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Abstract

Using the Leggett-Williams fixed point theorem, we establish existence results
for solutions to m-point boundary value problem for a 2n-th order differential
equation under multipoint boundary conditions. In order to obtain our results,
the associated Green’s function for the above problem is also given.

1 Introduction

In this paper we shall consider the 2n-th order m-point boundary value problem
y(2n)(t) = f(t, y(t), y33(t), ..., y(2(n−1))(t)), 0 ≤ t ≤ 1,

y(2i+1)(0) = 0, y(2i)(1) =
m−2S
j=1

kijy
(2i)(ξj), 0 ≤ i ≤ n− 1, (1)

where (−1)nf : [0, 1] × Rn → [0,∞) is continuous, and kij > 0 for i = 0, 1, ..., n − 1
and j = 1, 2, ...,m − 2, and 0 = ξ0 < ξ1 < ξ2 < · · · < ξm−2 < ξm−1 = 1. The
following conditions will be assumed throughout: (A1) kij > 0 for i = 0, 1, ..., n−1 and
j = 1, 2, ...,m − 2, 0 = ξ0 < ξ1 < ξ2 < · · · < ξm−2 < ξm−1 = 1 and 1 −

m−2S
j=1

kij > 0;

(A2) (−1)nf : [0, 1]×Rn → [0,∞) is continuous.
In recent years, there is much attention focused on questions of positive solutions

of multiple-point boundary value problems for ordinary differential equations [1-5].
Much of this interest is due to the applicability of certain fixed point theorems of
Krasnoselskii or Leggett and Williams to obtain positive solutions or multiple positive
solutions which lie in a cone.
The multi-point boundary value problems for ordinary order differential equations

arise in a variety of different areas of applied mathematics and physics. In [6], Il’in
and Moiseev first studied multi-point boundary value problems for linear second or-
der ordinary differential equations. Since then, many authors [7-8] have also discussed
nonlinear second order multi-point boundary value problems. Recently, Ma [3] used
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Krasnoselskii’s fixed point theorem in cones [9] to prove the existence of positive solu-
tions for the three-point boundary value problem�

u33 + a(t)g(u) = 0, 0 < t < 1,
u(0) = 0, u(1) = αu(η),

(2)

where α > 0, η ∈ (0, 1), αη < 1, a ∈ C([0, 1], [0,∞)), and g ∈ C([0,∞), [0,∞)) is either
superlinear or sublinear.
For the 2n-th order two point boundary value problem�

y(2n) = f(y(t), y33(t), ..., y(2(n−1))(t)), 0 ≤ t ≤ 1,
y(2i)(0) = y(2i)(1) = 0, 0 ≤ i ≤ n− 1, (3)

Davis et al. [10] imposed growth conditions on f to yield at least three symmetric
positive solutions to (3) by applying the Leggett-Williams fixed point theorem [11].
Motivated by the above results, in this paper we study the existence of multiple positive
solutions for the problem (1). In order to obtain our result, we first give the associated
Green’s function for the problem (1), which is the base for further discussion. Using
the Leggett-Williams fixed point theorem and the Green’s function, we get that the
boundary value problem (1) has at least three positive solutions.

2 Main Results

We begin with some known results.

DEFINITION 1. Suppose K is a cone in a Banach. The map α is a nonnegative
continuous concave functional on K provided α : K → [0,∞) is continuous and

α(tx+ (1− t)y) ≥ tα(x) + (1− t)α(y)
for all x, y ∈ K and 0 ≤ t ≤ 1.
DEFINITION 2. Let 0 < a < b be given and let α be a nonnegative continuous

concave functional on K. Define the convex sets Pr and P (α, a, b) by

Pr = {x ∈ K | ||x|| < r}
and

P (α, a, b) = {x ∈ K | a ≤ α(x), ||x|| ≤ b}.
THEOREM 1 (Leggett-Williams Fixed Point Theorem [11]). Let A : Pc → Pc

be a completely continuous operator and let α be a nonnegative continuous concave
functional on K such that α(x) ≤ ||x|| for all x ∈ Pc. Suppose there exist 0 < a < b <
d ≤ c such that
(C1) {x ∈ P (α, b, d)|α(x) > b} 9= ∅ and α(Ax) > b for x ∈ P (α, b, d),
(C2) ||Ax|| < a for ||x|| ≤ a, and
(C3) α(Ax) > b for x ∈ P (α, b, c) with ||Ax|| > d.

Then A has at least three fixed points x1, x2, and x3 such that

||x1|| < a, b < α(x2), and ||x3|| > a with α(x3) < b.
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LEMMA 1. Suppose
m−2S
i=1

ki 9= 1. If y(t) ∈ C[0, 1], then the problem


u33(t) + y(t) = 0, 0 ≤ t ≤ 1,
u3(0) = 0, u(1) =

m−2S
i=1

kiu(ξi)
(4)

has a unique solution

u(t) = −
] t

0

(t− s)y(s)ds+ 1

1−
m−2S
i=1

ki

] 1

0

(1− s)y(s)ds

− 1

1−
m−2S
i=1

ki

m−2[
i=1

ki

] ξi

0

(ξi − s)y(s)ds.

The proof follows from direct verification.

LEMMA 2. Suppose 0 <
m−2S
i=1

ki < 1. If y ∈ C[0, 1] and y ≥ 0, then the unique
solution u of (4) satisfies

inf
t∈[ξ1,1]

u(t) ≥ γ||u||,

where γ =
m−2S
i=1

ki(1− ξi)/(1−
m−2S
i=1

kiξi), and ||u|| is the maximum of u on [0, 1].

PROOF. Obviously, u(t) is maximum at t = 0, i.e., ||u|| = u(0). The concavity of
u implies

u(ξi)− u(1)
1− ξi

≥ u(0)− u(1), 1 ≤ i ≤ m− 2.

So,
u(ξi)− u(1) ≥ (u(0)− u(1))(1− ξi),

i.e.,
u(ξi)− ξiu(1) ≥ u(0)(1− ξi), 1 ≤ i ≤ m− 2.

Therefore,
m−2[
i=1

ki(u(ξi)− ξiu(1)) ≥
m−2[
i=1

kiu(0)(1− ξi).

From (4), we have

u(1) ≥

m−2S
i=1

ki(1− ξi)

1−
m−2S
i=1

kiξi

u(0).

Thus, inf
t∈[ξ1,1]

u(t) ≥ γ||u||.
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LEMMA 3. Suppose 0 <
m−2S
i=1

ki < 1. The Green’s function for the boundary value

problem 
−u33(t) = 0, 0 ≤ t ≤ 1,

u3(0) = 0, u(1) =
m−2S
i=1

kiu(ξi)

is given by

G(t, s) =

(1− t)−
m−2S
i=1

ki(ξi − t)

1−
m−2S
i=1

ki

for 0 ≤ t ≤ 1, 0 ≤ s ≤ ξ1, s ≤ t;

G(t, s) =

(1− t)−
m−2S
j=i

kj(ξj − t) +
i−1S
j=1

kj(t− s)

1−
m−2S
i=1

ki

for ξr−1 ≤ t ≤ ξr, 2 ≤ r ≤ m− 1, ξi−1 ≤ s ≤ ξi, 2 ≤ i ≤ r, s ≤ t;

G(t, s) =

(1− s)−
m−2S
j=i

kj(ξj − s)

1−
m−2S
i=1

ki

for ξr−1 ≤ t ≤ ξr, 1 ≤ r ≤ m− 2, ξi−1 ≤ s ≤ ξi, r ≤ i ≤ m− 2, t ≤ s; and

G(t, s) =
1− s

1−
m−2S
i=1

ki

for 0 ≤ t ≤ 1, ξm−2 ≤ s ≤ 1, t ≤ s.
PROOF. For 0 ≤ t ≤ ξ1, the unique solution of (4) can be expressed as

u(t) =

] t

0

(1− t)−
m−2S
i=1

ki(ξi − t)

1−
m−2S
i=1

ki

y(s)ds+

] ξ1

t

(1− s)−
m−2S
i=1

ki(ξi − s)

1−
m−2S
i=1

ki

y(s)ds

+
m−2[
i=2

] ξi

ξi−1

(1− s)−
m−2S
j=i

kj(ξj − s)

1−
m−2S
i=1

ki

y(s)ds+

] 1

ξm−2

1− s
1−

m−2S
i=1

ki

y(s)ds.

For ξr−1 ≤ t ≤ ξr, 2 ≤ r ≤ m − 2 and ξm−2 ≤ t ≤ 1, we have similar expressions.
Therefore, the unique solution of (4) is u(t) =

U 1
0
G(t, s)y(s)ds. Lemma 3 is now proved.
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LEMMA 4. Suppose (A1) holds. Then gi(t, s) ≤ 0 for 0 ≤ i ≤ n− 1, where gi(t, s)
is the Green’s function for the problem

u33(t) = 0, 0 ≤ t ≤ 1,
u3(0) = 0, u(1) =

m−2S
j=1

kiju(ξj).

The proof follows from Lemma 3.

Let G1(t, s) = gn−2(t, s). For 2 ≤ j ≤ n− 1, we define

Gj(t, s) =

] 1

0

gn−j−1(t, r)Gj−1(r, s)dr.

LEMMA 5. Suppose (A1) holds. If y ∈ C[0, 1], then the boundary value problem
u(2l)(t) = y(t), 0 ≤ t ≤ 1,

u(2i+1)(0) = 0, u(2i)(1) =
m−2S
j=1

kn−l+i−1,ju(2i)(ξj), 0 ≤ i ≤ l − 1 (5)

has a unique solution for each 1 ≤ l ≤ n − 1, where Gl(t, s) is the associated Green’s
function for the boundary value problem (5).

From Lemma 3, it is easy to see that the result holds by using induction.

For each 1 ≤ l ≤ n− 1, we define Al : C[0, 1]→ C[0, 1] by

Alv(t) =

] 1

0

Gl(t, τ)v(τ)dτ.

With the aid of Lemma 5, for each 1 ≤ l ≤ n− 1, we have
(Alv)

(2l)(t) = v(t), 0 ≤ t ≤ 1,
(Alv)

(2i+1)(0) = 0, (Alv)
(2i)(1) =

m−2S
j=1

kn−l+i−1,j(Alv)(2i)(ξj), 0 ≤ i ≤ l − 1.

Therefore (1) has a solution if and only if the boundary value problem
v33(t) = f(t, An−1v(t), An−2v(t), ..., A1v(t), v(t)), 0 ≤ t ≤ 1,
v3(0) = 0, v(1) =

m−2S
j=1

kn−1,jv(ξj)
(6)

has a solution. If y is a solution to (1), then v = y(2(n−1)) is a solution to (6).
Conversely, if v is a solution to (6), then y = An−1v is a solution to (1). In addition if
(−1)n−1v(t) ≥ 0(9≡ 0) on [0, 1], then y = An−1v is a positive solution to (1).
For 1 ≤ i ≤ n − 1, let mi = min

t∈[ξ1,1]
U 1
ξ1
|gi(t, s)|ds, and Mi = max

t∈[0,1]
U 1
0
|gi(t, s)|ds.

Obviously, 0 < mi < Mi. Let E = C[0, 1] and define the cone K ⊂ E to be the
set of u ∈ E such that (−1)n−1u is concave, nonnegative, nonincreasing on [0, 1] and
min
t∈[ξ1,1]

(−1)n−1u(t) ≥ γ||u||.
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Finally, we define the nonnegative continuous concave functional α on K by

α(u) = min
t∈[ξ1,1]

|u(t)|.

For each u ∈ K, it is easy to see that α(u) ≤ ||u||.
THEOREM 2. Suppose (A1) and (A2) hold. In addition assume there exist nonneg-

ative numbers a, b and c such that 0 < a < b ≤ min{γ, mn−1
Mn−1

}c and f(t, un−1, un−2, · · · ,
u1, u0) satisfies the following growth conditions:
(A3) f(t, un−1, un−2, · · · , u1, u0) ≤ c

Mn−1
for (t, |un−1|, |un−2|, · · · , |u0|) ∈ [0, 1] ×

1T
j=n−1

[0,
j+1T
i=2

Mn−ic]× [0, c];
(A4) f(t, un−1, un−2, · · · , u1, u0) < a

Mn−1
for (t, |un−1|, |un−2|, · · · , |u0|) ∈ [0, 1] ×

1T
j=n−1

[0,
j+1T
i=2

Mn−ia]× [0, a];
(A5) f(t, un−1, un−2, · · · , u1, u0) ≥ b

mn−1
for (t, |un−1|, |un−2|, · · · , |u0|) ∈ [ξ1, 1] ×

1T
j=n−1

[
j+1T
i=2
mn−ib,

j+1T
i=2
Mn−i bγ ]× [b, bγ ].

Then the boundary value problem (1) has at least three positive solutions u1, u2, u3
such that ���u(2(n−1))1

��� < a, b < α
�
u
(2(n−1))
2

�
and ���u(2(n−1))3

��� > a, with α
�
u
(2(n−1))
3

�
< b.

PROOF. We define the completely continuous operator A by

Au(t) =

] 1

0

gn−1(t, s)f(s,An−1u(s), An−2u(s), ..., A1u(s), u(s))ds.

If u ∈ K, with the use of Lemma 4, then (−1)n−1Au(t) ≥ 0. From the proper-
ties of gn−1(t, s), ((−1)n−1Au)3(0) = 0 and ((−1)n−1Au)33(t) = (−1)n−1f(t, An−1u(t),
An−2u(t), · · · , A1u(t), u(t)) ≤ 0, 0 ≤ t ≤ 1, so, (−1)n−1u is concave, nonnegative,
nonincreasing on [0, 1]. Using Lemma 2, min

t∈[ξ1,1]
(−1)n−1Au(t) ≥ γ||Au||. Consequently,

A : K → K. If u ∈ Pc, then ||u|| ≤ c. For 1 ≤ j ≤ n− 1,

||Aju|| = max
t∈[0,1]

����] 1

0

Gj(t, s)u(s)ds

���� ≤ j+1\
i=2

Mn−ic.

From condition (A3), we have

||Au|| = max
t∈[0,1]

|Au(t)|

= max
t∈[0,1]

����] 1

0

gn−1(t, s)f(s,An−1u(s), An−2u(s), · · · , A1u(s), u(s))ds
����

≤ c

Mn−1
max
t∈[0,1]

] 1

0

|gn−1(t, s)|ds = c.
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Therefore, A : Pc → Pc.
Similarly, condition (C2) of Theorem 1 holds by using (A4).
We now show that condition (C1) is satisfied. Clearly,�

u ∈ P (α, b, b
γ
)

����α(u) > b� 9= ∅.
If u ∈ P (α, b, bγ ), then b ≤ |u(t)| ≤ b

γ for t ∈ [ξ1, 1]. For ξ1 ≤ t ≤ 1, 1 ≤ j ≤ n− 1, we
have

|Aju(t)| ≤
j+1\
i=2

Mn−i
b

γ
,

|Aju(t)| =
����] 1

0

Gj(t, s)u(s)ds

���� ≥ b] 1

ξ1

|Gj(t, s)|ds ≥
j+1\
i=2

mn−ib.

From condition (A5), we get

α(Au) = min
t∈[ξ1,1]

����] 1

0

gn−1(t, s)f(s,An−1u(s), An−2u(s), · · · , A1u(s), u(s))ds
����

≥ min
t∈[ξ1,1]

����] 1

ξ1

gn−1(t, s)f(s,An−1u(s), An−2u(s), · · · , A1u(s), u(s))ds
����

>
b

mn−1
min
t∈[ξ1,1]

] 1

ξ1

|gn−1(t, s)|ds = b.

Therefore, condition (C1) is satisfied.
Finally, we show that condition (C3) holds. If u ∈ P (α, b, c) and ||Au|| > b

γ , then

α(Au) = min
t∈[ξ1,1]

|Au(t)| ≥ γ||Au|| > b.

Therefore, condition (C3) is also satisfied. By Theorem 1, there exist three positive
solutions v1, v2, v3 ∈ K for the boundary value problem (6). Moreover, let

ui(t) = An−1vi(t) =
] 1

0

Gn−1(t, s)vi(s)ds, i = 1, 2, 3,

then u1, u2, u3 are three positive solutions for the boundary value problem (1) such
that

||u(2(n−1))1 || < a, b < α(u
(2(n−1))
2 ),

and
||u(2(n−1))3 || > a, with α(u

(2(n−1))
3 ) < b.
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