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Abstract

Perturbations of spectral projectors generated by linear matrix pencils are
investigated. Estimates for norms of perturbed projectors are derived.

1 Introduction

Let A and B be n×n complex matrices such that the pencil λB−A is regular having
no eigenvalues on the positively oriented closed contour γ. The spectral dichotomy
methods compute the spectral projector

Pγ(A,B) =
1

2iπ γ

(λB −A)−1B dλ (1)

onto the deflating subspace of λB−A corresponding to the eigenvalues inside γ. Along
with Pγ(A,B), these methods compute the so-called integral criterion for spectral di-
chotomy, a quantity that gives an idea about the confidence to be placed in the numer-
ical quality of the computed spectral projector Pγ(A,B). This quantity is the spectral
norm nHγ(A,B)n2 of the matrix integral

Hγ(A,B) =
1

Lγ γ

(λB −A)−∗(λB −A)−1 |dλ| (2)

where Lγ = γ
|dλ| is the length of γ. Here and throughout this note, an expression

like (λB − A)−∗ means the conjugate transpose of the inverse of λB − A. As will be
shown later, the smaller nHγ(A,B)n2, the better the stability of the projector Pγ(A,B)
with respect to perturbations in A in B. In case where the curve γ is a circle, there
are now efficient algorithms that compute Pγ(A,B) and nHγ(A,B)n2 [5] or Pγ(A,B)
and Hγ(A,B) [3]. Moreover, in this case, Pγ(A,B) and Hγ(A,B) are related by a
generalized Lyapunov equation (see first line of (14)).
The aim of this note is to show that for general closed contour γ, perturbation

estimates for Pγ(A,B) and Hγ(A,B) can be derived showing that the two variables
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functions (A,B) :→ nPγ(A,B)n2 and (A,B) :→ nHγ(A,B)n2 are continuous. Their
modulus of continuity which involve the resolvent norm of the pencil λB − A give
permissible bounds for the stable computation of Pγ(A,B) and Hγ(A,B). Also some
relations connecting the norms of Pγ(A,B) and Hγ(A,B) are derived.

2 Perturbations of Pγ(A,B) and Hγ(A,B) and esti-
mate on nHγ(A,B)n2

Let E and F be two perturbations on A and B respectively such that the perturbed
pencil λ(B + F )− (A+ E) remains regular having no eigenvalues on γ. Assume that
neither λB − A nor λ(B + F )− (A+ E) have the infinite eigenvalue λ =∞ and that
nEn22 + nFn22 ≤ �. Define

mγ(A,B) = max
λ∈γ

n(λB −A)−1n2 1 + |λ|2 . (3)

This quantity appears in a natural way when comparing the projectors Pγ(A,B) with
Pγ(A+E,B+F ). It was analyzed in the framework of �-pseudospectrum of the pencil
λB −A defined as (see [4]):

Σ�(A,B) = {λ : n(λB −A)−1n2 1 + |λ|2 ≥ 1
�
}. (4)

The following proposition gives a perturbation result on the spectral projector
Pγ(A,B). It is a generalization to matrix pencils of the result given in [2, Sec. 8.3].

PROPOSITION 2.1. Let mγ ≡ mγ(A,B) and assume that � mγ < 1. Then

nPγ(A+E,B + F )− Pγ(A,B)n2 ≤ 1

2π
Lγ� mγ

1 +mγ nBn2
1− � mγ

. (5)

PROOF. A direct computation gives

Pγ(A+E,B + F ) =
1

2iπ γ

(λ(B + F )− (A+E))−1 (B + F ) dλ =

1

2iπ γ

I + (λB −A)−1(λF −E) −1 (λB −A)−1(B + F ) dλ.

Let

X(λ) = (λB −A)−1 (λF −E) .
Then

Pγ(A+E,B + F )− Pγ(A,B) =
1

2iπ γ

(I +X(λ))
−1
(λB −A)−1 F − (λF −E)(λB −A)−1B dλ.
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Taking the norm we obtain

nPγ(A+E,B + F )− Pγ(A,B)n2 ≤
1

2π γ

n (I +X(λ))−1 n2n(λB −A)−1n2
× nFn2 + nλF −En2 n(λB −A)−1n2 nBn2 |dλ|.

But

nX(λ)n2 ≤ n(λB −A)−1n2 1 + |λ|2 nEn22 + nFn22 ≤ �mγ < 1.

Therefore

(I +X(λ))
−1

2
≤ 1

1− �mγ
,

from which the proof easily follows.

REMARKS

1. The proof of Proposition 2.1 excludes the case where λ = ∞ is an eigenvalue of
the pencil λB − A. This happens when B is singular. Then the pencil λA − B
has the eigenvalue λ = 0 (see [6]) and it suffices to consider the projector

P∞(A,B) := Pγ0(B,A) =
1

2iπ γ0

(λA−B)−1A dλ (6)

onto the deflating subspace of λA − B corresponding to the eigenvalue λ = 0
enclosed by a contour γ0. Similarly to Proposition 2.1, it can be shown that

nP∞(A+E,B + F )− P∞(A,B)n2 ≤ 1

2π
Lγ0� mγ0

1 +mγ0 nAn2
1− � mγ0

. (7)

where Lγ0 is the length of γ0, mγ0 = maxλ∈γ0 n(λA−B)−1n2 1 + |λ|2 , E
and F are perturbations such that nEn22 + nFn22 ≤ � and � mγ0 < 1.

2. The condition � mγ < 1 in Proposition 2.1 is clearly satisfied if ∂Σ�(A,B)∩γ = ∅
where ∂Σ�(A,B) denotes the boundary of Σ�(A,B). The stability of the projector
Pγ(A,B), as a function of the variables A and B, is ensured provided that � mγ <
1 and Lγ� mγ (1 +mγnBn2) � 1. This implies that the number of eigenvalues
enclosed by γ remains constant. For example, the conditionm2

γ � 1/� is sufficient
for the stability of Pγ(A,B) with respect to perturbations E and F . The quantity

mγ is actually a modification (up to the term 1 + |λ|2 ) of the stability radius
of the pencil λB−A. It is difficult to compute and our aim (see Proposition 2.4)
is to show that the largest eigenvalue of the Hermitian positive definite matrix
Hγ(A,B) gives the same information as mγ .

Using analogous perturbation techniques, the following proposition shows the con-
tinuity of the function (A,B) :→ nHγ(A,B)n2.
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PROPOSITION 2.2. Assume that � mγ < 1. Then

nHγ(A+E,B + F )−Hγ(A,B)n2 ≤ � mγ(2 + � mγ)

(1− �mγ)2
nHγ(A,B)n2 (8)

PROOF.

Hγ(A+E,B + F ) =
1

Lγ γ

(λ(B + F )− (A+E))−∗ (λ(B + F )− (A+E))−1 |dλ|.

A few calculations show that

(λ(B + F )− (A+E))−∗ (λ(B + F )− (A+E))−1 = (λB −A)−∗ (I − S(λ)) (λB −A)−1

where

I − S(λ) = (I +X(λ))−∗ (I +X(λ))−1

X(λ) = (λB −A)−1 (λF −E) .
Thus

nHγ(A+E,B + F )−Hγ(A,B)n2 =

max
nxn2=1

1

Lγ γ

x∗ (λB −A)−∗ S(λ) (λB −A)−1 x|dλ| ≤

max
λ∈γ
nS(λ)n2 max

nxn2=1
1

Lγ γ

x∗ (λB −A)−∗ (λB −A)−1 x |dλ| =

max
λ∈γ
nS(λ)n2 nHγ(A,B)n2.

The proof terminates by noting that (see the proof of Proposition 2.1)

nX(λ)n2 ≤ �mγ , n (I +X(λ))−1 n2 ≤ 1

1− �mγ
,

and that nS(λ)n2 ≡ n (I +X(λ))−∗ (X(λ) +X(λ)∗ +X(λ)∗X(λ)) (I +X(λ))−1 n2 ≤
� mγ(2+�mγ)
(1−�mγ)2

.

The following proposition shows how the norms of Pγ(A,B) and Hγ(A,B) are
related.

PROPOSITION 2.3. The projector Pγ(A,B) and the matrix Hγ(A,B) satisfy

nPγ(A,B)n2 ≤ Lγ
2π

nB∗Hγ(A,B)Bn2. (9)

PROOF.

nPγ(A,B)n22 = max
nxn2=1

nPγ(A,B)xn22

≤ max
nxn2=1

1

4π2 γ

n(λB −A)−1Bxn2|dλ|
2

≤ max
nxn2=1

Lγ
4π2 γ

n(λB −A)−1Bxn22|dλ|

=
L2γ
4π2
nB∗Hγ(A,B)Bn2.
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The second inequality above comes from the Cauchy-Schwarz inequality.

Next we show how mγ is related to the norm of Hγ(A,B). But first we need the
following lemma.

LEMMA 2.1. If λ0 ∈ γ and α > 0, then

γ

|dλ|
(1 + α|λ− λ0|)2

≥ Lγ
1 + αLγ

.

PROOF. Consider the parametric representation of the contour γ as : λ = λ(θ)

and denote by L(θ) =
θ

θ0
|λ3(ϕ)| dϕ the arc length between λ0 ≡ λ(θ0) and λ(θ). Then

γ

|dλ|
(1 + α|λ− λ0|)2

=
θ0+Lγ

θ0

|λ3(θ)|
(1 + α|λ(θ)− λ(θ0)|)2

dθ.

But

|λ(θ)− λ(θ0)| =
θ

θ0

λ3(ϕ) d(ϕ) ≤ L(θ).

Hence

γ

|dλ|
(1 + α|λ− λ0|)2

≥
θ0+Lγ

θ0

|L3(θ)|
(1 + αL(θ))2

dθ =
Lγ

1 + αLγ
.

PROPOSITION 2.4. We have

1

1 + |λ0|2
m2
γ

1 +mγ nBn2 Lγ ≤ nHγ(A,B)n2 ≤ m2
γ , (10)

d2γ
1 + dγ nBn2 Lγ ≤ nHγ(A,B)n2 ≤ d2γ , (11)

where λ0 ∈ γ and dγ = maxλ∈γ n(λB −A)−1n2.
PROOF.

nHγ(A,B)n2 = max
nxn2=1

(Hγ(A,B)x, x)

= max
nxn2=1

1

Lγ γ

n(λB −A)−1xn22 |dλ|

≤ 1

Lγ γ

d2γ |dλ| = d2γ ≤ m2
γ .

Now let λ0 ∈ γ and x0 ∈ Cn with nx0n2 = 1 such that

mγ(A,B) = n(λ0B −A)−1n2 1 + |λ0|2

and

n(λ0B −A)−1n2 = n(λ0B −A)−1x0n2.
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From the identity

(λB −A)−1 = (λ0B −A)−1 + (λ0 − λ)(λ0B −A)−1B(λB −A)−1,

we obtain

n(λB−A)−1x0n2 ≥ n(λ0B−A)−1x0n2−|λ−λ0| n(λ0B−A)−1n2 nBn2n(λB−A)−1x0n2.

Hence

n(λB −A)−1x0n2 ≥ n(λ0B −A)−1n2
1 + |λ− λ0| n(λ0B −A)−1n2nBn2 .

Therefore

nHγ(A,B)n2 ≥ 1

Lγ γ

n(λB −A)−1x0n22 |dλ|

≥ 1

Lγ
n(λ0B −A)−1n22

γ

|dλ|
(1 + n(λ0B −A)−1n2nBn2 |λ− λ0|)2

,

and from Lemma 2.1 we obtain

nHγ(A,B)n2 ≥ 1

Lγ
n(λ0B −A)−1n22

Lγ
1 + n(λ0B −A)−1n2nBn2Lγ

≥ 1

1 + |λ0|2
m2
γ

1 +mγnBn2Lγ .

With the same reasoning, we prove the bounds (11).

REMARKS

1. Proposition 2.3 shows that when nPγ(A,B)n2 is large, then so is the quan-
tity nB∗Hγ(A,B)Bn2. Then Proposition 2.4 shows that dγ nBn2 and hence
mγ nBn2 are also large. Conversely, a largemγ means that the �−pseudospectrum
of λB − A intersects the contour γ (see [4]) and therefore that the projector
Pγ(A,B) may not be well defined.

Also, Proposition 2.4 shows that nHγ(A,B)n2 can be as large as d2γ . The lower
bounds in (10) and (11) are probably not optimal, but they show that

O(mγ) ≤ nHγ(A,B)n2 ≤ d2γ ≤ m2
γ .

2. The case where γ is a circle is important in stability analysis of discrete-time
systems (or difference equations). If for instance γ = C is the unit circle, then
the projector Pγ(A,B) and the matrix Hγ(A,B) become

P ≡ PC(A,B) =
1

2π

2π

0

B − e−iθA −1
B dθ, (12)

H ≡ HC(A,B) =
1

2π

2π

0

B − e−iθA −∗
B − e−iθA −1

dθ. (13)
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Using the Kronecker decomposition [1, 6] of A and B, it can easily be shown that
P and H satisfy the following properties

B∗HB −A∗HA = P ∗P − (I − P )∗(I − P ),
P 2 = P, (H̃P )∗ = H̃P with H̃ = (A± B)∗H(A± B). (14)

For that special case, an algorithm has recently been proposed in [3]. It computes
in a stable way the projector P and the scaled matrix H taken in the following
form:

H =
1

2π

2π

0

B − e−iθA −∗
H(0) B − e−iθA −1

dθ

where H(0) is an arbitrary hermitian positive definite matrix used for scaling
purposes.

3. It would be interesting to derive systems analogous to (14) for the contour γ.
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