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Abstract

In this paper several common fixed point theorems for selfmappings of a sym-
metric space are proved. These mappings are assumed to satisfy a new property
which generalize the notion of noncompatible maps in the setting of symmetric
spaces.

1 Introduction

It is well known that the Banach contraction principle is a fundamental result in fixed
point theory, which has been used and extended in many different directions. However,
it has been observed [9] that some of the defining properties of the metric are not needed
in the proofs of certain metric theorems. Motivated by this fact, Hicks [9] established
some common fixed point theorems in symmetric spaces and proved that very general
probabilistic structures admit a compatible symmetric or semi-metric. Recall that a
symmetric on a set X is a nonnegative real valued function d on X ×X such that (i)
d(x, y) = 0 if, and only if, x = y, and (ii) d(x, y) = d(y, x).
Let d be a symmetric on a set X and for r > 0 and any x ∈ X, let B(x, r) =

{y ∈ X : d(x, y) < r}. A topology t(d) on X is given by U ∈ t(d) if, and only if, for
each x ∈ U , B(x, r) ⊂ U for some r > 0. A symmetric d is a semi-metric if for each
x ∈ X and each r > 0, B(x, r) is a neighborhood of x in the topology t(d). Note that
limn→∞d(xn, x) = 0 if and only if xn −→ x in the topology t(d).
The following two axioms were given by Wilson [11]. Let (X, d) be a symmetric

space.

(W.3) Given {xn}, x and y in X, limn→∞d(xn, x) = 0 and limn→∞d(xn, y) = 0
imply x = y.
(W.4) Given {xn}, {yn} and x in X, limn→∞d(xn, x) = 0 and limn→∞d(xn, yn) = 0

imply that limn→∞d(yn, x) = 0.

It is easy to see that for a semi-metric d, if t(d) is Hausdorff, then (W.3) holds.
On the one hand, the notion of the weak commutativity is introduced by Sessa [10]
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as follows: Two selfmappings A and B of a metric space (X, d) are said to be weakly
commuting if

d(ABx,BAx) ≤ d(Ax,Bx), ∀x ∈ X.
Jungck [3] extended this concept in the following way: Let A and B be two self-

mappings of a metric space (X, d). A and B are said to be compatible if

lim
n→∞d(ABxn, BAxn) = 0

whenever (xn) is a sequence in X such that

lim
n→∞Axn = lim

n→∞Bxn = t

for some t ∈ X.
Obviously, two weakly commuting mappings are compatibles but the converse is not

true as is shown in [3]. Recently, Jungck introduced the concept of weakly compatible
maps as follows: Two selfmapping T and S of a metric space X are said to be weakly
compatible if they commute at there coincidence points, i.e., if Tu = Su for some
u ∈ X, then TSu = STu.
It is easy to see that two compatible maps are weakly compatible but the converse

is not true.
All these concepts were frequently used to prove existence theorems in common

fixed point theory. However, the study of common fixed points of noncompatible maps
is also very interesting [6, 7].
On the other hand, in [1], the authors of the present paper have established some

new common fixed point theorems under strict contractive conditions on a metric space
for mappings satisfying the property (E.A) defined as follows: Let S and T be two
selfmappings of a metric space (X,d). We say that T and S satisfy the property (E.A)
if there exists a sequence (xn) such that

lim
n→∞Txn = lim

n→∞Sxn = t

for some t ∈ X.
The main purpose of this paper is to give some common fixed points theorems for

selfmappings of a symmetric space under a generalized contractive condition. These
selfmappings are assumed to satisfy a new property, introduced recently in [1] on a
metric space, which generalize the notion of noncompatible maps in the setting of a
symmetric space.

2 Main results

In the sequel, we need a function φ : IR+ −→ IR+ satisfying the condition 0 < φ(t) < t
for each t > 0. For example, we could let φ(t) = αt for some α ∈ (0, 1), or t/(t+ 1).
DEFINITION 2.1. Let A and B be two selfmappings of a symmetric space (X, d).

A and B are said to be compatible if

lim
n→∞d(ABxn, BAxn) = 0
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whenever (xn) is a sequence in X such that

lim
n→∞d(Axn, t) = lim

n→∞d(Bxn, t) = 0

for some t ∈ X.
DEFINITION 2.2. Two selfmappings A and B of a symmetric space (X, d) are said

to be weakly compatible if they commute at their coincidence points.

DEFINITION 2.3. Let A and B be two selfmappings of a symmetric space (X, d).
We say that A and B satisfy the property (E.A) if there exists a sequence (xn) such
that

lim
n→∞d(Axn, t) = 0 and lim

n→∞d(Bxn, t) = 0

for some t ∈ X.
EXAMPLE 2.1.
1. Let X = [0,+∞[. Let d be a symmetric on X defined by

d(x, y) = e|x−y| − 1, for all x, y in X

Define A,B : X −→ X as follows

Ax = 2x+ 1 and Bx = x+ 2, ∀x ∈ X
Note that the function d is not a metric. Consider the sequence xn =

1
n+1, n = 1, 2, ...

Clearly
lim
n→∞d(Axn, 3) = lim

n→∞d(Bxn, 3) = 0

Then A and B satisfy (E.A).
2. Let X = IR with the above symmetric function d. It is easy to see that the

condition (W.3) holds. Define A,B : X −→ X by

Ax = x+ 1 and Bx = x+ 2, ∀x ∈ X
Suppose that property (E.A) holds, then there exists in X a sequence (xn) satisfying

lim
n→∞d(Axn, t) = 0 and lim

n→∞d(Bxn, t) = 0

for some t ∈ X. Therefore
lim
n→∞d(xn, t− 1) = 0 and lim

n→∞d(xn, t− 2) = 0.

In view of (W.3), we conclude that t − 1 = t − 2, which is a contradiction. Hence A
and B do not satisfy the property (E.A).

REMARK 2.1. It is clear from the above Definition 2.1, that two selfmappings S
and T of a symmetric space (X,d) will be noncompatible if there exists at least one
sequence (xn) in X such that

lim
n→∞d(Sxn, t) = lim

n→∞d(Txn, t) = 0, for some t ∈ X
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but limn→∞d(STxn, TSxn) is either non-zero or does not exist.
Therefore, two noncompatible selfmappings of a symmetric space (X, d) satisfy the

property (E.A).

DEFINITION 2.4. Let (X, d) be a symmetric space. We say that (X, d) satis-
fies the property (HE) if given {xn}, {yn} and x in X, limn→∞d(xn, x) = 0 and
limn→∞d(yn, x) = 0 imply limn→∞d(yn, xn) = 0.
EXAMPLE 2.2.
(i) Every metric space (X, d) satisfies the property (HE).
(ii) Let X = [0,+∞) with the symmetric function d defined by

d(x, y) = e|x−y| − 1, for all x, y in X

It is easy to see that the symmetric space (X, d) satisfies the property (HE). Note that
(X, d) is not a metric space.

THEOREM 2.1. Let d be a symmetric for X that satisfies (W.3) and (HE). Let
A and B be two weakly compatible selfmappings of (X,d) such that (1) d(Ax,Ay) ≤
φ(max{d(Bx,By), d(Bx,Ay), d(Ay,By)}) for all (x, y) ∈ X2, (2) A and B satisfy the
property (E.A), and (3) AX ⊂ BX. If the range of A or B is a complete subspace of
X, then A and B have a unique common fixed point.

PROOF. Since A and B satisfy the property (E.A), there exists a sequence (xn) in
X such that limn→∞d(Axn, t) = limn→∞d(Bxn, t) = 0 for some t ∈ X. Therefore, by
(HE), we have limn→∞d(Axn, Bxn) = 0.
Suppose that BX is a complete subspace of X. Then t = Bu for some u ∈ X. We

claim that Au = Bu. Indeed, by (1), we have

d(Au,Axn) ≤ φ(max{d(Bu,Bxn), d(Bu,Axn), d(Bxn, Axn)})
< max{d(Bu,Bxn), d(Bu,Axn), d(Bxn, Axn)}

Letting n→∞, we have limn→∞d(Au,Axn) = 0. Hence, by (W.3), we have Au = Bu.
The weak compatibility of A and B implies that ABu = BAu and then AAu = ABu =
BAu = BBu.
Let us show that Au is a common fixed point of A and B. Suppose that AAu 9= Au.

In view of (1), it follows

d(Au,AAu) ≤ φ(max{d(Bu,BAu), d(Bu,AAu), d(BAu,AAu)})
≤ φ(max{d(AAu,Au), d(AAu,Au)})
≤ φ(d(AAu,Au))

< d(AAu,Au),

which is a contradiction. Therefore Au = AAu = BAu and Au is a common fixed
point of A and B. The proof is similar when AX is assumed to be a complete subspace
of X since AX ⊂ BX. If Au = Bu = u and Av = Bv = v, and u 9= v, then (1) gives

d(u, v) = d(Au,Av)

≤ φ(max{d(Bu,Bv), d(Bu,Av), d(Bv,Av)})
≤ φ(d(u, v))

< d(u, v),
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which is a contradiction. Therefore u = v and the common fixed point is unique.

Since two noncompatible selfmappings of a symmetric space (X, d) satisfy the prop-
erty (E.A), we get the following result.

COROLLARY 2.1. Let d be a symmetric for X that satisfies (W.3) and (HE). Let
A and B be two noncompatible weakly compatible selfmappings of (X, d) such that
(1) d(Ax,Ay) ≤ φ(max{d(Bx,By), d(Bx,Ay), d(Ay,By)}) for all (x, y) ∈ X2, and (2)
AX ⊂ BX. If the range of A or B is a complete subspace of X, then A and B have a
unique common fixed point.

THEOREM 2.2. Let d be a symmetric for X that satisfies (W.3), (W.4) and (HE).
LetA,B, T and S be selfmappings of (X, d) such that (1) d(Ax,By) ≤ φ(max{d(Sx, Ty),
d(Sx,By), d(Ty,By)}) for all (x, y) ∈ X2, (2) (A, T ) and (B,S) are weakly com-
patibles, (3) (A,S) or (B,T ) satisfies the property (E.A), and (4) AX ⊂ TX and
BX ⊂ SX. If the range of the one of the mappings A,B, T or S is a complete subspace
of X, then A,B, T and S have a unique common fixed point.

PROOF. Suppose that (B,T ) satisfies the property (E.A). Then there exists a
sequence (xn) in X such that limn→∞d(Bxn, t) = limn→∞d(Txn, t) = 0, for some
t ∈ X. Since BX ⊂ SX, there exists in X a sequence (yn) such that Bxn = Syn.
Hence limn→∞d(Syn, t) = 0. Let us show that limn→∞d(Ayn, t) = 0. Indeed, in view
of (1), we have

d(Ayn, Bxn) ≤ φ(max{d(Syn, Txn), d(Syn, Bxn), d(Txn, Bxn)})
≤ φ(max{d(Bxn, Txn), 0, d(Txn, Bxn)})
≤ φ(d(Txn, Bxn))

< d(Txn, Bxn)

Therefore, by (HE), one has limn→∞d(Ayn, Bxn) = 0. By (W.4), we deduce that
limn→∞d(Ayn, t) = 0. Suppose that SX is a complete subspace of X. Then t = Su
for some u ∈ X. Subsequently, we have

lim
n→∞d(Ayn, Su) = lim

n→∞d(Bxn, Su) = lim
n→∞d(Txn, Su) = lim

n→∞d(Syn, Su) = 0

Using (1), it follows

d(Au,Bxn) ≤ φ(max{d(Su, Txn), d(Su,Bxn), d(Txn, Bxn)}).
Letting n → ∞, we have limn→∞d(Au,Bxn) = 0. By (W.3), we have Au = Su. The
weak compatibility of A and S implies that ASu = SAu and then AAu = ASu =
SAu = SSu.
On the other hand, since AX ⊂ TX, there exists v ∈ X such that Au = Tv. We

claim that Tv = Bv. If not, condition (1) gives

d(Au,Bv) ≤ φ(max{d(Su, Tv), d(Su,Bv), d(Tv,Bv)})
≤ φ(max{d(Au,Bv), d(Au,Bv)})
≤ φ(d(Au,Bv))

< d(Au,Bv),
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which is a contradiction. Hence Au = Su = Tv = Bv. The weak compatibility of B
and T implies that BTv = TBv and TTv = TBv = BTv = BBv.
Let us show that Au is a common fixed point of A,B, T and S. Suppose that

AAu 9= Au. We have
d(Au,AAu) = d(AAu,Bv)

≤ φ(max{d(SAu, Tv), d(SAu,Bv), d(Tv,Bv)})
≤ φ(max{d(AAu,Au), d(AAu,Au)})
≤ φ(d(AAu,Au))

< d(Au,AAu),

which is a contradiction. Therefore Au = AAu = SAu and Au is a common fixed point
of A and S. Similarly, we prove that Bv is a common fixed point of B and T . Since
Au = Bv, we conclude that Au is a common fixed point of A,B, T and S. The proof
is similar when TX is assumed to be a complete subspace of X. The cases in which
AX or BX is a complete subspace of X are similar to the cases in which TX or SX
respectively is complete since AX ⊂ TX and BX ⊂ SX. If Au = Bu = Tu = Su = u
and Av = Bv = Tv = Sv = v and u 9= v, then (1) gives

d(u, v) = d(Au,Bv)

≤ φ(max{d(Su, Tv), d(Su,Bv), d(Tv,Bv)})
≤ φ(d(u, v))

< d(u, v),

which is a contradiction. Therefore u = v and the common fixed point is unique.

COROLLARY 2.2. ([1, Theorem 2]) Let A,B, T and S be selfmappings of a metric
space (X, d) such that (1) d(Ax,By) ≤ φ(max{d(Sx, Ty), d(Sx,By), d(Ty,By)}) for
all (x, y) ∈ X2, (2) (A,S) and (B,T ) are weakly compatibles, (3) (A,S) or (B,T )
satisfies the property (E.A), and (4) AX ⊂ TX and BX ⊂ SX. If the range of the one
of the mappings A,B, T or S is a complete subspace of X, then A,B, T and S have a
unique common fixed point.
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