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Abstract

In this paper, the projective Riccati equation method, presented by Yan in [1],
is used for obtaining exact solutions, solitary solutions as well as periodic solutions
of the reaction-diffusion equation and the quasi-Camassa Holm equation.

1 Introduction

Since nonlinear partial differential equations are widely used to describe complex phe-
nomena in various fields of science, it is important to their seek exact solutions. Exact
solutions may describe not only the propagation of nonlinear waves but also spatially
localized structures of permanent shape that may be of interest in experimentation
[1, 2]. Many powerful methods have been developed to explore exact solutions. In
particular, Yan in [1] has put forward the generally projective Riccati equation method
which can briefly be described as follows.
For a given nonlinear partial differential equation (NLPDE), say, in two variables

x and t
P (u, ut, ux, uxx, uxt, utt, ...) = 0, (1)

by means of the transformation u(x, t) = u(ξ) and ξ = x+ λt, (1) can be reduced to

Q(u, u3, u33, u333, ...) = 0. (2)

Assumed that (1) or (2) has a solution of the form

u =
n

i=1

σi−1(ξ)[Aiσ(ξ) +Biτ(ξ)] +A0, (3)

where σ and τ satisfy

σ3(ξ) = eσ(ξ)τ(ξ), τ 3(ξ) = eτ2(ξ)− µσ(ξ) + r, (4)
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where 3 = d
dξ , e = ±1, r 9= 0 and µ are constants. Then it is easy to see that (4) admits

the first integral

τ2(ξ) = −e r +
µ2 − 1
r

σ2(ξ)− 2µσ(ξ) . (5)

In particular, when r = µ = 0, we can assume that (1) has the solution

u =
n

i=1

τ i(ξ), (6)

where τ satisfies
τ 3(ξ) = τ2(ξ),

and the parameter n can be found by balancing the highest-order linear term and
nonlinear term of (1).
Thus, (4) may yield the following solutions:
Case 1. When e = −1 and r 9= 0, we have

σ1 =

√
rsech(

√
rξ)

µsech(
√
rξ) + 1

, τ1 =

√
r tanh(

√
rξ)

µ tanh(
√
rξ) + 1

, (7)

σ2 =

√
rcsch(

√
rξ)

µcsch(
√
rξ) + 1

, τ2 =

√
r coth(

√
rξ)

µ coth(
√
rξ) + 1

. (8)

Case 2. When e = 1 and r 9= 0, we have

σ3 =

√
r sec(

√
rξ)

µ sec(
√
rξ) + 1

, τ3 =

√
r tan(

√
rξ)

µ tan(
√
rξ) + 1

, (9)

σ4 =

√
r csc(

√
rξ)

µ csc(
√
rξ) + 1

, τ4 =

√
r cot(

√
rξ)

µ cot(
√
rξ) + 1

. (10)

Case 3. When r = µ = 0, we see that

σ5(ξ) = Cξ, τ5(ξ) =
1

eξ
. (11)

This method can be used to find exact solutions for many NLPDEs. In this paper,
we apply it to a reaction-diffusion equation and the quasi-Camassa Holm equation to
find new exact solutions.

2 Exact Solutions for Reaction-Diffusion Equation

For the following reaction-diffusion equation [4,5,6]

utt + αuxx + βu+ γu3 = 0, (12)

if we apply the transformation u(x, t) = u(ξ) and ξ = x+ λt, it is reduced to

u33 +mu+ nu3 = 0, (13)
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where

m =
β

α+ λ2
, n =

γ

α+ λ2
.

According to the method described above, we may assume that (12) has solutions
of the form

u = aσ(ξ) + bτ(ξ) + c, (14)

where a, b, c are constants to be determined later and σ(ξ) as well as τ(ξ) satisfy (4)
and (5) with r 9= 0. With the aid of the symbolic Maple software, we can substitute
(14) along with (4) and (5) into (13) and collect all terms with the same power in
σi(ξ)τ j(ξ) for i = 0, 1, 2, 4 and j = 0, 1. Setting these coefficients to zero yields a set of
over-determined algebraic system with respect to a, b, c, r, µ, namely,

2ae3 − 3nab2eµ2 + na3r − 2ae3µ2 + 3nab2e = 0,

3na2cr + 3nb2ec− 3nb2ecµ2 + 6nab2eµr − aeµr + 4ae3µr = 0,
nb3e+ 3na2br − 2be3µ2 + 2be3 − nb3eµ2 = 0,

aer2 + 6nb2ecµr − 3nab2er2 + 3nac2r − 2ae3r2 +mar = 0,
2be3µr + 6nabcr + 2nb3eµr − beµr = 0,

mbr + 3nbc2r − nb3er2 = 0,
and

nc3r +mcr − 3nb2ecr2 = 0.
With the aid of Maple, we can get the following solutions:
Case 1:

e = −1, r = m

2
, µ = 0, b = − 2

n
;

Case 2:

e = −1, r = −m,µ = 0, a = − 2

mn
;

Case 3:

e = −1, r = 2m,µ = ±1, b = − 1

2n
;

Case 4:

e = −1, r = 2m,µ = µ, a = 1− µ2
4mn

, b = − 1

2n
;

Case 5:

e = 1, r = −m
2
, µ = 0, b = − 2

n
;

Case 6:

e = 1, r = m,µ = 0, a = − 2

mn
;
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Case 7:

e = 1, r = −2m,µ = ±1, b = − 1

2n
;

Case 8:

e = 1, r = −2m,µ = µ, a = 1− µ2
4mn

, b = − 1

2n
.

Therefore, from (7)-(10) and the above solutions, we can obtain many families of
exact travelling wave solutions for (12):
1. Soliton solutions:

u1 = −β
γ
tanh

β

2(α+ λ2)
(x+ λt) ,

u2 =
2(α+ λ2)

γ
sech − β

α+ λ2
(x+ λt) ,

u3 = −β
γ
coth

β

2(α+ λ2)
(x+ λt) ,

and

u4 =
2(α+ λ2)

γ
csch − β

α+ λ2
(x+ λt) .

2. Periodic solutions:

u5 =
β

γ
tan − β

2(α+ λ2)
(x+ λt) ,

u6 = −2(α+ λ2)

γ
sec

β

α+ λ2
(x+ λt) ,

u7 =
β

γ
cot − β

2(α+ λ2)
(x+ λt) ,

and

u8 = −2(α+ λ2)

γ
csc

β

α+ λ2
(x+ λt) .

3. New soliton solutions:

u9 =
−β

γ tanh
2β

α+λ2 (x+ λt)

1± tanh 2β
α+λ2 (x+ λt)

,
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u10 =
(1− µ2)(α+ λ2)

2γ

sech − 2β
α+λ2 (x+ λt)

1 + µsech − 2β
α+λ2 (x+ λt)

+ −β
γ

tanh − 2β
α+λ2 (x+ λt)

1 + µtanh − 2β
α+λ2 (x+ λt)

,

u11 =
−β

γ coth
2β

α+λ2 (x+ λt)

1± coth 2β
α+λ2 (x+ λt)

,

and

u12 =
(1− µ2)(α+ λ2)

2γ

csch − 2β
α+λ2 (x+ λt)

1 + µcsch − 2β
α+λ2 (x+ λt)

+ −β
γ

coth − 2β
α+λ2 (x+ λt)

1 + µcoth − 2β
α+λ2 (x+ λt)

.

4. New periodic solutions:

u13 =

β
γ tan − 2β

α+λ2 (x+ λt)

1± tan − 2β
α+λ2 (x+ λt)

,

u14 =
(1− µ2)(α+ λ2)

2γ

sec − 2β
α+λ2 (x+ λt)

1 + µsec − 2β
α+λ2 (x+ λt)

+
β

γ

tan − 2β
α+λ2 (x+ λt)

1 + µtan − 2β
α+λ2 (x+ λt)

,

u15 =

β
γ cot − 2β

α+λ2 (x+ λt)

1± cot − 2β
α+λ2 (x+ λt)

,

and

u16 =
(1− µ2)(α+ λ2)

2γ

csc − 2β
α+λ2 (x+ λt)

1 + µcsc − 2β
α+λ2 (x+ λt)

+
β

γ

cot − 2β
α+λ2 (x+ λt)

1 + µcot − 2β
α+λ2 (x+ λt)

.
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3 Exact Solutions of the Quasi-Camassa Holm Equa-
tion

The method introduced above can also be applied to the quasi-Camassa Holm equation

ut − uxt + uux + 2kux = 3uxuxx + uuxxx. (15)

By means of the transformation u(x, t) = u(ξ) and ξ = x+ λt, (15) is changed into

λu3 − λu33 + uu3 − 2ku3 − 3u3u33 − uu333 = 0. (16)

We assume (15) has solutions of the form

u = A1σ(ξ) +B1τ(ξ) +A2σ
2(ξ) +B2τ

2(ξ) + C2σ(ξ)τ(ξ) + C1. (17)

Then by means of similar methods described above, we get:
Case 1:

e = −1, r = r, µ = µ,B1 = C2 = 0, A1 = 2µB2,
A2 =

1− µ2
r

B2, B2 = B2, C1 = C1;

Case 2:

e = 1, r = r, µ = µ,B1 = C2 = 0, A1 = −2µB2,
A2 =

(µ2 − 1)B2
r

,B2 = B2, C1 = C1.

Then we can obtain the following new soliton and periodic solutions for (15):

u1 =
2µB2

√
rsech[

√
r(x+ λt)]

1 + µsech[
√
r(x+ λt)]

+
(1− µ2)B2sech2[√r(x+ λt)]

(1 + µsech[
√
r(x+ λt)])2

+
B2rtanh

2[
√
r(x+ λt)]

(1 + µtanh[
√
r(x+ λt)])2

+ C1,

u2 =
2µB2

√
rcsch[

√
r(x+ λt)]

1 + µcsch[
√
r(x+ λt)]

+
(1− µ2)B2csch2[

√
r(x+ λt)]

(1 + µcsch[
√
r(x+ λt)])2

+
B2rcoth

2[
√
r(x+ λt)]

(1 + µcoth[
√
r(x+ λt)])2

+ C1,

and

u3 = −2µB2
√
rsec[

√
r(x+ λt)]

1 + µsec[
√
r(x+ λt)]

+
(µ2 − 1)B2sec2[√r(x+ λt)]

(1 + µsec[
√
r(x+ λt)])2

+
B2rtan

2[
√
r(x+ λt)]

(1 + µtan[
√
r(x+ λt)])2

+ C1,
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u4 = −2µB2
√
rcsc[

√
r(x+ λt)]

1 + µcsc[
√
r(x+ λt)]

+
(µ2 − 1)B2csc2[√r(x+ λt)]

(1 + µcsc[
√
r(x+ λt)])2

+
B2rcot

2[
√
r(x+ λt)]

(1 + µcot[
√
r(x+ λt)])2

+ C1,

where the constants r > 0, µ,B2 are arbitrary and independent of the wave speed λ
and k in the (15).
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