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Abstract

In this paper, we define the generalized Heron mean H,(a,b; k) and its dual
form h,(a,b; k), and obtain some propositions for these means.

1 Introduction

For positive numbers a, b, let A = A(a,b) = 2. G = G(a,b) = Vab, H = H(a,b) =

2
RSV

a—b
L:L(a,b):{ e Ins Zig

These are respectively called the arithmetic, geometric, Heron, and logarithmic means.
Let r be a real number, the r-order power mean (see [1]) is defined by

arLpt\ 1/
Mr:Mr(aab):{ (%\/ba—g :ig : (1)

The well-known Lin inequality (see also [1]) is stated as G < L < M.

In 1993, the following interpolation inequalities are summarized and stated by
Kuang in [1]:

GLKL<M

1
3

<My <H<M; <A (2)

1
2

In [2], Jia and Cao studied the power-type generalization of Heron mean

a7‘+(ab)r/2+b7‘ 1/1"
H, = Hy(a,b) = ( 3 ) r#0 3)
\/% r=20
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and obtained inequalities L < H, < M, where p > ,¢q > 2p. Furthermore, p = 1,q =

% are the best constants.
In 2003, Xiao and Zhang [3] gave another generalization of Heron mean and its dual
form respectively as follows

k
H(a,b; k) Z

bt (4)
=0
and
k+1—i i
h(a,b; k) Za T DT (5)

where k is a natural number. They proved that H(a,b;k) is a monotone decreasing
function and h(a, b; k) is a monotone increasing function in k, and limg_, o, H(a, b; k) =
limg_, 4 oo A(a, b; k) = L(a,b).

Combining (3)-(5), two classes of new means for two variables will be defined.

DEFINITION 1. Suppose a > 0, b > 0, k is a natural number and r is a real
number. Then the generalized power-type Heron mean and its dual form are defined
as follows

. . 1/r
1 k (k=i)r/kyir/k .
H’r<a7 b, k) = (k+1 Zi:O a / b ) , T # 07 (6)
v a’bv T = O’

and

Lk (b l—iyr) (k1) pir/ G ) )
(_ Zz‘:o a b ) , T#0;

hr(a,bsk) = b
Vab, r=0.

(7)

According to Definition 1, we easily find the following characteristic properties and
two remarks for H,.(a,b; k) and h(a, b; k).

PROPOSITION 1. If k is a natural number, and r is a real number, then
(a) Hy(a,b; k) = H.(b,a; k) and h,(a,b; k) = h(b,a; k);

(b) lim H,(a,b;k) = lim hy (a,b; k) = Vab;

(¢) Hy(a,b;1) = M,(a,b), Hy(a,b;2) = H,(a,b) and h,(a,b;1) = Vab;
(@) lim H(a,bik) = Tim_h(a,b:k) = [L(a", v)|*

(€) a < Hy(a,b;k) <band a < he(a,b;k) <bif 0 < a < b;

(
(

a <
f) He(a,b; k) = hr(a,b; k) = a if, and only if, a = b;
9) H,(ta,tb; k) = tH,(a,b; k) and h,(ta,th; k) = th,(a,b; k) if t > 0.
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REMARK 1. Suppose a > 0,b > 0, k is a natural number and r is a real number.
Then the generalized power-type Heron mean H,.(a,b; k) and its dual form h,(a, b; k)
can be written as

(et Dr (ktD)r 77
o T b T ] £0,a#b
r r I T 7a ;
H,(a,bsk) = { LE D@ =0%) ®)
Vab, r=0,a # b
a, re€ R, a=0
and
kr kr %
l S ] L P A0t
ho(a,byk) = { L=R(a=T =675 (9)
Vab, r=20,a #b
a, re Ra=hb.

REMARK 2. Let a > 0,b > 0, k is a natural number, then the following Detemple-
Robertson mean D,.(a,b) (see [4]) and its dual form di(a,b) are respectively the special
cases for H,(a,b; k) and hg(a,b; k):

k+1 _ bk+1
U (it
Dy(a,b) = [Hy(a, b k)" = ——> " a* o' = (k+1)(a—0)’ ©(10)
k+1 — & — b
= a ) a = )
and
k ab(ak — b¥)
1 o _— b;
di(a,0) = [hira(a, b B] T = 2 S = TR 0 T )
i=1 aktt, a=b.

In this paper, we obtain the monotonicity and logarithmic convexity of the gener-
alized power-type Heron mean H,(a,b; k) and its dual form h,(a, b; k).

2 Lemmas

In order to prove the theorems of the next section, we require some lemmas in this
section.

LEMMA 1 ([1]). Let a4, ..., a, be real numbers with a; # a; for i # j, and

1
1 n r
[—Zaf] , 0<]r|< 4o0;
n«
i=1
LY
Haz—", r=0.
i=1

M, (a) = (12)
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Then M, (a) is a monotone increasing function in 7, and f(r) = [M,.(a)]" is a logarithmic
convex function with respect to r > 0.

LEMMA 2 ([5],[6]). Let p,q be arbitrary real numbers, and a,b > 0. Then the
extended mean values

»_p 11/ (P—q)
|:% Zq_gqi| ) pq(p - q)((l - b) 7é 07

p_pp 1Y/

( ) [%llfa:i)nb} pa p(CL*b) #07(]:0, ( )
Epyq a,b = W\ 1/ (a?—bP) 13
e—1/p (abbp) p(a—b) £0,p=q;

% a=>b.

are monotone increasing with respect to both p and ¢, or to both a and b; and are
logarithmical concave on (0, +00) with respect to either p or ¢, respectively; and loga-
rithmical convex on (—o0,0) with respect to either p or g, respectively.

LEMMA 3 ([7]). Let p,q,u,v be arbitrary with p # ¢, u # v. Then the inequality
E,q(a,b) > E, ,(a,D) (14)

is satisfied for all a,b > 0,a # b if and ounly if p+¢q > u+wv, and e(p, q) > e(u, v), where

e(x,y) = (z —y)/In(z/y), forxy>0,z#y;
Y 0, for xy = 0;

if either 0 < min{p, ¢, u, v} or max{p, ¢, u,v} < 0; and

e(r,y) =(z|-1yl)/(x—y), for v,y € R,z #y,

if either min{p, ¢, u,v} < 0 < max{p, ¢, u, v}.
LEMMA 4. If k is a natural number. Then

(kJr 2)k(k+3) > (kJr 1)(k+1)(k+2), (15)

or

k N k+1
(k+2)In(k+1) 7 (k+3)In(k+2)

(16)

PROOF. When k = 1,2, we have (1 +2)"(+3) =81 > 64 = (1 + 1)3+D0+2) "and
(2 4+ 2)>(+3) = 1048576 > 531441 = (2 + 1)FVE+2) respectively. i.e. (15) or (16)
holds.

If £ > 3, then we have

—>—, — 2>k (17)
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and
k(k+3)—i>k(k+1),1<i<3. (18)

Using the binomial theorem, we obtain

1\ k(k+3)  k(k+3)[k(k+3)—1]
(1 + k—+1> =1+

k41 2(k+1)
L ket 3)[k(k +3) — 1[k(k +3) — 2]
6(k+1)3
k(k+ 3)[k(k +3) = 1][k(k + 3) — 2][k(k + 3) — 3]
T 24(k + 1) " (19)
From (17)-(19), we get
1 k(k+3) 2 k3 k4
<1+_k‘+1> >1+/€+7+F+ﬂ
k2 k2
Sltkt o+ o thk=1+2%k+k=(k+1? (20

Rearranging (20), we immediately find (15) or (16). The proof of Lemma 4 is completed.

LEMMA 5 ([8]). Suppose by = by > -+ > b, > 0, ‘g—ll > Z—j > > Zf > 0. Then
the function

T

lias/ibz] 4o,
i:nl 7,1:/1n

Q;
(l:[l b_z> , r =20,

is monotone increasing one with respect to r.
LEMMA 6. Suppose x > 1, and k is a fixed natural number. Then the functions

F.(a,b) = (21)

k \NF gk Nz
o= (320 s(3akr) @

and

k ' BT k4l 4 7
gk(l') _ (Z xk-&-l—z) /(Z xk+2—z> (23)

are monotone decreasing with respect to z € [1,+00).

PROOF. Calculating the derivative for fi(z) and gr(x) about x, respectively, we
get

k42

/ ii+1), 2h—i : k—i (e k+1—i o
fie) = | S M Dt a2 ke 1) (Yo e
i=0 i=0

=1
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Since z > 1 and k is a fixed natural number, we find that =" —22*~% < 0for 1 < i < k,
or fi.(x) < 0. And we similarly obtain gj (z) < 0. It is easy to see that the functions
frx(z) and gg(z) are monotone decreasing with respect to € [1,400). The proof of
Lemma 6 is completed.

3 Monotonicity and Logarithmic Convexity

From Lemma 2 and Lemma 1, we may easily prove the following Theorem 1 and
Theorem 2 respectively.

THEOREM 1. If k is a fixed natural number, then H,.(a,b;k) and h,(a,b; k) are
monotone increasing with respect to a and to b for fixed real numbers r, or with respect
to r for fixed positive numbers a and b; and are logarithmical concave on (0, 4+00), and
logarithmical convex on (—oo,0) with respect to r.

THEOREM 2. Assume a and b are fixed positive numbers, and k is a fixed natural
number. Then [H,(a,b;k)]" and [h,(a,b;k)]" are logarithmic convex functions with
respect to r > 0.

THEOREM 3 ([3]). For any r > 0, H,.(a, b; k) is monotonic decreasing and h,.(a, b; k)
is monotone increasing with respect to k.

THEOREM 4. For fixed positive numbers a and b, H%@ (a,b; k) is monotonic
decreasing and h kg1 (a,b; k) is monotone increasing with resepct to k.

F—1
PROOF. The proof of the monotonicity of H e (a,b; k) is equivalent to the inequal-

ity

k+1 k41 % k42 k42 %
a*z — b2 a*s — bE+s e
1 1 2 1 1 ) (24)
(k+ 1)(a®™2 —bF2) (k+2)(a®3 — bF+3)
where k is a natural number. Setting p; = k—i;,m = k_iz’ul = k—ig, and v; = %,
then (24) becomes
EP17(11 (a7 b) > EU1,U1 (a7 b) (25)
It is easy to see that min{py,q1,u1,v1} = k+r3 >0, and p; +¢1 = 1 = uy + v;. From
Lemma 4, we find that
k k+1

e(pr,q1) = ( ] = e(u,v1), (26)

kE+2)In(k+1) ~ (k+3)In(k +2

where e(z,y) is defined in Lemma 3. Using Lemma 3, we can obtain (25), and it
immediately follows that expression (24) is true.
We may similarly prove that h SR (a,b; k) is a monotone increasing function with
e—1

respect to k. The proof is complete.

THEOREM 5. If b; > by > 0 and al/bl > a2/b2 > 0, then Hr(al, ag; k)/Hr(bl, bQ; k)
and h,(a1, az; k)/h.(b1,be; k) are monotone increasing with respect to r in R.
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PROOF. According to Definition 1, we have

k k %
(k=i)r  ir (k=i)r ir
H(a1,a2;k) [Zal boay /Zb1 " bzk] . T#0; o7
H,(b1,by k) ] Li=C =0 @7)
bibj , r=0.
and
1
k (kt:qﬁw % k (k-{’—€1+—17‘,)r % r
he(a1,az2; k) _ Zal as /Z b, bs , T7#0; (28)
hw(bl; b2; k) i=1 i=1
pz r=0.

b1ba ?

For by > by > 0 and a1 /by > as/bs > 0, we find

k=1 1 k=2 2
by = b,% b5 >b0,F b5 = >0y >0, (29)
and
=t * =2 %
aj ay ’ az \ "~ a ’ a2 as
2> (3 = > (= = > > == >0. 30
by (bl) (b2> (b1> <b2) ba (30)

From Lemma 5, combining (27)-(30), the proof follows.
THEOREM 6. If 0 < a < b < 1/2, then H,(a,b;k)/H,(1 — a,1 — b;k) and
hy(a,b;k)/h-(1 —a,1 — b; k) are monotone increasing in 7.

Indeed,fr0m0<a<b<%,weget0<1—a<1—band0<ﬁ<%b.Using

Theorem 5, we obtain Theorem 6.
THEOREM 7. If by > by > 0 and al/bl > G,Q/bg >0, then (Dk(al, ag)/Dk(bl, b2>)%
and (dy (a1, az)/dg (b1, bg))ﬁ are monotone increasing with respect to k£ in N.

PROOF. To prove (Dy(ay,az)/Dy(by,bs))* is monotone increasing with respect to
k in N, we only need to prove that: if by > by > 0, a1/by > az/by > 0 and k is a
natural number, then

k k G k41 k41 _ T
(Za’f—laa/Zb’f—%;) <<Za’f“‘za£/zb’f+1"bé> SN CIY
i=0 =0 i=0 =0

Taking x1 = Z—;,l’g = Z—;, we have 1 > x2 > 1, and inequality (31) is equivalent to

k okl T k Pkt =
k—1 k —1 k—1 k —1
(zx1 ) /(zwﬁl ) <(zx2 ) /(zww ) @
1=0 1=0 1=0 1=0

From Lemma 6, we find (32) or (31). Thus, Theorem 7 is proved.

The monotonicity of (Dy(a1,as)/Dy(b1,b2))* in the above Theorem was obtained
by Wang et al. in 1988 (see [9]). By proof similar to that of Theorem 6, we may obtain
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THEOREM 8. If 0 < a < b < %, then (Dy(a,b)/Dy(1 — a,1 — b))% and
(h(a,b)/hk(l —a,1 — b))#l are monotone increasing with respect to r.

REMARK 3. Let k — 400, from Proposition 1(d), we have

lim he(a,bjk) = lim H,(a,bk)=[L(a",b")]". (33)

k—4o00 k—+o00

1
e

We may also obtain some similar results for [L(a",b")]

(a) [L(a™, br)]% is monotone increasing with respect to a and b for fixed real numbers
r, or to r for fixed positive numbers a and b; and are logarithmical concave on (0, 4+00)
with respect to r; and logarithmical convex on (—oo,0) with respect to r;

(b) If @ and b are fixed positive numbers, then L(a",b") is a logarithmic convex
function with respect to r > 0;

(¢) If by > by > 0 and a1/b; > az/by > 0, then [L(af, ab)/L( ’{,bg)]% is monotone
increasing with respect to r in R;

() If0 < a < b< 3, then [L(a”,b")/L((1 —a)", (1 - b)T)]% is monotone increasing
with respect to r € R.
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