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Abstract

We consider the linear difference equation

∆mxn + δanxn+1 = 0

wherem ≥ 2, δ = ±1 and {an} is a positive real sequence. We study the existence
of its nonoscillatory solutions.

1 Introduction

In this paper we consider the m-th order linear difference equation

∆mxn + δanxn+1 = 0, n ∈ N (1)

where m ≥ 2, δ = ±1 and {an} is a positive real sequence. For any function x : N → R
we define the forward difference operator ∆ as usual:

∆0xn = xn, ∆xn = xn+1 − xn, ∆kxn = ∆(∆
k−1xn) for k ≥ 1.

Here by N we denote the set of positive integers and by R the set of the real
numbers. For all k ∈ N we use the usual factorial notation n(k) = n(n−1)...(n−k+1)
with n(0) = 1. Moreover, k−1

j=k aj = 0.
A nontrivial solution {xn} of (1) is said to be oscillatory if for every n0 ∈ N there

exists an n ≥ n0 such that xnxn+1 ≤ 0. Otherwise it is called nonoscillatory. A
sequence {xn} is termed quickly oscillatory if and only if xn = (−1)nun, where {un} is
a sequence of positive numbers or negative numbers. Since (1) is linear, we can assume
without loss of generality that all nonoscillatory solutions of (1) are eventually positive.
Our main interest in this paper is to study the existence of nonoscillatory solutions

of (1). Similar problems for linear difference equation of third and fourth order were
considered in [3], [7], [9]-[12]. The linear difference equations of second order have
been investigated by a number of authors (see e.g. [2], [4]-[6], [8]). Several sufficient
conditions for the oscillation of all solutions of (1) where m is odd and δ > 0 can be
found in [14].
For the sake of convenience, we will denote (1) by (1−) if δ = −1, and by (1+) if

δ = +1.
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34 Nonoscillatory Solutions

2 Main results

We begin by classifying the nonoscillatory solutions of (1) on the basis of discrete
analogue of Kiquradze’s Lemma (see, for example [1]).

LEMMA 1. Let {xn} be a sequence of real numbers and let xn and ∆xn be of
constant sign with ∆mxn not eventually identically zero. If eventually

δxn∆
mxn < 0,

then there exists integers l ∈ {0, 1, 2, . . . ,m} and N 3 > 0 such that (−1)m−l−1δ = 1
and

xn∆
jxn > 0 for j = 0, 1, . . . , l

(−1)j−lxn∆jxn > 0 for j = l + 1, . . . ,m
(2)

for n ≥ N 3.
A sequence {xn} satisfying (2) is called a sequence of degree l. LetNl denote the set

of solutions of degree l of (1). If we denote by N the set of all nonoscillatory solutions
of (1) then by Lemma 1 we have

N = N0 ∪N2 ∪ · · · ∪Nm−1 for δ = 1 and m odd;
N = N1 ∪N3 ∪ · · · ∪Nm−1 for δ = 1 and m even;
N = N1 ∪N3 ∪ · · · ∪Nm for δ = −1 and m odd;
N = N0 ∪N2 ∪ · · · ∪Nm for δ = −1 and m even.

Our first result shows that for (1−), we have Nm 9= 0.We need the following lemma
which is proved in [12].

LEMMA 2. Let {xn} be a sequence. Suppose k ≥ 1 and that ∆kxn > 0 and
∆k+1xn > 0 for all n ≥M , then

lim
n→∞∆

k−1xn = lim
n→∞∆

k−2xn = ... = lim
n→∞xn =∞.

We will use the initial values to construct nonoscillatory, unbounded solutions of
(1).

THEOREM 1. There exists a nontrivial solution {xn} of (1−) satisfying
∆ixn > 0 for all n ∈ N and i = 0, 1, ...,m− 1, (3)

in addition

lim
n→∞∆

ixn =∞, i = 0, 1, ...,m− 2. (4)

PROOF. Let {xn} be a nontrivial solution of (1−) satisfying the initial conditions
∆ix1 > 0 for i = 0, 1, ...,m − 1. Suppose ∆ixk > 0 for some positive integer k and
i = 0, 1, ...,m− 1. From the identities

xk+1 = ∆xk + xk
∆xk+1 = ∆2xk +∆xk

...
∆m−2xk+1 = ∆m−1xk +∆m−2xk
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we have ∆ixk+1 > 0 for i = 0, 1, ...,m− 2. Since ∆m−1xk+1 = ∆mxk +∆m−1xk, from
(1), we get

∆m−1xk+1 = akxk+1 +∆m−1xk > 0

and (3) follows by mathematical induction. Now, from (3) we have xn > 0 for all
n ∈ N and so ∆mxn = anxn+1 > 0 for all n ∈ N . Therefore use of Lemma 1 completes
the proof.

REMARK 1. Theorem 1 can be extended to nonlinear equation of the form

∆mxn = anf(xn+k)

where f : R → R is a continuous function such that xf(x) > 0 for x 9= 0 and k =
0, 1, . . . ,m− 1.
To prove our next theorem we need the following lemmas.

LEMMA 3. (see [1, Corollary 1.7.13]). Let {xn} be a bounded sequence and xn > 0
with ∆kxn ≤ 0 and not identically zero. Then

lim
n→∞∆

ixn = 0 for i = 1, 2, ..., k − 1.

LEMMA 4. Let m be an odd [even] number. If {xn} is a nontrivial solution of (1+)
[(1−)] satisfying

(−1)i∆ixr ≥ 0 for i = 0, 1, ...,m− 2 and ∆m−1xr > 0 [< 0] (5)

for some r > 1 then

(−1)i∆ixn > 0 for all n = 1, 2, ..., r − 1 and i = 0, 1, ...,m− 1. (6)

PROOF. Let m be an odd number. We show the lemma true for n = r − 1.
From (5) we have ∆mxr−1 = −ar−1xr ≤ 0. Hence ∆m−1xr ≤ ∆m−1xr−1 and we
get ∆m−1xr−1 > 0. Similarly, ∆m−1xr−1 > 0 implies ∆m−2xr−1 < 0, which implies
∆m−3xr−1 > 0 and step by step we get (6) for n = r − 1. Repeating this process for
each n = r − 2, r − 3, ..., 1 proves the lemma. For even m the proof is similar.

The next theorem shows that for (1+) with m odd and for (1−) with even m we
have N0 9= 0.
THEOREM 2. Let m be an odd [even] number. Then there exists a solution {xn}

of (1+) [(1−)] such that

(−1)i∆ixn > 0 for all n ∈ N, i = 0, 1, 2, . . . ,m− 1. (7)

In addition

lim
n→∞∆

ixn = 0 for i = 1, 2, ...,m− 1, [m− 2]. (8)
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PROOF. We shall apply a construction similar to that given in [11]. Suppose that
x1, x2, ..., xm is a fundamental system of solutions of (1). For every integer k we define
a sequence x̃k as follows

x̃k(n) = C1,kx1(n) + C2,kx2(n) + ...+ Cm,kxm(n), n ∈ N (9)

where the numbers C1,k, C2,k, ..., Cm,k are chosen in such a way that

x̃k(k) = x̃k(k + 1) = ... = x̃k(k +m− 2) = 0 (10)

and
m

j=1
C2j,k = 1. Let (−1)m−1x̃k(k + m − 1) > 0. Since x1, x2, ..., xm are linearly

independent and x̃k(k+m−1) can be arbitrarily chosen, the numbers C1,k, C2,k, ..., Cm,k
do exist and x̃k(n) are nontrivial solutions of (1). Note that, by (10), for every k we
have

x̃k(k) = ∆x̃k(k) = ... = ∆
m−2x̃k(k) = 0, (−1)m−1x̃k(k) > 0.

Therefore, from Lemma 3 we get

(−1)i∆ix̃k(n) > 0 for all n = 1, 2, ..., k − 1; i = 0, 1, ...,m− 1. (11)

Let us denote C̃k = (C1,k, C2,k, ..., Cm,k). Then nC̃kn = 1 for each k ∈ N . The

unit ball is compact in Rn so (C̃k) has a convergent subsequence (C̃ki) such that

C̃ki → C̃ = (C1, C2, ..., Cm) where
m

j=1

C2j = 1. Hence, by (9),

lim
ki→∞

x̃ki(n) = C1x1(n) + C2x2(n) + ...+ Cmxm(n) = x(n)

defines a nontrivial solution (xn) of (1). The inequality (11) implies that

(−1)i∆ix(n) ≥ 0 for all n ∈ N and i = 0, 1, ...,m− 1. (12)

Let m be an odd number. If xn0 = 0 for some n = n0, then since {xn} is non-
increasing, xn = 0 for all n ≥ n0 which contradicts the fact that {xn} is nontriv-
ial. Thus xn > 0 for each n ≥ 1. Then ∆mxn = −anxn+1 < 0 for all n ≥ 1. If
∆m−1xn0 = 0 for some n = n0, then since {∆m−1xn} is decreasing and nonnegative
sequence, ∆m−1xn = 0 for all n ≥ n0. This contradicts the fact that {∆m−1xn} is
strictly decreasing. Hence ∆m−1xn > 0 for all n ≥ 1. In a similar way ∆m−1xn > 0 im-
plies ∆m−2xn < 0. Repeating this process we see that (12) holds with strict inequality
for all n ≥ 1.
From (7) we have xn > 0 and {xn} is decreasing for all n ∈ N . Hence {xn} is

bounded. By Lemma 2 we get (8). This completes the proof of the theorem.

EXAMPLE 1. The equation

∆mxn + (−1)m−1 m!

n(n+ 2)2(n+ 3)...(n+m)
xn+1 = 0, n ∈ N
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satisfies hypotheses of Theorem 2 and has a solution xn = 1 +
1
n . An easy calculation

shows that ∆ixn = (−1)i i!
n(n+1)(n+2)...(n+i) and (7), (8) are satisfied.

REMARK 2. Theorem 2 is not true for the equation

∆mxn + anxn = 0, n ∈ N.
It can be showed by the following example.

EXAMPLE 2. Consider the equation

∆3xn + 8xn = 0, n ∈ N.
The general solution of this equation is

xn = C1(−1)n + C2 sin n arctan

√
3

2
+ C3 cos n arctan

√
3

2
.

Therefore every particular solution is oscillatory.

It would be interesting to know when the solution constructed in the proof of
Theorem 2 converge to zero.

THEOREM 3. Let m be an odd [even] number. If
∞

n=1
nm−1an = ∞, then every

solution of degree l = 0 of (1+) [(1−)] approaches zero as n→∞.
PROOF. Assume m is odd. Let {xn} be a solution of (1+) of degree l = 0. By

summing (1) from k to n− 1 we get

∆m−1xn −∆m−1xk = −
n−1

j=k

ajxj+1, n ≥ k.

Letting n→∞ and using (8) we obtain

∆m−1xk =
∞

j=k

ajxj+1.

The summation the above equality over k yields

∆m−2xk −∆m−2xs =
n−1

k=s

∞

j=k

ajxj+1

and by (8) we get

∆m−2xs =
∞

k=s

∞

j=k

ajxj+1 = −
∞

j=s

(j + 1− s)ajxj+1.

Repeating the reasoning (m-times) we obtain

xr = xn +
n−1

s=r

∞

j=s

(j +m− 2− s)(m−2)
(m− 2)! ajxj+1. (13)
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Since xn > 0 and ∆xn < 0 then there exists a finite limit g = lim
n→∞xn ≥ 0. Assume

g > 0, then from (13) we have

xr ≥ g + (−1)
m−1

(m− 1)! g
∞

j=r

(j +m− 1− r)(m−1)aj . (14)

One can observe that for j ≥ r holds (j+m−1− r)(m−1) ≥ (j− r)m−1 ≥ 0. Therefore
we get

∞

j=r

(j +m− 1− r)(m−1)aj ≥
∞

j=r

(j − r)m−1aj > 1

K

∞

j=r

jm−1aj

for some K > 0. Hence, by (14)

xr ≥ g + 1

(m− 1)!
g

K

∞

j=r

jm−1aj = g +∞,

which is not possible. Thus lim
n→∞xn = 0. For even m the proof is similar. This

completes the proof of the theorem.

From Theorem 1 and Theorem 2 we get following.

COROLLARY 1. If m = 2 then (1−) does not have oscillatory solutions.
THEOREM 4. Assume m is an odd [even] number. Then (1+) [(1−)] cannot have

a quickly oscillatory solution.

PROOF. Let m be an odd number and let zn > 0 for all n ∈ N . Suppose that
xn = (−1)nzn is a solution of (1+). Then we have

∆xn = (−1)n+1(zn+1 + zn)
∆2xn = (−1)n+2(zn+2 + 2zn+1 + zn)

and one can see that

∆mxn = (−1)n+m
m

k=0

m

k
zn+k.

Therefore equation (1+) can be written in the form

(−1)m
m

k=0

m

k
zn+k = anzn+1.

where

(−1)m
m

k=0

m

k
zn+k < 0 and anzn+1 > 0

This contradiction proves our Theorem for m odd. For even m the proof is similar.
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