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Abstract

This paper presents the optimal nonlinear filter for bilinear state and linear
observation equations confused with white Gaussian disturbances. The general
scheme for obtaining the optimal filter in case of polynomial state and linear
observation equations is announced. The obtained bilinear filter is applied to
solution of the identification problem for the bilinear terpolymerization process
and compared to the optimal linear filter available for the linearized model and
to the mixed filter designed as a combination of those filters.

1 Introduction

It is virtually the common opinion that the optimal nonlinear finite-dimensional filter
exists and can be obtained in a closed form only in the case of linear state and ob-
servation equations. This famous construction is called the linear Kalman-Bucy filter
[3]. However, the optimal nonlinear finite-dimensional filter can also be obtained in
some other cases, if, for example, the state vector can take only a finite number of
admissible states [8] or if the observation equation is linear and the drift term in the
state equation satisfies the Riccati equation f 3(x) + f2 = x2 (see [2]). The complete
classification of the ”general situation” cases (this means that there are no special
assumptions on the structure of state and observation equations), where the optimal
nonlinear finite-dimensional filter exists, is given in [9].
This paper studies a relatively simple (but important in practical applications, see

[6]) case of polynomial system states, where the optimal nonlinear finite-dimensional
filter can be obtained in a closed form. Indeed, if the observation equation is linear and
the observation matrix is invertible, then, as shown below in the paper, it is possible to
obtain the optimal finite-dimensional filter for a polynomial state equation, provided
that the system coefficients depend on time only. In the case of a bilinear state equa-
tion, the corresponding filtering equations are derived in the paper directly. A similar
filtering problem has been treated for cubic polynomial states and linear observations
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8 Optimal Filtering

in [1], where the third degree of a vector is defined in a restrictive (componentwise)
sense. The possibility to solve the optimal filtering problem for an arbitrary polynomial
state and linear observations is underlined.
The obtained optimal filter for bilinear system states and linear observations is

applied to solution of an identification problem for the terpolymerization process [6]
in the presence of direct linear observations. The process equations are intrinsically
nonlinear (bilinear), so their linearization leads to large deviations from the real system
dynamics, as it can be seen from the simulation results. Numerical simulations are
conducted for the optimal filter for bilinear system states, the optimal linear filter
available for the linearized model, and the mixed filter designed as a combination of
those filters. The simulation results show an advantage of the optimal bilinear filter in
comparison to the other filters.
The paper is organized as follows. Section 2 establishes the procedure to obtain

a closed system of the filtering equations for polynomial state and linear observation
equations and gives the optimal filter for bilinear system states and linear observations
in the explicit form. In Section 3, the obtained bilinear filter is applied to solution of an
identification problem for the bilinear terpolymerization process and compared to the
optimal linear filter available for the linearized model and to the mixed filter designed
as a combination of those filters.

2 Optimal filtering for polynomial state and linear
observations

Let a unobserved random process x(t) satisfy a nonlinear polynomial equation

dx(t) = f(x(t))dt+ b(t)dW1(t), x(t0) = x0, (1)

and linear observations are given by

dy(t) = h(x(t))dt+B(t)dW2(t). (2)

Here, the drift function f(x(t)) = a0(t) + a1(t)x +a2(t)x
2 + ... is a polynomial, the

observation function h(x(t)) = A0(t)+A(t)x is linear, and the observation matrix A(t)
is invertible, i.e., the inverse matrix A−1(t) exists; W1(t) and dW2(t) are Wiener pro-
cesses, whose weak derivatives are Gaussian noises and which are assumed independent
of each other and of the initial value x0.
The estimation problem is to find the best estimate for the real process x(t) at time t

based on the observations Y (t) = {y(s), t0 ≤ s ≤ t}, that is the conditional expectation
m(t) = E(x(t) | Y (t)) of the real process x(t) with respect to the observations Y (t).
Let P (t) = E((x(t) − m(t))(x(t) − m(t))T | Y (t)) be the error variance (correlation
function).
To find the solution to the stated problem, let us first note that, since the observa-

tion equation is linear, the innovations process

ϑ(t) = y(t)−
t

t0

(A0(s) +A(s)m(s))ds
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=
t

t0

A(s)(x(s)−m(s))ds+
t

t0

B(s)dW2(s)

is a Wiener process [5], and, since
t

t0
B(s)dW2(s) is also a Wiener process, the random

variable A(t)(x(t) −m(t)) is Gaussian for every fixed t. If the inverse matrix A−1(t)
exists, then the random vector (x(t)−m(t)) is also Gaussian [7].
Moreover, taking into account that the equality

[E(h(x(t))xT (t)|Y (t))−E(h(x(t))|Y (t))mT (t)]T (B(t)BT (t))−1[dy(t)−A(t)m(t)dt]
= P (t)AT (t)(B(t)BT (t))−1[dy(t)−A(t)m(t)dt].

is valid for the linear observation function h(x(t)) in (2), the nonlinear filtering equation
for the optimal estimate m(t), first derived by Kushner [4], takes the form

dm(t) = E(f(x(t)) | Y (t))dt+ P (t)AT (t)(B(t)BT (t))−1[dy(t)−A(t)m(t)dt], (3)

m(t0) = E(x(t0) | Y (t0)).
Let us note now that if the function f(x(t)) = a0(t) + a1(t)x + a2(t)x

2 + ... is a
polynomial, it should be possible to compute a finite-dimensional filter in a closed form
for variables m(t) and P (t), using the fact that the random variable (x(t) −m(t)) is
Gaussian. Since all the system coefficients in (1),(2) do not depend on state x(t) and
observations y(t), the conditional moments of (x(t)−m(t)) with respect to observations
y(t) coincide with the unconditional ones. This implies that all odd central conditional
moments of this Gaussian variable µ1 = E((x(t) − m(t)) | Y (t)), µ3 = E((x(t) −
m(t))3 | Y (t)), µ5 = E((x(t) −m(t))5 | Y (t)), ... are equal to 0, and all even central
conditional moments µ2 = E((x(t) − m(t))2 | Y (t)), µ4 = E((x(t) − m(t))4 | Y (t)),
µ6 = E((x(t)−m(t))6 | Y (t)), ... can be represented as functions of the variance P (t).
For example, µ2 = P , µ4 = 3P 2, µ6 = 15P 3, ... (see [7]). Thus, all higher moments
of (x(t) −m(t)) can be expressed using P (t), and this yields additional relations for
representing every higher initial moment of x(t) and, finally, the possibility to obtain
the optimal filter in a closed form, i.e., with respect to a finite number of filtering
variables. In other words, the optimal finite-dimensional filter should exist in the
polynomial-linear case.

2.1 Bilinear state equation

In a particular case, if the function

f(x) = a0(t) + a1(t)x+ a2(t)xx
T (4)

is a bilinear polynomial, where x is now an n-dimensional vector, a1 is an n × n -
matrix, and a2 is a 3D tensor of dimension n×n× n, the system of filtering equations
is as follows

dm(t) = (a0(t) + a1(t)m(t) + a2(t)m(t)m
T (t) + a2(t)P (t))dt

+P (t)AT (t)(B(t)BT (t))−1[dy(t)−A(t)m(t)dt], (5)
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m(t0) = E(x(t0) | Y (t0)),

dP (t) = (a1(t)P (t) + P (t)a
T
1 (t) + 2a2(t)m(t)P (t) + 2(a2(t)m(t)P (t))

T

+b(t)bT (t))dt− P (t)AT (t)(B(t)BT (t))−1A(t)P (t)dt, (6)

P (t0) = E((x(t0)−m(t0))(x(t0)−m(t0))T | Y (t0)),
since the third central moment µ3 is equal to 0, and the third initial moment of x(t) can
be expressed using its second and first moments, i.e., P (t) and m(t). In this bilinear-
linear case, the variance equation is also independent of the observations y(t), but has
the bilinear terms m(t)P (t) in its right-hand side and depends on m(t), thus making
both the equations interconnected. The estimate equation is bilinear with respect to
m, as expected.

3 Terpolymerization process identification

The obtained optimal filter for bilinear system states and linear observations is applied
to solution of an identification problem for the terpolymerization process [6] in the
presence of direct linear observations. Let us rewrite the bilinear state equations (1),(4)
and the linear observation equations (2) in the component form using index summations

dxk(t)

dt
= a0k(t)+

i

a1ki(t)xi(t)+
ij

a2kij(t)xi(t)xj(t)+
i

bki(t)ψ1i(t), k = 1, . . . , n,

yk(t) =
i

Aki(t)xi(t) +
i

Bki(t)ψ2i(t), (7)

where ψ1(t) and ψ2(t) are white Gaussian noises. Then, the filtering equations (5),(6)
can be rewritten in the component form as follows

dmk(t)

dt
= a0k(t) +

i

a1ki(t)mi(t) +
ij

a2kij(t)mi(t)mj(t) +
ij

a2kij(t)Pij(t))dt

+
ijlps

Pkj(t)A
T
jl(t)(Blp(t)Bps(t))

−1[dys −
r

Asr(t)mr(t)dt], (8)

mk(t0) = E[xk(t0) | Y (t0)];

dPij(t) =
k

a1ik(t)Pkj(t) +
k

Pki(t)a1jk(t) + 2
kl

a2ikl(t)ml(t)Pkj

+2
kl

a2jkl(t)ml(t)Pki(t) +
k

bik(t)bkj(t)

−
klpsr

Pik(t)A
T
kl(t)(Blp(t)Bps(t))

−1Asr(t)Prj(t), (9)

Pij(t0) = E[(xi(t0)−mi(t0))(xj(t0)−mj(t0))
T | Y (t0)].
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The terpolymerization process model reduced to ten bilinear equations selected
from [6] is given by

dCm1
dt

=
1

V
d∆m1/dt− (1/θ +KL1C

∗ +K11µ
o
P +K21µ

o
Q +K31µ

o
R)Cm1; (10)

dCm2
dt

=
1

V
d∆m2/dt− (1/θ +KL2C

∗ +K12µ
o
P +K22µ

o
Q)Cm2;

dCm3
dt

=
1

V
d∆m3/dt− (1/θ +K13µ

o
P )Cm3;

dC∗

dt
=
1

V
d∆m∗/dt− (1/θ +Kd +KL1Cm1 +KL2Cm2)C

∗;

dµoP
dt

= (−1/θ −Kt1)µoP +KL1Cm1C
∗ − (K12Cm2 +K13Cm3)µ

o
P

+K21Cm1µ
o
Q +K31Cm1µ

o
R;

dµoQ
dt

= −1
θ
µoQ +KL2Cm2C

∗ − (K21Cm1 +Kt2)µ
o
Q +K12Cm2µ

o
P ;

dµoR
dt

= −1
θ
µoR − (K31Cm1 +Kt3)µ

o
R +K13Cm3µ

o
P ;

dλ1001

dt
= −1

θ
λ1001 +KL1Cm1C

∗ +KL2Cm2C
∗ +K11Cm1µ

o
P

+K21Cm1µ
o
Q +K31Cm1µ

o
R;

dλ0101

dt
= −1

θ
λ0101 +KL1Cm1C

∗ +KL2Cm2C
∗ +K12Cm2µ

o
P +K22Cm2µ

o
Q;

dλ0011

dt
= −1

θ
λ0011 + (KL1Cm1 +KL2Cm2)C

∗ +K13Cm3µ
o
P .

Here, the state variables are: Cm1, Cm2, and Cm3 are the reagent (monomer) concen-
trations, C∗ is the active catalyst concentration; µoP , µ

o
Q, and µ

o
R are the zeroth live

moments of the product MWD, and λ1001 , λ0101 , and λ0011 are its first bulk moments.
The reactor volume V and residence time θ, as well as all coefficients K’s, are known
parameters, and ∆m1,∆m2,∆m3,∆m∗ stand for net molar flows of the reagents and
active catalyst into the reactor.

The identification (filtering) problem is to find the optimal estimate for the unob-
served states (10) assuming that the direct observations yi contaminated with Gaussian
noises ψ2’s are provided for each of the ten state components xi

yi = xi + ψ2i.
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Here, x1 denotes Cm1, x2 denotes Cm2, and so on up to x10 = λ0011 . In this situation,
the bilinear filtering equations (8) for the vector of the optimal estimates m(t) take the
form

dm1(t)

dt
=

1

V
d∆m1/dt− ((1/θ) +KL1m4(t) +K11m5(t) +K21m6(t)

+K31m7(t))m1(t)−KL1P14(t)−K11P15(t)−K21P16(t)

−K31P17(t) +
j

P1j [dyj/dt−mj ]; (11)

dm2(t)

dt
=

1

V
d∆m2/dt− ((1/θ) +KL2m4(t) +K12m5(t) +K22m6(t))m2(t)

−KL2P24(t)−K12P25(t)−K22P26(t) +
j

P2j [dyj/dt−mj ];

dm3(t)

dt
=
1

V
d∆m3/dt− ((1/θ) +K13m5(t))m3(t)−K13P35(t) +

j

P3j [dyj/dt−mj ];

dm4(t)

dt
=

1

V
d∆m∗/dt− ((1/θ) +Kd +KL1m1(t)

+K12m2(t))m4(t)−KL1P14(t)−K12P24(t) +
j

P4j[dyj/dt−mj ];

dm5(t)

dt
= (−1/θ −Kt1)m5(t) +KL1m4(t)m1(t)−K12m2(t)m5(t)

+K21m6(t)m1(t) +K31m7(t)m1(t)−K13m5(t)m3(t) +KL1P14(t)

+K21P16(t) +K31P17(t)−K12P25(t)−K13P35(t) +
j

P5j [dyj/dt−mj ];

dm6(t)

dt
= (−1/θ −Kt2 −K21m1(t))m6(t) +KL2m4(t)m2(t) +K12m5(t)m2(t)

−K21P16(t) +KL2P24(t) +K12P25(t) +
j

P6j [dyj/dt−mj ];

dm7(t)

dt
= (−1/θ −Kt3 −K31m1(t))m7(t) +K13m5(t)m3(t)

−K31P17(t) +K13P35(t) +
j

P7j [dyj/dt−mj ];

dm8(t)

dt
= (−1/θ)m8(t) + (KL1m4(t) +K11m5(t) +K21m6(t) +K31m7(t))m1(t)

+KL2m4(t)m2(t) +KL1P14(t) +K11P15(t) +K21P16(t)

+K31P17(t) +KL2P24(t) +
j

P8j [dyj/dt−mj ];
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dm9(t)

dt
= −1

θ
m9(t) +KL1m4(t)m1(t) +KL2m4(t)m2(t) +K12m5(t)m2(t)

+K22m6(t)m2(t) +KL1P14(t) +KL2P24(t)K12P25(t)

+K22P26(t) +
j

P9j [dyj/dt−mj ];

dm10(t)

dt
= −1

θ
m10(t) +KL1m4(t)m1(t) +KL2m4(t)m2(t)

+K13m5(t)m3(t) +KL1P14(t) +KL2P24(t) +K13P35(t)

+
j

P10j [dyj/dt−mj ].

Here, m1(t) is the optimal estimate for Cm1, m2(t) for Cm2, and so on up to m10(t).
The fifty-five variance component equations are similarly generated by the equations
(9).
In the simulation process, the initial conditions at t = 0 are equal to zero for the

state variables Cm1, . . . ,λ
001
1 , to 0.5 for the estimates m1(t), . . . ,m10(t), to 1 for the

diagonal entries of the variance matrix, and to zero for its other entries. For the purpose
of testing the obtained filter, the system parameter values are all set to 1. The white
Gaussian noises in the equations (7) are realized as sinusoidal signals: ψi = sin t for
i = 1, . . . , 10.
In Figure 1, the obtained values of the state variables Cm1, . . . ,λ

001
1 are given in

the blue, and the values of the bilinear optimal filter estimates m1(t), . . . ,m10(t) are
depicted in the red.
The performance of the optimal bilinear filter (8),(9) is compared to the performance

of the optimal linear Kalman-Bucy filter available for the linearized system. This linear
filter consists of only the linear terms and innovations processes in the equations (8)
(or (11)) for the optimal estimates and the Riccati equations for the variance matrix
components corresponding to the equations (9):

dmk(t)

dt
= a0k(t) +

i

a1ki(t)mi(t)

+
jlps

Pkj(t)A
T
jl(t)(BlpBps))

−1(t)[dys −
r

Asr(t)mr(t)dt], (12)

mk(t0) = E[xk(t0) | Y (t0)];

dPij(t)

dt
=

k

a1ik(t)Pkj(t) +
k

Pki(t)a1jk(t)

+
k

bik(t)bkj(t)−
klpsr

Pik(t)A
T
kl(t)(BlpBps))

−1AsrPrj(t), (13)

Pij(t0) = E[(xi(t0)−mi(t0))(xj(t0)−mj(t0))
T | Y (t0)].
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The graphs of the estimates obtained using this linear Kalman-Bucy filter are shown
in Figure 1 in the green.
Finally, the performance of the optimal bilinear filter (8),(9) is compared to the

performance of the mixed filter designed as follows. The estimate equations in this filter
coincide with the bilinear equations (8) (or (11)) from the optimal bilinear filter, and
the variance equations coincide with the Riccati equations (13) from the linear Kalman-
Bucy filter. The graphs of the estimates obtained using this mixed filter are shown in
Figure 1 in the black. The initial conditions and white Gaussian noise realizations
remain the same for all the filters involved in the simulation.

4 Discussion

Upon comparing all simulation results given in Figure 1, it can be concluded that
the optimal bilinear filter gives the best estimates in comparison to two other filters.
Although this conclusion follows from the developed theory, the numerical simulation
serves as a convincing illustration. On the other hand, since the Kalman-Bucy estimates
obtained for the linearized model do not converge to the real state values, it can be
concluded that linearization fails and is not applicable even to simple bilinear systems.
It should finally be noted that the results obtained applying the mixed filter are

actually very close to (and for the first two variables even better than) the results ob-
tained using the optimal bilinear filter. The advantage of the mixed filter consists in
its better realizability, since the matrix P (t) for the mixed filter satisfies the conven-
tional Riccati equation (13). Thus, the mixed filter could also be widely used to obtain
reasonably good approximations of the optimal estimates for bilinear system states.
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Figure 1: Graphs of the ten state variables (10) (blue),
the estimates given by the optimal bilinear filter (8),(9) (red),

the estimates given by the linear Kalman-Bucy filter (12),(13) (green),
the estimates given by the mixed filter (8),(13) (black).


