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Abstract

In this paper, we define the generalized Heron mean Hr(a, b; k) and its dual
form hr(a, b; k), and obtain some propositions for these means.

1 Introduction

For positive numbers a, b, let A = A(a, b) = a+b
2 , G = G(a, b) =

√
ab, H = H(a, b) =

a+
√
ab+b
3 , and

L = L(a, b) =

�
a−b

ln a−ln b a 9= b
a a = b

.

These are respectively called the arithmetic, geometric, Heron, and logarithmic means.
Let r be a real number, the r-order power mean (see [1]) is defined by

Mr =Mr(a, b) =

+ �
ar+br

2

�1/r
r 9= 0√

ab r = 0
. (1)

The well-known Lin inequality (see also [1]) is stated as G L M 1
3
.

In 1993, the following interpolation inequalities are summarized and stated by
Kuang in [1]:

G L M 1
3

M 1
2

H M 2
3

A. (2)

In [2], Jia and Cao studied the power-type generalization of Heron mean

Hr = Hp(a, b) =


�
ar+(ab)r/2+br

3

�1/r
r 9= 0√

ab r = 0
(3)
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and obtained inequalities L Hp Mq, where p
1
2 , q

2
3p. Furthermore, p =

1
2 , q =

1
3 are the best constants.

In 2003, Xiao and Zhang [3] gave another generalization of Heron mean and its dual
form respectively as follows

H(a, b; k) =
1

k + 1

k[
i=0

a
k−i
k b

i
k , (4)

and

h(a, b; k) =
1

k

k[
i=1

a
k+1−i
k+1 b

i
k+1 , (5)

where k is a natural number. They proved that H(a, b; k) is a monotone decreasing
function and h(a, b; k) is a monotone increasing function in k, and limk→+∞H(a, b; k) =
limk→+∞ h(a, b; k) = L(a, b).
Combining (3)-(5), two classes of new means for two variables will be defined.

DEFINITION 1. Suppose a > 0, b > 0, k is a natural number and r is a real
number. Then the generalized power-type Heron mean and its dual form are defined
as follows

Hr(a, b; k) =


�

1
k+1

Sk
i=0 a

(k−i)r/kbir/k
�1/r

, r 9= 0;√
ab, r = 0;

(6)

and

hr(a, b; k) =


�
1
k

Sk
i=0 a

(k+1−i)r/(k+1)bir/(k+1)
�1/r

, r 9= 0;√
ab, r = 0.

(7)

According to Definition 1, we easily find the following characteristic properties and
two remarks for Hr(a, b; k) and h(a, b; k).

PROPOSITION 1. If k is a natural number, and r is a real number, then

(a) Hr(a, b; k) = Hr(b, a; k) and hr(a, b; k) = hr(b, a; k);

(b) lim
r→0

Hr(a, b; k) = lim
r→0

hr(a, b; k) =
√
ab;

(c) Hr(a, b; 1) =Mr(a, b), Hr(a, b; 2) = Hr(a, b) and hr(a, b; 1) =
√
ab;

(d) lim
k→+∞

Hr(a, b; k) = lim
k→+∞

hr(a, b; k) = [L(a
r, br)]

1
r ;

(e) a Hr(a, b; k) b and a hr(a, b; k) b if 0 < a < b;

(f) Hr(a, b; k) = hr(a, b; k) = a if, and only if, a = b;

(g) Hr(ta, tb; k) = tHr(a, b; k) and hr(ta, tb; k) = thr(a, b; k) if t > 0.
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REMARK 1. Suppose a > 0, b > 0, k is a natural number and r is a real number.
Then the generalized power-type Heron mean Hr(a, b; k) and its dual form hr(a, b; k)
can be written as

Hr(a, b; k) =



%
a
(k+1)r

k − b (k+1)rk

(k + 1)(a
r
k − b rk )

& 1
r

, r 9= 0, a 9= b;
√
ab, r = 0, a 9= b;

a, r ∈ R, a = b;

(8)

and

hr(a, b; k) =



%
a

kr
k+1 − b kr

k+1

−k(a− r
k+1 − b− r

k+1 )

& 1
r

, r 9= 0, a 9= b;
√
ab, r = 0, a 9= b;

a, r ∈ R, a = b.

(9)

REMARK 2. Let a > 0, b > 0, k is a natural number, then the following Detemple-
Robertson mean Dr(a, b) (see [4]) and its dual form dk(a, b) are respectively the special
cases for Hr(a, b; k) and hk(a, b; k):

Dk(a, b) = [Hk(a, b; k)]
k
=

1

k + 1

k[
i=0

ak−ibi =


ak+1 − bk+1
(k + 1)(a− b) , a 9= b;
ak, a = b;

(10)

and

dk(a, b) = [hk+1(a, b; k)]
k+1

=
1

k

k[
i=1

ak+1−ibi =


ab(ak − bk)
k(a− b) , a 9= b;

ak+1, a = b.

(11)

In this paper, we obtain the monotonicity and logarithmic convexity of the gener-
alized power-type Heron mean Hr(a, b; k) and its dual form hr(a, b; k).

2 Lemmas

In order to prove the theorems of the next section, we require some lemmas in this
section.

LEMMA 1 ([1]). Let a1, ..., an be real numbers with ai 9= aj for i 9= j, and

Mr(a) =



%
1

n

n[
i=1

ari

& 1
r

, 0 <| r |< +∞;
n\
i=1

a
1
n

i , r = 0.

(12)
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ThenMr(a) is a monotone increasing function in r, and f(r) = [Mr(a)]
r is a logarithmic

convex function with respect to r > 0.

LEMMA 2 ([5],[6]). Let p, q be arbitrary real numbers, and a, b > 0. Then the
extended mean values

Ep,q(a, b) =



k
q
p
ap−bp
aq−bq

l1/(p−q)
, pq(p− q)(a− b) 9= 0;k

1
p
ap−bp
ln a−ln b

l1/p
, p(a− b) 9= 0, q = 0;

e−1/p
�
aa

p

bbp

�1/(ap−bp)
p(a− b) 9= 0, p = q;√

ab, (a− b) 9= 0, p = q = 0;
a, a = b.

(13)

are monotone increasing with respect to both p and q, or to both a and b; and are
logarithmical concave on (0,+∞) with respect to either p or q, respectively; and loga-
rithmical convex on (−∞, 0) with respect to either p or q, respectively.
LEMMA 3 ([7]). Let p, q, u, v be arbitrary with p 9= q, u 9= v. Then the inequality

Ep,q(a, b) Eu,v(a, b) (14)

is satisfied for all a, b > 0, a 9= b if and only if p+q u+v, and e(p, q) e(u, v), where

e(x, y) =

+
(x− y)/ ln(x/y), for xy > 0, x 9= y;
0, for xy = 0;

if either 0 min{p, q, u, v} or max{p, q, u, v} 0; and

e(x, y) = (| x | − | y |)/(x− y), for x, y ∈ R, x 9= y,

if either min{p, q, u, v} < 0 < max{p, q, u, v}.
LEMMA 4. If k is a natural number. Then

(k + 2)k(k+3) (k + 1)(k+1)(k+2), (15)

or

k

(k + 2) ln(k + 1)

k + 1

(k + 3) ln(k + 2)
. (16)

PROOF. When k = 1, 2, we have (1 + 2)1·(1+3) = 81 > 64 = (1 + 1)(1+1)(1+2), and
(2 + 2)2·(2+3) = 1048576 > 531441 = (2 + 1)(2+1)(2+2), respectively. i.e. (15) or (16)
holds.
If k 3, then we have

k3

6

k2

2
,
k4

24
k, (17)
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and

k(k + 3)− i k(k + 1), 1 i 3. (18)

Using the binomial theorem, we obtain�
1 +

1

k + 1

�k(k+3)
= 1 +

k(k + 3)

k + 1
+
k(k + 3)[k(k + 3)− 1]

2(k + 1)2

+
k(k + 3)[k(k + 3)− 1][k(k + 3)− 2]

6(k + 1)3

+
k(k + 3)[k(k + 3)− 1][k(k + 3)− 2][k(k + 3)− 3]

24(k + 1)4
+ · · · (19)

From (17)-(19), we get�
1 +

1

k + 1

�k(k+3)
> 1 + k +

k2

2
+
k3

6
+
k4

24

1 + k +
k2

2
+
k2

2
+ k = 1 + 2k + k2 = (k + 1)2 (20)

Rearranging (20), we immediately find (15) or (16). The proof of Lemma 4 is completed.

LEMMA 5 ([8]). Suppose b1 b2 · · · bn > 0,
a1
b1

a2
b2

· · · an
bn
> 0. Then

the function

Fr(a, b) =



%
n[
i=1

ari /
n[
i=1

bri

& 1
r

, r 9= 0,#
n\
i=1

ai
bi

$1/n
, r = 0,

(21)

is monotone increasing one with respect to r.

LEMMA 6. Suppose x 1, and k is a fixed natural number. Then the functions

fk(x) =

#
k[
i=0

xk−i
$ 1

k

/

#
k+1[
i=0

xk+1−i
$ 1

k+1

(22)

and

gk(x) =

#
k[
i=1

xk+1−i
$ 1

k+1

/

#
k+1[
i=1

xk+2−i
$ 1

k+2

(23)

are monotone decreasing with respect to x ∈ [1,+∞).
PROOF. Calculating the derivative for fk(x) and gk(x) about x, respectively, we

get

f 3k(x) =

%
k[
i=1

i(i+ 1)

2
(xi−1 − x2k−i)

&
/

k(k + 1)# k[
i=0

xk−i
$ k−1

k
#
k+1[
i=0

xk+1−i
$ k+2

k+1

 .
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Since x 1 and k is a fixed natural number, we find that xi−1−x2k−i 0 for 1 i k,
or f 3k(x) 0. And we similarly obtain g3k(x) 0. It is easy to see that the functions
fk(x) and gk(x) are monotone decreasing with respect to x ∈ [1,+∞). The proof of
Lemma 6 is completed.

3 Monotonicity and Logarithmic Convexity

From Lemma 2 and Lemma 1, we may easily prove the following Theorem 1 and
Theorem 2 respectively.

THEOREM 1. If k is a fixed natural number, then Hr(a, b; k) and hr(a, b; k) are
monotone increasing with respect to a and to b for fixed real numbers r, or with respect
to r for fixed positive numbers a and b; and are logarithmical concave on (0,+∞), and
logarithmical convex on (−∞, 0) with respect to r.
THEOREM 2. Assume a and b are fixed positive numbers, and k is a fixed natural

number. Then [Hr(a, b; k)]
r
and [hr(a, b; k)]

r
are logarithmic convex functions with

respect to r > 0.

THEOREM 3 ([3]). For any r > 0,Hr(a, b; k) is monotonic decreasing and hr(a, b; k)
is monotone increasing with respect to k.

THEOREM 4. For fixed positive numbers a and b, H k
k+2
(a, b; k) is monotonic

decreasing and h k+1
k−1
(a, b; k) is monotone increasing with resepct to k.

PROOF. The proof of the monotonicity of H k
k+2
(a, b; k) is equivalent to the inequal-

ity %
a
k+1
k+2 − b k+1k+2

(k + 1)(a
1

k+2 − b 1
k+2 )

& k+2
k

%
a
k+2
k+3 − b k+2k+3

(k + 2)(a
1

k+3 − b 1
k+3 )

& k+3
k+1

, (24)

where k is a natural number. Setting p1 =
k+1
k+2 , q1 =

1
k+2 , u1 =

k+2
k+3 , and v1 =

1
k+3 ,

then (24) becomes

Ep1,q1(a, b) Eu1,v1(a, b). (25)

It is easy to see that min{p1, q1, u1, v1} = 1
k+3 > 0, and p1 + q1 = 1 = u1 + v1. From

Lemma 4, we find that

e(p1, q1) =
k

(k + 2) ln(k + 1)

k + 1

(k + 3) ln(k + 2)
= e(u1, v1), (26)

where e(x, y) is defined in Lemma 3. Using Lemma 3, we can obtain (25), and it
immediately follows that expression (24) is true.
We may similarly prove that h k+1

k−1
(a, b; k) is a monotone increasing function with

respect to k. The proof is complete.

THEOREM 5. If b1 b2 > 0 and a1/b1 a2/b2 > 0, thenHr(a1, a2; k)/Hr(b1, b2; k)
and hr(a1, a2; k)/hr(b1, b2; k) are monotone increasing with respect to r in R.
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PROOF. According to Definition 1, we have

Hr(a1, a2; k)

Hr(b1, b2; k)
=


%

k[
i=0

a
(k−i)r

k
1 a

ir
k
2 /

k[
i=0

b
(k−i)r

k
1 b

ir
k
2

& 1
r

, r 9= 0;t
a1a2
b1b2

, r = 0.

(27)

and

hr(a1, a2; k)

hr(b1, b2; k)
=


%

k[
i=1

a
(k+1−i)r

k+1

1 a
ir
k+1

2 /
k[
i=1

b
(k+1−i)r

k+1

1 b
ir
k+1

2

& 1
r

, r 9= 0;t
a1a2
b1b2

, r = 0.

(28)

For b1 b2 > 0 and a1/b1 a2/b2 > 0, we find

b1 b
k−1
k

1 b
1
k
2 b

k−2
k

1 b
2
k
2 · · · b2 > 0, (29)

and

a1
b1

�
a1
b1

� k−1
k
�
a2
b2

� 1
k

�
a1
b1

� k−2
k
�
a2
b2

� 2
k

· · · a2
b2
> 0. (30)

From Lemma 5, combining (27)-(30), the proof follows.

THEOREM 6. If 0 < a b 1/2, then Hr(a, b; k)/Hr(1 − a, 1 − b; k) and
hr(a, b; k)/hr(1− a, 1− b; k) are monotone increasing in r.
Indeed, from 0 < a b 1

2 , we get 0 < 1 − a 1 − b and 0 < a
1−a

b
1−b . Using

Theorem 5, we obtain Theorem 6.

THEOREM 7. If b1 b2 > 0 and a1/b1 a2/b2 > 0, then (Dk(a1, a2)/Dk(b1, b2))
1
k

and (dk(a1, a2)/dk(b1, b2))
1

k+1 are monotone increasing with respect to k in N.

PROOF. To prove (Dk(a1, a2)/Dk(b1, b2))
1
k is monotone increasing with respect to

k in N, we only need to prove that: if b1 b2 > 0, a1/b1 a2/b2 > 0 and k is a
natural number, then#

k[
i=0

ak−i1 ai2/
k[
i=0

bk−i1 bi2

$ 1
k

#
k+1[
i=0

ak+1−i1 ai2/
k+1[
i=0

bk+1−i1 bi2

$ 1
k+1

. (31)

Taking x1 =
a1
a2
, x2 =

b1
b2
, we have x1 x2 1, and inequality (31) is equivalent to#

k[
i=0

xk−i1

$ 1
k

/

#
k+1[
i=0

xk+1−i1

$ 1
k+1

#
k[
i=0

xk−i2

$ 1
k

/

#
k+1[
i=0

xk+1−i2

$ 1
k+1

. (32)

From Lemma 6, we find (32) or (31). Thus, Theorem 7 is proved.

The monotonicity of (Dk(a1, a2)/Dk(b1, b2))
1
k in the above Theorem was obtained

by Wang et al. in 1988 (see [9]). By proof similar to that of Theorem 6, we may obtain
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THEOREM 8. If 0 < a b 1
2 , then (Dk(a, b)/Dk(1 − a, 1 − b))

1
k and

(hk(a, b)/hk(1− a, 1− b)) 1
k+1 are monotone increasing with respect to r.

REMARK 3. Let k → +∞, from Proposition 1(d), we have

lim
k→+∞

hr(a, b; k) = lim
k→+∞

Hr(a, b; k) = [L(a
r, br)]

1
r . (33)

We may also obtain some similar results for [L(ar, br)]
1
r :

(a) [L(ar, br)]
1
r is monotone increasing with respect to a and b for fixed real numbers

r, or to r for fixed positive numbers a and b; and are logarithmical concave on (0,+∞)
with respect to r; and logarithmical convex on (−∞, 0) with respect to r;
(b) If a and b are fixed positive numbers, then L(ar, br) is a logarithmic convex

function with respect to r > 0;

(c) If b1 b2 > 0 and a1/b1 a2/b2 > 0, then [L(a
r
1, a

r
2)/L(b

r
1, b

r
2)]

1
r is monotone

increasing with respect to r in R;

(d) If 0 < a b 1
2 , then [L(a

r, br)/L((1− a)r, (1− b)r)] 1r is monotone increasing
with respect to r ∈ R.
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