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Abstract

We investigate the structure of generalized quasi cyclic (GQC) codes. We
determine the generator of 1-generator GQC codes and prove a BCH type bound
for this family of codes.

1 Introduction

There are many well-known reasons to investigate and work on quasi cyclic codes.
Some of them are as follows: quasi-cyclic codes form an important class of linear codes
which also include cyclic codes (l = 1). These codes meet a modified version of Gilbert
Varshamov bound unlike many other classes of codes, [6]. Recently, there has been
much research on quasi-cyclic codes. Many record breaking and optimal quasi-cyclic
codes over finite fields of orders 2, 3, 4, 5, 7, 8 and 9 have been discovered [4], [5], [16], [3],
[1] and [15]. The structure of quasi cyclic codes is investigated in [9] via a polynomial
approach. The structure of 1-generator quasi cyclic codes is investigated in [14] and [2].
Recently the structure of quasi cyclic codes is investigated in [10] and [11] via Gröbner
basis and in [12] by viewing them as modules over some special rings.
The class of quasi cyclic codes is generalized to codes in which a permutation

automorphism has orbits of varying lengths on the coordinate positions in [7] and
[8]. In this paper we call such codes generalized quasi cyclic codes and focus on the
1 generator case of this family of codes which have better minimum distances than
generalized quasi cyclic codes with more than generator.
Error correction capability and decoding of codes is the main problem of coding

theory. Hence it is very important to know the dimension and the minimum distance
of a linear code. A class of linear codes where this problem is achieved partially is the
family of quasi cyclic codes, especially 1-generator quasi cyclic codes. The structure
of a quasi cyclic code is well known. Further, the dimension and a lower BCH-type
bound is also established for quasi cyclic codes. In this paper, we broaden the family
of quasi cyclic codes in a way that still the dimension and a BCH-type bound can be
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determined. We also believe that new record breaking codes can be found within this
family as in the case of quasi cyclic codes.
Let Fq (or GF (q)) be a finite field of order q. A linear code C of length n over Fq is a

vector subspace of V := Fnq . The elements of C are called codewords. The (Hamming)
distance d(u,v) between two vectors u = (u1, . . . , un) ∈ V and v = (v1, . . . , vn) ∈ V
is defined by

d : V × V → N0

and d(u,v) := |{i : ui 9= vi}|, where N0 = N∪ {0} and N is the set of positive integers.
d is a metric on V . The minimum distance between distinct pairs of codewords of a
code C is called the minimum distance of C and denoted by d(C) or simply d.

DEFINITION 1. A vector subspace C of Fnq of dimension k and d(C) = d is
denoted by [n, k, d]q.

Another important notion is the (Hamming) weight of a codeword u which is defined
by w(u) = |{i|ui 9= 0}|, i.e. the number of the nonzero entries of u. The minimum
weight w(C) of a code C is the smallest possible weight among all its nonzero codewords.
We observe that if C is a linear code then d(C) = w(C).
The Hamming weight enumerator, WC(y), of a code C is defined by

WC(y) =
u∈C

yw(u) =
i

Aiy
i (1)

where Ai = |{u ∈ C|w(u) = i}| i.e. the number of codewords in C with weights equal
to i.
The smallest nonzero exponent of y in WC(y) is equal to the minimum distance of

the code.
A linear code C is called a t-error correcting code if t = ed−12 f, where d = d(C).

One of the important problems of coding theory is to construct a linear code over a
finite field Fq that has the largest possible minimum distance for a fixed length n and
dimension k.

DEFINITION 2. A linear code C over a field F is called an l-quasi-cyclic (l-QC)
code if and only if any codeword in C after a cyclic right shift of l positions is still a
codeword in C.

THEOREM 1. [13] Let C be a cyclic code of length n generated by g(x). Let a
denote the number of consecutive powers of the n-th root of unity that are the zeroes
of g(x). Then d(C) ≥ a+ 1.

2 The Structure of GQC Codes

Let m1,m2, . . . ,ml be positive integers. Let Ri = Fq[x]/(x
m
i − 1) and (mi, q) = 1

where 1 ≤ i ≤ l. The Cartesian product R3 = R1 × R2 × · · · × Rl is an Fq[x] module
under component wise addition and scalar multiplication.

DEFINITION 3. Let n = m1 +m2 + · · ·+ml. An Fq[x] submodule of R
3 is called

a generalized quasi cyclic code or shortly a GQC code of length (m1,m2, . . . ,ml).
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Note that if C is a GQC code of length (m1,m2, . . . ,ml) with m = m1 = m2 =
. . . = ml, then C is a quasi cyclic code with length ml. Further if l = 1, then C is a
cyclic code of length m.
The following lemma gives some information regarding the structure of GQC codes:

LEMMA 1. Let C be an s generated GQC code of length (m1,m2, . . . ,ml) and
generated by the set {g31(x), g32(x), . . . , g3s(x)} where gj = (gj1, gj2, . . . , gjl) for 1 ≤
j ≤ s. Then, for all 1 ≤ j ≤ s and 1 ≤ i ≤ l, gji(x) = fji(x)gi(x) there exist
fji(x) ∈ Fq[x]/(xmi − 1) such that gji(x) = fji(x)gi(x) where gi(x) ∈ Fq[x]/(xmi − 1)
and gi(x)|(xmi − 1).
PROOF. For all 1 ≤ i ≤ l, we define the following projection map:

Πi : R
3 → Fq[x]/(xmi − 1)

such that Πi (f1(x), f2(x), . . . , fl(x)) = fi(x). The set Πi(C) is an ideal of Fq[x]/(xmi−
1), i.e.e a cyclic code of length mi over Fq[x]/(xmi − 1). Hence, there exists a gi(x) ∈
Fq[x]/(xmi − 1) such that C = kgi(x)l. Since gji(x) ∈ Πi(C) = kgi(x)l there exists
fji(x) ∈ Fq[x]/(xmi − 1) such that gji(x) = fji(x)gi(x) where gi(x) ∈ Fq[x]/(xmi − 1)
and gi(x)|(xmi − 1).
COROLLARY 1. Let C be a 1-generator GQC code. Then, C is generated by an

element

f(x) = (f1(x)g1(x), f2(x)g2(x), . . . , fl(x)gl(x))

where fi(x), gi(x) ∈ Fq[x]/(xmi − 1) and gi(x)|(xmi − 1) for all 1 ≤ i ≤ l.
Now we give some theorems regarding the parameters of GQC codes.

THEOREM 2. Let C be a 1-generator GQC code. Then, C is generated by an
element

f(x) = (f1(x)g1(x), f2(x)g2(x), . . . , fl(x)gl(x))

where fi(x), gi(x) ∈ Fq[x]/(xmi − 1) and gi(x)|(xmi − 1) for all 1 ≤ i ≤ l. Let hi(x) =
xm1−1
gi(x)

and (fi(x), gi(x)) for all 1 ≤ i ≤ l. Then (i)

dim(C) = deg ((h1(x), h2(x), . . . , hl(x), x
m1 − 1, xm2 − 1, . . . , xml − 1))

where [h1(x), h2(x), . . . , hl(x), x
m1 − 1, xm2 − 1, . . . , xml − 1] denotes the lowest com-

mon factor of the polynomials over Fq, and (ii)

d(C) ≥ min
i=1,...,l

{ai + 1}

where ai denotes the number of consecutive powers of the mi-th root of unity that are
the zeroes of gi(x),

PROOF. (i). Let h(x) = (h1(x), h2(x), . . . , hl(x)) . Then, for all 0 9= p(x) ∈ Fq[x]
with deg(p(x)) < deg(h(x)) p(x) (f1(x)g1(x), f2(x)g2(x), . . . , fl(x)gl(x)) 9= 0. Other-
wise, pi(x)fi(x)gi(x) = 0 for all 1 ≤ i ≤ l. In Fq[x], xmi − 1|p(x)fi(x)gi(x) = 0 for all
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1 ≤ i ≤ l. Since (fi(x), hi()x) hi(x)|p(x) for all 1 ≤ i ≤ l. Hence, h(x)|p(x) which is a
contradiction to the fact that deg(p(x)) < deg(h(x)). Let

B = f(x), xf(x), . . . , ..., xdeg(h(x))−1f(x) .

Elements of B which also are elements of C are Fq linear independent.
(ii) For a given non zero codeword c of C there exist at least one i-th component

of c different from zero. Assume that the i-th component of c is different from zero.
Since c ∈ Πi(C) = kfi(x)gi(x)l = kgi(x)l, the non zero weights of the element of the
cyclic code c ∈ Πi(C) = kgi(x)l are larger or equal to ai + 1.
EXAMPLE 1. Let C = kx2 + x+ 1, x3 + x+ 1l be a GQC code of length 10 where

q = 2, l = 2,m1 = 3 and m2 = 7. By part 1 of Theorem 2, Π1(x) = k(x2 + x + 1l)
is a cyclic code over F2[x]/(x

3 − 1) and Π2(x) = k(x3 + x + 1l) is a cyclic code over
F2[x]/(x

7 − 1). h1(x) = x − 1, h2(x) = x4 + x2 + x + 1 and h(x) = [h1(x), h2(x)] =
x4+x2+x+1, dim(C) = deg(x4+x2+x+1) = 4. Further, by part 2 of Theorem 2 we
determine a lower bound for d(C). The degree of the splitting field of x3− 1 over F2 is
2 (that is the multiplicative order of 2 mod 3), and g1(x) = x

2 + x+ 1 is a primitive
polynomial of degree 2 over F2. Let α be a root of g1(x) which is also a third primitive
root of unity. The consecutive powers of primitive roots of unity α and α2 are also the
roots of g1(x) and hence a1 = 2. Similarly, the degree of the splitting field of x

7−1 over
F2 is 3 and g2(x) = x3 + x+ 1 is a primitive polynomial of degree 3 over F2. Let β be
a root of g2(x) which is also a 7-th primitive root of unity. The consecutive powers of
primitive roots of unity are β,β2 and β4 are also the roots of g2(x) and hence a2 = 3.
Thus, by part 2 of Theorem 2 d(C) ≥ min{3, 4} = 3.
In fact, the Hamming weight enumerator of this code is

W (y) = 1 + y3 + 7y4 + 7y7.

Hence, d(C) = 3. In this example we see that the minimum lower bound given for
GQC codes is also attained by this family.
Though the bound given in Theorem 2 is attained by a general family of GQC codes

there is a way to restrict the family and obtain a better bound as follows:

THEOREM 3. Let C be a 1-generator GQC code generated by an element

f(x) = (f1(x)g1(x), f2(x)g2(x), . . . , fl(x)gl(x))

where the notation is the same as in Theorem 2. Let m = mini=1,...,l{deg(hi(x))}. Let
C 3 be a sub code of C generated by

f(x), xf(x), x2f(x), , . . . , xm−1f(x) .

Let ai denote the number of consecutive powers of the mi-th root of unity that are the
zeroes of gi(x). Hence,

d(C3) ≥ min
i=1,...,l

{ai + 1}.
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PROOF. Since Πi(C) is a cyclic code of length mi by Theorem 1 for all ci 9= 0,
w(ci) ≤ ai + 1. Due to hypothesis of the theorem for all c ∈ C 3 if c 9= 0 then ci 9= 0.
Hence, for all c 9= 0 and c ∈ C3 w(c) ≥ mini=1,...,l{ai + 1}.
EXAMPLE 2. Let C = k(x8 + x7 + x6 + x4 + 1, x8 + x5 + x4 + x3 + 1)l be a

GQC binary code of length 32 with m1 = 15 and m2 = 17. Let us establish a lower
bound for the minimum distance of C by applying Theorem 3. Let α be a root of
g1(x) = x

8 + x7 + x6 + x4 + 1 which is also a fifteenth primitive root of unity. Since
α,α2,α3 and al4 is e set of consecutive powers of α which are zeroes of g1(x) then
a1 = 4. Similarly, let β be a root of g2(x) = x8 + x5 + x4 + x3 + 1 which is also a
seventeenth primitive root of unity then a2 = 3. Now let C 3 ⊂ C be a linear code
generated by G(x) = (g1(x), g2(x)). G(x), xG(x), x2G(x), . . . , x8G(x) is a basis for
C 3 and by Theorem 3, d(C 3) ≥ 9. Hence, C3 is a linear code of length 32, dimension 9
and minimum distance at least 9.
The Hamming weight enumerator of C 3 is given below:

WC (y) = 1 + 9y
9 + 9y10 + 11y11 + 19y12 + 41y13 + 59y14 + 58y15

+ 77y16 + 71y17 + 59y18 + 51y19 + 23y20 + 15y21 + 9y22.

C 3 is a [32, 9, 9]2 code. The minimum distance bound given in the Theorem 3 is attained.
On the other hand C is a [32, 16, 4]2 code.
By taking g1(x) = g2(x) = · · · = gl(x) in the Theorem 3 we obtain the following

corollary.

COROLLARY 2. Let C be a GQC code generated by

f(x) = (f1(x)g(x), f2(x)g(x), . . . , fl(x)g(x))

where g(x) ∈ Fq[x]/(xmi − 1). Let s = maxi=1,...l{mi}, t = mini=1,...,l{deg(hi(x))}
and ai denote the largest possible consecutive powers of the primitive roots of unity of
order mi.
Then,

1. dim(C) = s− deg(g(x)),
2. d(C) ≥ mini=1,...,l{ai + 1},
3. If C3 ⊂ C is generated by {f(x), xf(x), x2f(x), . . . , xt−1f(x)}, then the dimen-
sion of C 3 is t and

d(C 3) ≥
l

i=1

{ai + 1}.

EXAMPLE 3. Let C = kx2 + x+ 1, x2 + x+ 1l be a GQC code of length 12 where
q = 2, l = 2,m1 = 3 and m2 = 9. In Example 1 we found that a1 = 2. However the
zeroes of g(x) = x2+x+1 in x9−1 differ. a2 = 1. In this case, since s = max{3, 6} = 6,
C is a GQC code of length 12, dimension 6 and minimum distance at least 2. In fact,
the Hamming weight enumerator of this code is
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WC(y) = 1 + 7y
2 + 15y4 + 27y6 + 12y8 + 2y10.

Again the minimum distance bound is attained.
By part 3 of Corollary 2, C3 is a linear code of length 12, dimension 1 and minimum

distance at least 5.
In fact, the Hamming weight enumerator of C 3 is

WC (y) = 1 + y
6.

Hence, d(C3) = 6.

3 Conclusion

We showed that we can determine the critical parameters of generalized quasi cyclic
codes and give a BCH type bound. Similar to quasi cyclic codes by taking advantage of
the structure of generalized quasi cyclic codes we believe that many new and optimum
codes will be constructed. Further, 1 generator generalized quasi cyclic codes are
discussed. Though the family of one generator generalized quasi cyclic codes give
codes with better minimum distances, the structure of generalized quasi cyclic codes
with generators more than one remain to be investigated.
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