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Abstract

A characterization of polynomials by means of their reflection coefficients is
presented. A complete classification of the set of all polynomials is obtained and
two theorems on self-inversive polynomials are given.

1 Introduction

Polynomials can be defined in terms of their coefficients and/or their zeros. They can
also be characterized by their reflection coefficients using Schur-Cohn type recursions
([9], [10]). Polynomials characterized by reflection coefficients have been used efficiently
in many applications in control theory, signal processing and system identification areas
([1], [3], [8], [12]). Although reflection coefficients and polynomials appear frequently
in studies of polynomials that are orthogonal on the unit circle ([6], [13]), they have
never been explicitly characterized and classified. The aim of this paper is to give a
complete characterization and classification of polynomials using reflection coefficients
instead of zeros and coefficients.
In order to define our characterization, we first introduce some notations and known

results. Let An(z) be a monic complex polynomial of degree n, namely,

An(z) = z
n + an,n−1zn−1 + · · ·+ an1z + an0. (1)

The reciprocal polynomial A∗n(z) of An(z) is defined by

A∗n(z) = z
nAn(1/z) =

n[
k=0

an,n−kzk (2)

Here a denotes the complex conjugation of a. If there exists an unitary complex number
u, such that An(z) = uA

∗
n(z), we say An(z) is self-inversive (or self—reciprocal). Notice

that its zeros lie on or are symmetric in the unit circle.

∗Mathematics Subject Classifications: 12D10, 26C05, 30C15.
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The reflection coefficients αk
3s, also known in the literature as Schur-Szegö param-

eters [5] or partial correlation (PARCOR) coefficients [8], can be obtained from An(z)
by using backward Levinson’s recursion (implicitly given by Levinson in [9]; see also
[12])

zAk−1(z) =
1

1− |αk|2 [Ak(z)− αkA
∗
k(z)] (3)

where αk = ak0. From (3), and some straightforward algebra, the forward recursion

Ak(z) = zAk−1(z) + αkA
∗
k−1(z), (4)

is obtained.

REMARK. From (3) and (4) the coefficient expressions of Ak−1(z) and Ak(z) are
given respectively by

Ak−1(z) =
1

1− |αk|2

k−1[
j=0

(ak,j+1 − αkak,k−1−j) zj


and

Ak(z) =
k[
j=0

(ak−1,j−1 + αkak−1,k−1−j) zj.

Note that in the last expressions we have considered all the coefficients with negative
subscript equal to zero.

We close this section stating a key and well known result in the theory of polynomials
and reflection coefficients ([1], [3], [11], [14]) that we will use further on.

THEOREM 1. Let An(z) =
Sn
k=0 ankz

k be a monic complex polynomial with
reflection coefficients α1,α2, . . . ,αn. Then, An(z) has all its zeros inside the unit disk
if, and only if, |αk| < 1 for k = 1, 2, . . . , n.

2 Characterization of Polynomials

Now we can define the characterization of An(z) by its reflection coefficients. It can be
stated as follows.

DEFINITION 1. The characterization of the monic complex polynomial An(z)
using reflection coefficient is given by

An(z) ≡ [Aj(z);αj+1,αj+2, . . . ,αn]r , (5)

where 0 ≤ j ≤ n and Aj(z), called base polynomial, is either Aj(z) = A0(z) = 1 for
j = 0 or Aj(z) is a non-self-inversive unitary polynomial (i.e., |aj0| = 1) for 1 ≤ j ≤ n.
The αk ∈ C, k = j + 1, j + 2, . . . , n, are reflection coefficients.
We remark that in (5), the subscript r means reflection coefficient characterization.

Frequently Aj(z) = A0(z) = 1; then the reference to polynomial Aj(z) may be omitted.
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The preceding recursion (3) cannot be carried out whenever an unitary reflection
coefficient is found (i.e., |αk| = 1). In that case, recursion (3) is stopped. However,
backward recursion can be carried out if the polynomial Ak(z) is self-inversive, as we
will see later on. But, if Ak(z) is not self-inversive, backward recursion is impossible
and the characterization (5) holds with [Ak(z);αk+1, . . . ,αn]r .
If |αk| 9= 1 for k = 1, 2, . . . , n, then Aj(z) in (5) becomes A0(z) = 1 and (5) is a

pure reflection coefficient characterization.

From (3), every polynomial of degree n can be characterized by [1;α1,α2, . . . ,αn]r ,
with base polynomial A0(z) = 1 if, and only if, its reflection coefficients are not unitary.

THEOREM 2. If a polynomial An(z) can be characterized by non-unitary reflection
coefficients with base polynomial A0(z) = 1, then the characterization is unique.

PROOF. Assume that we have two characterizations for An(z). That is,

An(z) ≡ [1;α1,α2, . . . ,αn]r ≡ [1;β1,β2, . . . ,βn]r .
We have to prove that αk = βk for all k = 1, 2, . . . , n. We start with A0(z) = B0(z) =
A∗0(z) = B

∗
0(z) = 1. By applying forward recursion (4), we generate the polynomials

A1(z) B1(z)
A2(z) B2(z)
. . . . . .
An(z) Bn(z).

Then, from An(z) = Bn(z), we get αn = an0 = bn0 = βn. Now, by using backward
recursion, we have (observe that the application of (3) requires non-unitary reflection
coefficients)

zAn−1(z) =
1

1− |αn|2 [An(z)− αnA
∗
n(z)] = zBn−1(z).

Hence, αn−1 = an−1,0 = bn−1,0 = βn−1.
This procedure can be applied repeatedly and this implies αk = βk, for all k =

1, 2, . . . , n, and we are done.

As far as we know, Theorem 2 has been partially treated, specially for |αk| < 1
(e.g. [3]). But the case |αk| > 1 has been studied only in a weak form.
After establishing the uniqueness of the pure reflection characterization, a more gen-

eral question arises: what happens when an unitary reflection coefficient appears before
applying backward recursion (3)? This question is addressed in the literature only par-
tially, when backward recursion is carried out by using the derivative of the polynomial.
This has appeared in handling the classical zero counter problems ([2],[4],[7]).
To answer the preceding question we state and prove the main result of this paper.

THEOREM 3. Every polynomial can be characterized by using reflection coeffi-
cients. The characterization is unique if An(z) and all the polynomials that can be
obtained from it by applying (3) recursively are not self-inversive. If by applying (3)
recursively to An(z), a self-inversive polynomial is obtained, then An(z) can be char-
acterized by reflection coefficients, but this characterization is not unique.
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PROOF. If no unitary reflection coefficients appear when applying backward recur-
sion (3), the statement clearly follows from Theorem 2. Otherwise, assume that after
some iterations of (3) (eventually the first), a polynomial Ak(z) with such reflection
coefficient αk (|αk| = 1) is obtained. Then, recursion (3) stops and the process can
not be iterated again. Now, we consider the generic monic polynomial Ak−1(z) =Sk−1
j=0 ak−1,jz

j , and we apply forward recursion (4) to it with αk. We get Ak(z) =
zAk−1(z) + αkA

∗
k−1(z) which, in coefficients notation, reads

k[
j=0

akjz
j =

k[
j=0

(ak−1,j−1 + αkak−1,k−1−j) zj (6)

Identifying coefficients of equal powers in (6), and carrying out some straightforward
algebra, the system of linear equations

αkak−1,j−1 + ak−1,k−1−j = αkakj , j = 1, 2, . . . , k − 1 (7)

follows. Applying Rouché-Frobenius theorem to (7), we have:

(a) The polynomial is self-inversive, namely |akj | = |ak,k−j |, for j = 0, 1, . . . , k. In
this case, system (7) is compatible and has infinitely many solutions. This tells
us that there are an infinite number of ways of going from Ak−1(z) to Ak(z).

(b) The polynomial is not self-inversive. That is, there exist at least one subscript
j ∈ {0, 1, 2, . . . , k}, such that |akj | 9= |ak,k−j |. Then, system (7) does not have
any solution. Consequently, the characterization of An(z) is unique and it can
be written as An(z) ≡ [Ak(z);αk+1, . . . ,αn]r .

This completes the proof of Theorem 3.

We close this section by giving a classification of the set C [z] of all monic complex
polynomials of any degree. We call canonical representative polynomial, namely Aj(z),
to every unitary polynomial in C [z] that is not self-inversive and define

C(Aj) =
�
Ak(z) = [Aj(z);αj+1, . . . ,αk]r , |αs| 9= 1, j + 1 ≤ s ≤ k

�
(8)

with j ≤ k and αs ∈ C. Next, we also define the class C(1) as the class that contains
all the polynomials that can be obtained from A0(z) = 1 and whatever reflection
coefficients. That is,

C(1) = {Ak(z) = [1;α1,α2, . . . ,αk]r , 1 ≤ k} (9)

Finally, we define
Aj(z) ∼ Bk(z)⇐⇒ C(Aj) ≡ C(Bk) (10)

From Theorem 3, every polynomial belongs to only one class. The preceding classes
C(Aj) contain their canonical representatives. These canonical representatives are all
unitary and non-self-inversive polynomials. Furthermore, all self-inversive polynomials
belongs to C(1) although they may be obtained from an unitary non-self-inversive
polynomial by using unitary reflection coefficients.
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From the definition of an equivalence class, two classes do not overlap and they are
a partition of C [z] . Hence, (10) is an equivalence relation that produces a classification
in the set of complex polynomials. After this classification, we point out that in the
literature concerning reflection coefficients, the polynomials usually considered belong
to C(1) class, but they are often restricted to those which reflection coefficients are of
modulus less than 1.
The above results show that self—inversive polynomials and polynomials whose re-

flection coefficients are of modulus greater than 1 share with the preceding polynomials
some properties. For instance, they can be obtained from A0(z) = 1 by forward Levin-
son recursion (4).

3 Self-inversive Polynomials and Reflection Coeffi-
cients

The preceding statement announces that a self-inversive polynomial An(z) can be ob-
tained from polynomials of degree n− 1. One way of doing so is to obtain it from its
derivative ([4], [7]). This known result, which is useful when handling with classical
zero counters, can be stated as follows

THEOREM 4. Every self—inversive polynomial can be obtained from its derivative,
normalized to monic, by applying forward recursion (4) with an appropriate reflection
coefficient.

In what follows, we exhibit another explicit way to do it. This procedure uses
reflection coefficients as explicit functions of the zeros of An(z).

THEOREM 5. Let An(z) = (z − zr)An−1(z) be a self-inversive polynomial and let
zr be a zero of An(z) on the unit circle. Then An(z) = zAn−1(z) + αnA

∗
n−1(z) with

αn = −zrαn−1.
PROOF. Since the zeros of a self-inverse polynomial lie on the unit circle |z| = 1

or are symmetric in the unit circle, we assume that An(z) can be factored into

An(z) =
r\
j=1

(z − zj)
s\

k=1

(z − zk)
�
z − 1

zk

�
(11)

where |zj | = 1 for j = 1, 2, . . . , r, |zk| < 1 for k = 1, 2, . . . , s and r + 2s = n.
Setting An−1(z) =

Tr−1
j=1(z − zj)

Ts
k=1(z − zk)

�
z − 1

zk

�
, we have

A∗n−1(z) = (−1)n−1
n−1\
j=1

zj

r−1\
j=1

(z − zj)
s\

k=1

(z − zk)
�
z − 1

zk

�
= αn−1An−1(z)

and

zAn−1(z) + αnA
∗
n−1(z) = zAn−1(z) + αnαn−1An−1(z) = (z + αnαn−1)An−1(z) (12)

By equating (11) and (12), it follows

(z − zr)An−1(z) = (z + αnαn−1)An−1(z) (13)
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Since αn−1 is unitary, from (13), we get αn = −zrαn−1 and we are done.
THEOREM 6. Let An(z) = (z−zs)(z−1/zs)An−2(z) be a self-inversive polynomial.

Then An(z) can be obtained from An−2(z) by applying forward recursion (4) two times
with reflection coefficients αn−1 = −12eiθs

�
rs +

1
rs

�
αn−2 and αn = e

i2θsαn−2, where

zs = rse
iθs .

PROOF. Assume that An(z) can be factored into

An(z) =
r\
j=1

(z − zj)
s\

k=1

(z − zk)
�
z − 1

zk

�
where |zj | = 1, |zk| < 1, k = 1, 2, . . . , s and r + 2s = n. We will prove that there exist
two reflection coefficients αn−1 and αn such that

An(z) = An−2(z)B2(z),

where

An−2(z) =
r\
j=1

(z − zj)
s−1\
k=1

(z − zk)
�
z − 1

zk

�
and

B2(z) = (z−zs)
�
z − 1

zs

�
= (z− rseiθs)

�
z − 1

rs
eiθs

�
= z2− eiθs

�
rs +

1

rs

�
z+ ei2θs ;

can be obtained from An−2(z) by applying forward recursion (4) with reflection coeffi-
cients αn−1 and αn. To carry out the first iteration we set αn−1 = −12eiθs

�
rs +

1
rs

�
αn−2

and we get

An−1(z) = zAn−2(z)− 1
2
eiθs

�
rs +

1

rs

�
αn−2A∗n−2(z) (14)

Since

A∗n−2(z) = αn−2
r\
j=1

(z − zj)
s−1\
k=1

(z − zk)
�
z − 1

zk

�
= αn−2An−2(z),

then (14) can be written as

An−1(z) = zAn−2(z)− 1
2
eiθs(rs +

1

rs
)αn−2αn−2An−2(z)

= An−2(z)
�
z − 1

2
eiθs

�
rs +

1

rs

��
.

Before running forward recursion (4) again, we observe that

A∗n−1(z) = zn−1An−2(1/z)
�
1

z
− 1
2
e−iθs

�
rs +

1

rs

��
= zn−2An−2(1/z)

�
1− 1

2
e−iθs

�
rs +

1

rs

�
z

�
= αn−2An−2(z)

�
1− 1

2
e−iθs

�
rs +

1

rs

�
z

�
.



120 Characterization of Polynomials

Next, we take αn = e
i2θsαn−2 and apply forward recursion (4) again, we get

An(z) = zAn−2(z){z − 1
2
eiθs

�
rs +

1

rs

�
}

+ ei2θsαn−2αn−2An−2(z)
�
1− 1

2
e−iθs

�
rs +

1

rs

�
z

�
= An−2(z)

�
z2 − eiθs

�
rs +

1

rs

�
z + ei2θs

�
= An−2(z)B2(z).

This completes the proof of Theorem 6.
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Birkhaüser—Verlag, 1996.

[6] Ya L. Geronimus, Polynomials orthogonal on a circle and thier applications, Amer.
Math. Soc. Transl., Series 1, 3 (1962), 1—78.

[7] E. I. Jury, Theory and Applications of the z—Transform, John Wiley, New York,
1964.

[8] S. M. Kay, Modern Spectral Estimation, Prentice Hall, New Jersey, 1988.

[9] N. Levinson, The Wiener rms (root mean square) error criterion in filter design
and prediction, J. Math. Phys. 25(1947), 261—278.

[10] M. Marden, Geometry of Polynomials, Mathematical Surveys Number 3, American
Mathematical Society, Providence. Rhode Island, 1966.

[11] A. Papoulis, Probability, Random Variables and Stochastic Processes, McGraw
Hill, Singapore, 1991.

[12] B. Picinbono and M. Benidir, Some Properties of Lattice Autoregressive Filters,
IEEE Trans. on Acoust. Speech Signal Process, ASSP—34(1986), 342—349



J. L. D́ıaz-Barrero and J. J. Egozcue 121
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