [12, 9, 15, 17, 13, 37, 36] and constructing a wide class of nontrivial differential
operators with a prescribed spectrum as it was done [15, 10, 38] in one dimension.

As it was shown before in [9, 21] for the two-dimensional Dirac and three-dimensional
perturbed Laplace operators, the kernels of the corresponding Delsarte transmuta-
tion operator satisfy some special Fredholm type linear integral equations called the
Gelfand-Levitan-Marchenko ones, which are of very importance for solving the cor-
responding inverse spectral problem and having many applications in modern math-
ematical physics. Such equations can be easily constructed for our multidimensional
case too, thereby making it possible to pose the corresponding inverse spectral problem
for describing a wide class of multidimensional operators with a priori given spectral
characteristics. Also, similar to [21, 30, 10, 15], one can use such results for studying so
called completely integrable nonlinear evolution equations, especially for constructing
by means of special Darboux type transformations [18, 24, 28] their exact solutions like
solitons and many others. Such an activity is now in progress and the corresponding
results will be published later.
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