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Abstract

We prove a result, which governs the separation of a system of two coupled
equations, and this separation leads to study boundary value problems with non-
local conditions. Using the Riesz representation theorem, we prove the existence
and uniqueness of generalized solutions.

1 Introduction

Coupled Schrödinger equations [3, 4, 5, 8] are needed in the formulation of various
physical situations but are usually not easy to handle and one must frequently have
recourse to numerical treatments. Such system of equations becomes more complicated
when studied with non-local boundary conditions. In the present work, a coupled
system of two ordinary differential equations with integral conditions is considered.
Here we have to mention that the non-local boundary value problems for second order
differential equations are mainly motivated by the works of Bitsadze [1, 2] and were
the subject of some recent papers (see, e.g. [6, 7]). We may say that the boundary
value problems with non-local conditions for coupled system of differential equations
constitute a very interesting and important class of problems. Motivated by this, we
consider the following problem:

−d
2u

dt2
+ p(t)

du

dt
+ r(t)u = q1(t) v − dv

dt
+ f1(t) (1)

−d
2v

dt2
+ r(t)

dv

dt
+ p(t)v = q2(t) u− du

dt
+ f2(t) (2)

u(0) = 0,
T

0

u(t)dt = 0 (3)

v(0) = 0,
T

0

v(t)dt = 0 (4)

where p(t), q1(t), q2(t) and r(t) are assumed to be analytic functions, and f1, f2 ∈
L2(0, T ).
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100 Coupled System

Wemention that the above system contains as a special case of the coupled Schrödinger
equations [3, 4].
We first begin with the following result on the separation of this system.

LEMMA 1. The system (1)—(4) can always be decoupled without increase of the
order of the differential equations if and only if the functions q1(t), q2(t) are proportional
to the difference r(t)− p(t).
PROOF. Multiplying equation (1) by λ and adding equation (2) we get

−d
2 (u+ λv)

dt2
+ [p+ λq2]

du

dt
+ [q1 + λr]

dv

dt
+ [r − λq2]u+ [λp− q1] v

= f1 + λf2. (5)

It may be shown that the two equations (1)—(2) are separated if and only if the following
condition is satisfied

q2(t)λ
2 + [p(t)− r(t)]λ− q1(t) = 0. (6)

This condition means that λ is independent of t such that

λ1,2 =
r − p
2q2

± 1
2

p− r
q2

2

+ 4
q1
q2

1
2

, (7)

and (1)—(4) is separated in the forms

−d
2w1
dt2

+Φ1(t)
dw1
dt

+Ψ1(t)w1 = F (t) (8)

w1(0) = 0,
T

0

w1(t)dt = 0, (9)

and

−d
2w2
dt2

+Φ2(t)
dw2
dt

+Ψ2(t)w2 = G(t) (10)

w2(0) = 0,
T

0

w2(t)dt = 0, (11)

where

wi(t) = u(t) + λiv(t), i = 1, 2,

Φ1(t) ≡ Ψ2(t) =
p(t) + r(t)

2
+
1

2
(p(t)− r(t))2 + 4q1(t)q2(t)

1
2

,

Ψ1(t) ≡ Φ2(t) =
p(t) + r(t)

2
− 1
2
(p(t)− r(t))2 + 4q1(t)q2(t)

1
2

,

and
F (t) = f1(t) + λ1f2(t), G(t) = f1(t) + λ2f2(t).

We assume that the functions Φi(t) and Ψ1(t), Ψ2(t) are bounded on the interval
[0, T ]:

0 < Ψi(t) ≤ αi, 0 < Φi(t) ≤ σ(t), i = 1, 2 (12)

where σ(t) = (T − t)/√2.
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2 Functional Spaces

The problems (8)—(9) and (10)—(11) will be considered as operator equations

c1w1 = F,w1 ∈ D(c1),
and

c2w2 = G,w2 ∈ D(c2)
respectively, where

ciwi ≡ −d
2wi
dt2

+Φi(t)
dwi
dt

+Ψi(t)wi, i = 1, 2.

The domain D(c1) of the operator c1(respectively D(c2) of the operator c2) is given by
D(c1) = H

2
0 (0, T ) (respectively D(c2) = H

2
0 (0, T )) the subspace of the Sobolev space

H2(0, T ), which consists of all the functions w1 ∈ H2(0, T ) (respectively w2 ∈ H2(0, T ))
satisfying the conditions (9) (respectively (11)).
Let H1

σ(0, T ) be the weighted Sobolev space defined as follows:

H1
σ(0, T ) = w | w ∈ L2(0, T ),σ(t)dw

dt
∈ L2(0, T ), w(0) =

T

0

w(t)dt = 0

with

(w, z)1,σ =
T

0

w(t)z(t)dt+
T

0

σ2(t)
dw

dt

dz

dt
dt,

and the finite norm

n w n21,σ=
T

0

w2(t)dt+
T

0

σ2(t)
dw

dt

2

dt.

Define now the operator M by

Mz = (T − t)
t

0

z(τ)dτ +
1

2
(T − t)2 z(t), ∀z ∈ H1

σ(0, T ).

DEFINITION 1. A function w1 ∈ H1
σ(0, T ) (respectively w2 ∈ H1

σ(0, T )) is called a
generalized solution of (8)—(9) (respectively (10)—(11)), if (w1, z1)1,σ = (c1w1,Mz1)L2
(respectively (w2, z2)1,σ = (c2w2,Mz2)L2) for all z1 ∈ H1

σ(0, T ) (respectively for all

z2 ∈ H1
σ(0, T )).

3 Existence and Uniqueness Theorem

In order to prove the existence and uniqueness of a generalized solution of (1)—(4). We
first study the following subsidiary problem of (8)—(9):

c0w1 ≡ −d
2w1
dt2

= F (t), (13)
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w1(0) = 0,
T

0

w1(t)dt = 0, (14)

where c0 is the principal part of c1.

THEOREM 1. Let F (t) ∈ L2(0, T ). Then there exists one and only one generalized
solution w1 ∈ H1

σ(0, T ) of (13)—(14).

PROOF. Consider the scalar product −d2w1dt2 ,Mz1
L2
, employing integration by

parts and taking account of conditions (14), we obtain

−d
2w1
dt2

,Mz1
L2

= (w1, z1)1,σ . (15)

Let F (t) ∈ L2(0, T ), then ζ(z1) = (F,Mz1)L2 is a bounded linear functional on

H1
σ(0, T ). Indeed,

|ζ(z1)| = | (F,Mz1)L2 | ≤ ||F ||L2 ||Mz1||L2 . (16)

For the function z1 ∈ H1
σ(0, T ), we have the following Poincaré’s estimates

T

0

z21(t)dt ≤ 4
T

0

(T − t)2 dz1(t)

dt

2

dt, (17)

and
T

0

t

0

z1(τ)dτ

2

dt ≤ 4T 2
T

0

z21(t)dt. (18)

Using inequalities (17)—(18), we obtain

|ζ(z1)| ≤ 2
√
2T 2||F ||L2 ||z1||1,σ.

Thus, by Riesz’s Representation Theorem there exists one and only one generalized
solution w1 ∈ H1

σ(0, T ) such that

ζ(z1) = (F,Mz1)L2 = (w1, z1)1,σ , ∀z1 ∈ H1
σ(0, T ).

i.e., w1 ∈ H1
σ(0, T ) is a generalized solution of (13)—(14).

COROLLARY 1. We have the following a priori estimate

c1||w1||1,σ ≤ ||c0w1||L2 , (19)

where c1 > 0 is independent on w1.

Indeed, letting 1
c1
= 2
√
2T 2, we obtain the inequality (19).

Now, consider the general case. The idea in the proof is to derive the results for
the equation c1w1 = F with integral conditions (9) from the results for c0w1 = F by
means of continuous variation of the parameter µ [9]. Consider the operator cµ, which
has the same domain of definition as c1, and coincides with c1 for µ = 1, however, c0
contains only the principal part of c1. From the definition of cµ we get the formula:

cµ = cµ0 + (µ− µ0)(c1 − c0), µ, µ0 ∈ (0, 1). (20)
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We need the following Lemmas.

LEMMA 2. The operator c1 − c0 : D(c1) ⊂ H1
σ → L2 is bounded, that is, there

exists a positive constant c2, which does not depend on w1, such that

n (c1 − c0)w1 nL2≤ c2 n w1 n1,σ, ∀w1 ∈ H2
0 (0, T ).

Indeed, this inequality is direct consequence of conditions (12).

LEMMA 3. There exists a constant c3 which does not depend on µ nor w1, such
that

n w1 n1,σ≤ c3 n cµw1 nL2 , ∀w1 ∈ H2
0 (0, T ).

PROOF. From the definition of cµ and Corollary 1, we have

c1||w1||1,σ ≤ ||cµw1||L2 + µ n (c1 − c0)w1 nL2 .
Using Lemma 2 we obtain

c1||w1||1,σ ≤ ||cµw1||L2 + µc2 n w1 n1,σ .
Choosing c(µ) = 1

c1−µc2 , where c1 − µc2 > 0, we see that for µ ∈ (0, 1), there exists a
constant c(µ) such that

||w1||1,σ ≤ c(µ)||cµw1||L2 for all w1 ∈ H2
0 (0, T ).

On the basis on the last inequality, Lemma 3 can be proved in a similar way with the
techniques considered in the proof of Lemma II.3 in [9].

It can be proved in the standard way that the operator c1 from H1
σ to L2 is pre-

closed. It is well known that c1 is pre-closed if and only if

(wn1 → 0 in H1
σ and c1w

n
1 → F in L2 as n→∞) =⇒ F = 0.

LEMMA 4. We have ?(cµ) = ?(cµ), where cµ and ?(cµ) stand for the closure of
cµ and ?(cµ) respectively.
PROOF. It follows from the definition of cµ that ?(cµ) ⊂ ?(cµ). It remains to prove

the opposite inclusion. Suppose that F ∈ ?(cµ), then there exists a sequence (w1,n)
⊆ D(cµ) such that cµw1,n → F as n→∞. According to Lemma 3 we have

||w1,m − w1,n||1,σ ≤ c3||cµw1,m − cµw1,n||L2 → 0

as m,n → ∞. We conclude that (w1,n) is a Cauchy sequence in the space H1
σ(0, T )

and converges to an element w1 ∈ H1
σ(0, T ), and cµw1 = F .

LEMMA 5. Assume that ?(cµ0) = L2(0, T ). Then

n cµ0
−1 n1,σ≤ c3

and
n cµ0

−1
(c1 − c0)w1 n1,σ≤ c4 n w1 n1,σ,
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where c4 = c2 × c3.
Indeed, these statements follow from Lemma 3 and Lemma 2 respectively.

To conclude our paper, we give the following important result.

THEOREM 2. For every F ∈ L2(0, T ), the equation c1w1 = F has a unique
generalized solution w1 ∈ H1

σ(0, T ).

PROOF. We consider the equation

cµw1 = F (21)

From (20) equation (21) can be written as:

cµw1 = cµ0w1 + (µ− µ0)(c1 − c0)w1 = F, µ, µ0 ∈ (0, 1). (22)

Now assume that we already know that ?(cµ0) = L2(0, T ). A solution of the equation

w1 + (µ− µ0) cµ0
−1
(c1 − c0)w1 = cµ0

−1
F, µ, µ0 ∈ (0, 1), (23)

is then also a solution of (22) and therefore is a solution of (21) as well. Let | µ−µ0 |<
1
c4
, with B = (µ−µ0) cµ0

−1
(c1 − c0) and ξ = cµ0

−1
F , then (23) can be written as

w1 +Bw1 = ξ.

Here

||B||1,σ = sup
w1∈H1

σ

||Bw1||1,σ
||w1||1,σ ≤ c4 | µ− µ0 |< 1.

The Neumann series

w1 =
∞

k=0

(−B)kξ

is then a solution to equation (23).

We have thus proved that if ?(cµ0) = L2(0, T ) and | µ − µ0 |< 1
c4
, then ?(cµ) =

L2(0, T ). Proceeding step by step in this way, this gives in a finite number of steps
that ?(cµ) = L2(0, T ).
REMARK. A similar procedure can be applied to prove Theorems 1—2 for the

problem (10)—(11).

COROLLARY 2. Under the hypothesis of Lemma 1, the problem (1)—(4) has one
and only one generalized solution

{u, v} ∈ H1
σ(0, T )×H1

σ(0, T ).
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