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Abstract

The main purpose of this paper is to give a generalization of the well-known
Nadler multivalued contraction fixed point to the setting of symmetric spaces.
We apply our main result to obtain a new fixed point theorem for multivalued
mappings in probabilistic spaces.

1 Introduction

Let (X, d) be a metric space. Let (CB(X),H) denote the hyperspaces of nonempty
closed bounded subsets of X, where H is the Hausdorff metric induced by d, i.e.,

H(A,B) = max sup
b∈B

d(b,A); sup
a∈A

d(a,B)

for all A,B ∈ CB(X), where d(x,A) = inf{d(x, a)| a ∈ A}. In [3], Nadler proved
the following important fixed point result, which has been used and extended in many
different directions, for contraction multivalued operators: Let (X, d) be a complete
metric space and T : X → CB(X) a multivalued mapping such that:

H(Tx, Ty) ≤ kd(x, y), k ∈ [0, 1), ∀x, y ∈ X
Then, there exists u ∈ X such that u ∈ Tu.
Although the fixed point theory for single valued maps is very rich and well devel-

oped, the multivalued case is not. Note that multivalued mappings play a major role
in many areas as in studying disjunctive logic programs.
On the other hand, it has been observed (see for example [1], [2]) that the distance

function used in certain metric theorems proofs need not satisfy the triangular inequal-
ity nor d(x, x) = 0 for all x. Motivated by this fact, Hicks and Rhoades [1] established
some common fixed point theorems in symmetric spaces and proved that very general
probabilistic structures admit a compatible symmetric or semi-metric. Recall that a
symmetric on a set X is a nonnegative real valued function d on X × X such that:
(1) d(x, y) = 0 if and only if x = y, (2) d(x, y) = d(y, x).
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Let d be a symmetric on a set X and for r > 0 and any x ∈ X, let B(x, r) =
{y ∈ X : d(x, y) < r}. A topology t(d) on X is given by U ∈ t(d) if and only if for
each x ∈ U , B(x, r) ⊂ U for some r > 0. A symmetric d is a semi-metric if for each
x ∈ X and each r > 0, B(x, r) is a neighborhood of x in the topology t(d). Note that
limn→∞d(xn, x) = 0 if and only if xn −→ x in the topology t(d).
In order to unify the notation (see Theorem 2.2.1, Corollary 2.2.1 and Remark

2.2.1), we need the following two axioms (W.3) and (W.4) given by Wilson [5] in a
symmetric space (X, d):
(W.3) Given {xn}, x and y in X, limn→∞d(xn, x) = 0 and limn→∞d(xn, y) = 0

imply x = y.
(W.4) Given {xn}, {yn} and x in X, limn→∞d(xn, x) = 0 and limn→∞d(xn, yn) = 0

imply that limn→∞d(yn, x) = 0.
It is easy to see that for a semi-metric d, if t(d) is Hausdorff, then (W.3) holds.
A sequence in X is called a d-Cauchy sequence if it satisfies the usual metric con-

dition. There are several concepts of completeness in this setting (see [1]):

(i) X is S-complete if for every d-Cauchy sequence (xn), there exists x in X with
limn→∞d(x, xn) = 0.

(ii) X is d-Cauchy complete if for every d-Cauchy sequence {xn}, there exists x in X
with xn → x in the topology t(d).

REMARK 1.1. Let (X, d) be a symmetric space and let {xn} be a d-Cauchy se-
quence. If X is S-complete, then there exists x ∈ X such that limn→∞d(x, xn) = 0.
Therefore S-completeness implies d-Cauchy completeness.

2 Main results

2.1 The Hausdorff distance in a symmetric space

DEFINITION 2.1.1. Let (X, d) be a symmetric space and A a nonempty subset of X.

(1) We say that A is d-closed iff A
d
= A where

A
d
= {x ∈ X : d(x,A) = 0} and d(x,A) = inf{d(x, y) : y ∈ A}.

(2) We say that A is d-bounded iff δd(A) <∞ where δd(A) = sup{d(x, y) : x, y ∈ A}.

The following definition is a generalization of the well-known Hausdorff distance to
the setting of symmetric case.

DEFINITION 2.1.2. Let (X, d) be a d-bounded symmetric space and let C(X) be
the set of all nonempty d-closed subsets of (X,d). Consider the function D : 2X ×
2X −→ IR+ defined by

D(A,B) = max sup
a∈A

d(a,B); sup
b∈B

d(A, b)
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for all A,B ∈ C(X).
REMARK 2.1.1. It is easy to see that (C(X),D) is a symmetric space.

For our main Theorem we need the following Lemma. It is used in many papers
for metric spaces. The proof is straightforward.

LEMMA 2.1.1. Let (X, d) be a d-bounded symmetric space. Let A,B ∈ C(X) and
α > 1. For each a ∈ A, there exists b ∈ B such that: d(a, b) ≤ αD(A,B).

2.2 Fixed point Theorem

Now we are ready to prove our main Theorem which yields the Nadler’s fixed point
Theorem in a new setting.

THEOREM 2.2.1. Let (X, d) be a d-bounded and S-complete symmetric space
satisfying (W.4) and T : X −→ C(X) be a multivalued mapping such that:

D(Tx, Ty) ≤ kd(x, y), k ∈ [0, 1), ∀x, y ∈ X (1)

Then there exists u ∈ X such that u ∈ Tu.
PROOF. Let x1 ∈ X and α ∈ (k, 1). Since Tx1 is nonempty, there exists x2 ∈ Tx1

such that d(x1, x2) > 0 (if not, then x1 is a fixed point of T ). In view of (1), we have:

d(x2, Tx2) ≤ D(Tx1, Tx2) ≤ kd(x1, x2) < αd(x1, x2)

using d(x2, Tx2) = inf{d(x2, b) : b ∈ Tx2}, it follows that there exists x3 ∈ Tx2 such
that

d(x2, x3) < αd(x1, x2).

Similarly, there exists x4 ∈ Tx3 such that
d(x3, x4) < αd(x2, x3).

Continuing in this fashion, there exists a sequence {xn} in X satisfying xn+1 ∈ Txn
and

d(xn, xn+1) < αd(xn−1, xn).

We claim that {xn} is a d-Cauchy sequence. Indeed, we have
d(xn, xn+m) < αd(xn−1, xn+m−1)

< α2(d(xn−2, xn+m−2))...
< ... < αn−1(d(x1, xm+1))
< αn−1δd(X).

So {xn} is a d-Cauchy sequence. Hence limn→∞d(u, xn) = 0 for some u ∈ X. Now we
are able to show that u ∈ Tu. Let � > 1. From Lemma 2.1.1, for each n ∈ {1, 2, ...}
there exists yn ∈ Tu such that:

d(xn+1, yn) ≤ �D(Txn, Tu) ≤ �kd(xn, u), n = 1, 2, ... .

which implies that limn→∞d(xn+1, yn) = 0. In view of (W.4), we have limn→∞d(yn, u) =
0 and therefore u ∈ Tud = Tu. The proof is complete.
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If T is a single-valued mapping of a symmetric space (X, d) into itself, we obtain
the following known result [1, Theorem1] for f = IdX which generalizes [2, Proposition
1].

COROLLARY 2.2.1. Let (X, d) be a d-bounded and S-complete symmetric space
satisfying (W.4) and T be a selfmapping of X such that

d(Tx, Ty) ≤ kd(x, y), k ∈ [0, 1[, ∀x, y ∈ X.

Then T has a fixed point.

REMARK 2.2.1. It is clear that in corollary 2.2.1, the fixed point is unique. More-
over, it is easy to see that the condition (W.4)[5] implies (W.3)[5] which guarantees
the uniqueness of limits of sequences.

2.3 Application

Throughout this section, a distribution function f is a nondecreasing, left continuous
real-valued function defined on the set of real numbers, with inf f = 0 and sup f = 1.

DEFINITION 2.3.1. Let X be a set and @ a function defined on X ×X such that
@(x, y) = Fx,y is a distribution function. Consider the following conditions:

I. Fx,y(0) = 0 for all x, y ∈ X.
II. Fx,y = H if and only if x = y, where H denotes the distribution function defined

by H(x) =
0 if x ≤ 0
1 if x > 0

III. Fx,y = Fy,x.

IV. If Fx,y(�) = 1 and Fy,z(δ) = 1 then Fx,z(�+ δ) = 1.

If @ satisfies I and II, then it is called a PPM-structure on X and the pair (X,@)
is called a PPM space. An @ satisfying III is said to be symmetric. A symmetric
PPM-structure @ satisfying IV is a probabilistic metric structure and the pair (X,@)
is a probabilistic metric space.

Let (X,@) be a symmetric PPM-space. For �,λ > 0 and x in X, let Nx(�,λ) =
{y ∈ X : Fx,y(�) > 1− λ}. A T1 topology t(@) on X is defined as follows:

t(@) = {U ⊆ X| for each x ∈ U, there exists � > 0, such that Nx(�, �) ⊆ U}.

Recall that a sequence {xn} is called a fundamental sequence if limn→∞Fxn,xm(t) = 1
for all t > 0. The space (X,@) is called F-complete if for every fundamental sequence
{xn} there exists x in X such that limn→∞Fxn,x(t) = 1, for all t > 0. Note that
condition (W.4), defined earlier, is equivalent to the following condition:

P (4) limn→∞Fxn,x(t) = 1 and limn→∞Fxn,yn(t) = 1 imply limn→∞Fyn,x(t) = 1,
for all t > 0.
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In [1], Hicks and Rhoades proved that each symmetric PPM-space admits a com-
patible symmetric function as follows:

THEOREM 2[1] Let (X,@) be a symmetric PPM-space. Let p : X ×X −→ IR+ be
a function defined as follows:

p(x, y) =
0 if y ∈ Nx(t, t) for all t > 0.
sup{t : y /∈ Nx(t, t), 0 < t < 1} otherwise.

Then

(1) p(x, y) < t if and only if Fx,y(t) > 1− t.
(2) p is a compatible symmetric for t(@).
(3) (X,@) is F-complete if and only if (X, p) is S-complete.

For our main result in this section, we need the following new Proposition:

PROPOSITION 2.3.1. Let (X,@) be a symmetric PPM-space and p a compatible
symmetric function for t(@). For A,B ∈ C(X), set

EA,B(�) = min inf
a∈A

sup
b∈B

Fa,b(�), inf
b∈B

sup
a∈A

Fa,b(�) , � > 0.

and

P (A,B) = max sup
a∈A

inf
b∈B

p(a, b); sup
b∈B

inf
a∈A

p(a, b) .

If T : X → C(X) is a multivalued mapping, then we have

Fx,y(t) > 1− t implies ETx,Ty(kt) > 1− kt, k ∈ [0, 1), ∀t > 0, ∀x, y ∈ X.
implies that P (Tx, Ty) ≤ kp(x, y).
PROOF. Let t > 0 be given and set µ = p(x, y) + t. Then p(x, y) = µ− t < µ gives

Fx,y(µ) > 1− µ, and therefore ETx,Ty(kµ) > 1− kµ. Then
infa∈Txsupb∈TyFa,b(kµ) > 1− kµ
infb∈Tysupa∈TxFa,b(µ) > 1− kµ

=⇒ ∀a ∈ Tx,∃b ∈ Ty, Fa,b(kµ) > 1− kµ
∀b ∈ Ty,∃a ∈ Tx, Fa,b(kµ) > 1− kµ

=⇒ ∀a ∈ Tx,∃b ∈ Ty, p(a, b) < kµ
∀b ∈ Ty,∃a ∈ Tx, p(a, b) < kµµ

then
sup
a∈Tx

inf
b∈Ty

p(a, b) < kµ and sup
b∈Ty

inf
a∈Tx

p(a, b) < kµ

and therefore P (Tx, Ty) < kµ = k(p(x, y) + t). Since t > 0 was arbitrary, it follows
P (Tx, Ty) ≤ kp(x, y).
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DEFINITION 2.3.2. Let (X,@) be a symmetric PPM space and A a nonempty

subset of X. We say that A is @-closed iff A@ = A where

A
@
= {x ∈ X : sup

a∈A
Fx,a(t) = 1, for all t > 0}.

We denote by C@(X) the set of all nonempty @-closed subsets of X.
REMARK 2.3.1. Let (X,@) be a symmetric PPM space and C@(X) be the set

of all nonempty @-closed subsets of X. It is not hard to see that if p is a compatible
symmetric function for t(@) then C@(X) = C(X) where C(X) is the set of all nonempty
p-closed subsets of (X, p).

Now we are able to state and prove an application of our main Theorem 2.2.1 in
the following way

THEOREM 2.3.1. Let (X,@) be a F-complete symmetric PPM space that satisfies
(P.4) and p a compatible symmetric function for t(@). Let T : X −→ C@(X) be a
multivalued mapping such that:

Fx,y(t) > 1− t implies ETx,Ty(kt) > 1− kt, k ∈ [0, 1), ∀t > 0, ∀x, y ∈ X.

Then there exists u ∈ X such that u ∈ Tu.
PROOF. Note that (X, p) is bounded and S-complete. Also p(x, y) < t if and

only if Fx,y(t) > 1 − t. Let � > 0 be given, and set t = p(x, y) + �. Then p(x, y) < t
gives Fx,y(t) > 1 − t and therefore ETx,Ty(kt) > 1− kt. In view of Proposition 2.3.1,
it follows that P (Tx, Ty) ≤ kt = k(p(x, y) + �). On letting � to 0 (since � > 0 is
arbitrary), we have p(Tx, Ty) ≤ kp(x, y). Now apply Theorem 2.2.1.

For a single-valued selfmapping T , Theorem 2.3.1 is reduced to the following known
result:

COROLLARY 2.3.1. Let (X,@) be a F-complete symmetric PPM space that sat-
isfies (P.4) and p a compatible symmetric function for t(@). Let T be a selfmapping of
X satisfying

Fx,y(t) > 1− t implies FTx,Ty(kt) > 1− kt, k ∈ [0, 1), ∀t > 0, ∀x, y ∈ X.

Then T has a fixed point.
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