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Abstract

In this paper, we provide sufficient conditions for the existence of unbounded
solutions and the global attractivity of solutions of a four-term recurrence equa-
tion.

1 Introduction

Difference equations appear naturally as discrete analogues and as numerical solutions
of differential and delay differential equations having applications in biology, ecology,
physics, etc. Recently there has been a lot of work concerning the boundedness, and
the global asymptotic stability of the solutions of nonlinear difference equations (see
[1-6] and the references cited therein). In this paper, we study the difference equation

xn+2 = f(xn+1, xn, xn−1), n = 0, 1, ..., (1)

under the initial conditions x−1, x0, x1 ≥ 0 and x2−1 + x20 + x21 > 0, where the function
f satisfies some of the following conditions:
(H1) f ∈ C[[0,∞)3\{(0, 0, 0)}, (0,∞)];
(H2) f(u, v,w) is decreasing in u, v and w;
(H3) the equation x = f(x, x, x) has a unique positive equilibrium x = x > 0, that

is, x̄ is a positive fixed point of f ;
(H4) there exist M1,M2,M3 ≥ x̄ such that

f(M1, 0, 0) ≤ x̄, f(0,M2, 0) ≤ x̄, f(0, 0,M3) ≤ x̄;

(H5) H
2(x) > x for 0 < x < x̄, where H(x) = f(x, x, x);

(H6) there exists a K ≥ x̄ such that for all u > K,

G(u) = f(f(0, 0, u), f(0, u, 0), f(u, 0, 0)) > u.
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Our aim in this paper is to investigate the existence of unbounded solutions and
the attractivity of solutions of (1).
The initial conditions x−1, x0, x1 ≥ 0 and x2−1 + x20 + x21 > 0 determine a corre-

sponding unique solution {xn}∞n=−1 of (1). The set of all such solutions will be denoted
by Ω. The equilibrium x̄ of (1) is called a global attractor if every solution {xn} in Ω
satisfies limn→∞ xn = x. A real interval I is called an invariant interval for (1) if the
additional conditions x−1, x0, x1 ∈ I imply the corresponding solution {xn}∞n=−1 ⊂ I.
x̄ is a global attractor for solutions of (1) originated from I if every solution in Ω under
the additional condition that x−1, x0, x1 ∈ I satisfies limn→∞ xn = x.

2 Existence of Unbounded Solutions

We first establish the existence of an unbounded solution of (1).

THEOREM 1. Assume that the hypotheses (H1)-(H4) and (H6) are satisfied. Then
there exist unbounded solutions in Ω.

PROOF. Consider any solution {xn}∞n=−1 in Ω that satisfies x1 > K > 0. Then
x2 = f(x1, x0, x−1) < f(x1, 0, 0), x3 = f(x2, x1, x0) < f(0, x1, 0), x4 = f(x3, x2, x1) <
f(0, 0, x1) and

x5 = f(x4, x3, x2) > f(f(0, x1, 0), f(0, x1, 0), f(x1, 0, 0)) > x1.

By induction, we obtain

x4k+5 > f(f(0, 0, x4k+1), f(0, x4k+1, 0), f(x4k+1, 0, 0)) > x4k+1 (2)

for k = 0, 1, 2, ... . Assume to the contrary that {x4k+1} is bounded above. Since
{x4k+1} is increasing, it must converge. Let

λ = lim
k→∞

x4k+1.

Since λ > K, from (H5), it follows that

f(f(0, 0,λ), f(0,λ, 0), f(λ, 0, 0)) > λ.

On the other hand, by letting k →∞ in (2), we find

λ ≥ f(f(0, 0,λ), f(0,λ, 0), f(λ, 0, 0)),
which is a contradiction. The proof is complete.

EXAMPLE 1. Consider the Equation

xn+2 =
1

x2n+1 + x
2
n + x

2
n−1

, n = 0, 1, ... . (3)

Let M1 = M2 = M3 =
6
√
3, K = 3 and x̄ = 1

3√3 . Then it is easy to show that

f(u, v, w) = 1
u2+v2+w2 satisfies the hypotheses (H1)-(H4) and (H6). Hence by Theorem

1, there exists a solution of (3) that is unbounded.
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3 Attractivity

In this section, we study the attractivity of the positive equilibrium x̄ of (1). Let
I ⊂ (0,∞) denote the maximal interval containing x̄ such that the function h, defined
by

h(x) = f(f(x, x, x), f(x, x, x), f(x, x, x)) (4)

satisfies the weak negative feedback condition

(h(x)− x)(x− x̄) ≤ 0, x ∈ I.

Also, let a = inf I and b = sup I.

LEMMA 1. Assume that the hypotheses (H1)-(H4) are satisfied. Then the following
statements are true:
(a) 0 ≤ a ≤ x̄ ≤ b ≤ ∞.
(b) If a > 0, then a ∈ I and h(a) = a.
(c) If b <∞, then b ∈ I and h(b) = b.
(d) If either a = x̄ or b = x̄, then I = {x̄}.
(e) a > 0 if, and only if, b <∞. If a > 0, then a = f(b, b, b) and b = f(a, a, a).
(f) a = 0 if, and only if, b =∞.
PROOF.
(a) This is trivial.
(b) Clearly, h(x) ≥ x for a < x ≤ x̄. Assume to the contrary that a /∈ I. Then

h(a) < a. Since h is continuous, there exists an � > 0 such that h(x) < x for x ∈
(a− �, a+ �), which is a contradiction. Therefore, h(a) ≥ a. If h(a) > a, there exists an
� > 0 such that h(x) > x for x ∈ (a− �, a+ �). So a 9= inf I, which is a contradiction.
Consequently, we obtain h(a) = a.
(c) Similar to (b).
(d) Let a = x̄. Assume to the contrary that b > x̄. Then for all x ∈ [x̄, c], where

x̄ < c < b, we have

f(x, x, x) ≤ f(x̄, x̄, x̄) = x̄, f(x, x, x) ≥ f(c, c, c), h(x) ≤ x.

Furthermore, f(x, x, x) ∈ [f(c, c, c), x̄] and

h(f(x, x, x)) = f(h(x), h(x), h(x)) ≥ f(x, x, x),

so that [f(c, c, c), x̄] ⊂ I, which is a contradiction. The case where b = x̄ is similarly
proved.
(e) Let 0 < a < x̄. Since f(x, x, x) is continuous and decreasing, we find

f([a, x̄], [a, x̄], [a, x̄]) = [x̄, f(a, a, a)].

For every x ∈ [x̄, f(a, a, a)], there exists a unique x3 ∈ [a, x̄] such that f(x3, x3, x3) = x.
As a result, h(x3) ≥ x3 and

h(x) = h(f(x3, x3, x3)) = f(h(x3), h(x3), h(x3)) ≤ f(x3, x3, x3) = x,
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which implies [x̄, f(a, a, a)] ⊂ I and f(a, a, a) ≤ b. Assume to the contrary that
f(a, a, a) < b. Let c ∈ (f(a, a, a), b). Using similar arguments as above, we find

f([x̄, c], [x̄, c], [x̄, c]) = [f(c, c, c), x̄] ⊂ I

and
a ≤ f(c, c, c).

Since c > f(a, a, a) and h(a) = a, we find

f(c, c, c) < f(f(a, a, a), f(a, a, a), f(a, a, a)) = h(a) = a,

which is a contradiction. Therefore, b = f(a, a, a) < ∞. The case when b < ∞ is
similarly proved.
(f) This follows from (e).

COROLLARY 1. Assume that the hypotheses (H1)-(H4) are satisfied. Then I can
be {x̄}, [a, b], or (0,∞), where 0 < a < x̄ < b <∞, a = f(b, b, b) and b = f(a, a, a).
LEMMA 2. Assume that the hypotheses (H1)-(H4) are satisfied. Then I is an

invariant interval of (1).

PROOF. If I = {x̄} or I = (0,∞), the proof is easy. The remaining case is
when I = [a, b], where 0 < a < x̄ < b < ∞, a = f(b, b, b) and b = f(a, a, a). Let
x−1, x0, x1 ∈ [a, b]. Then

a = f(b, b, b) ≤ x2 = f(x1, x0, x−1) ≤ f(a, a, a) = b,

a = f(b, b, b) ≤ x3 = f(x2, x1, x0) ≤ f(a, a, a) = b,
and

a = f(b, b, b) ≤ x4 = f(x3, x2, x1) ≤ f(a, a, a) = b.
If xk−1, xk, xk+1 ∈ [a, b], then by induction,

a = f(b, b, b) ≤ xk+2 = f(xk+1, xk, xk−1) ≤ f(a, a, a) = b.

The proof is complete.

THEOREM 2. Assume that the hypotheses (H1)-(H5) are satisfied. Then x̄ is a
global attractor for solutions of (1) originated from I.

PROOF. The case where I = {x̄} is trivial, so we will assume I 9= {x̄}. Let
x−1, x0, x1 ∈ I. Then the solution {xn} is bounded. So

0 < λ = lim
n→∞ inf xn ≤ x̄ ≤ µ = lim

n→∞ supxn <∞.

Clearly,
λ, µ ∈ I, h(λ) ≥ λ, h(µ) ≤ µ.

Let {xni} be a subsequence of {xn} such that

lim
i→∞

xni+1 = µ.
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Then for every � > 0, there exists an integer N0 such that xni−1, xni , xni+1 > λ − �,
and xni+2 = f(xni+1, xni , xni−1) < f(λ−�,λ−�,λ−�). Hence µ ≤ f(λ−�,λ−�,λ−�)
for every � > 0, which implies µ ≤ f(λ,λ,λ). Similarly, we may show that

λ ≥ f(µ, µ, µ).

In view of the fact that H2(x) > x for 0 < x < x̄, we have

H(µ) = f(µ, µ, µ) ≤ λ ≤ x̄ ≤ µ ≤ f(λ,λ,λ) = H(λ). (5)

It is easy to see that λ = µ = x̄ for λ = x̄. Hence, we can assume that λ < x̄. By (5),
the properties of H(x) and (H5), we have

H2(µ) ≥ H(λ) > x̄ > λ ≥ H(µ) ≥ H2(λ) > λ.

This is a contradiction. Therefore, λ = x̄ and λ = µ = x̄. The proof is complete.

COROLLARY 2. Assume that the hypotheses (H1)-(H4) are satisfied. Let

(h(x)− x)(x− x̄) ≤ 0, x ∈ (0,∞),

where h is defined by (4). Then x̄ is a global attractor for Ω.

EXAMPLE 2. Consider the equation

xn+2 =
1√

xn+1 +
√
xn +

√
xn−1

, n = 0, 1, 2, ... .

Let M1 = M2 = M3 = 3 3
√
3, h(x) = H2(x) =

2√3
3 x

3
4 , f(u, v, w) = 1√

u+
√
v+
√
w
. We

can check that the hypotheses of Theorem 2 are satisfied. Thus, x̄ is an attractor

of all solutions {xn} with initial conditions x−1, x0, x1 ∈ I. In fact, x̄ =
3√3
3 is a

global attractor for all the solutions {xn}∞n=1 with initial conditions (x−1, x0, x1) ∈
[0,∞)3\{(0, 0, 0)}.
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