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Abstract

Kramers’ exit problem is concerned with noise activated escape from a po-
tential well. In case the noise strength, , (temperature measured in units of
potential barrier height) is small this becomes a singular perturbation problem.
It is shown that actually, most of the probability of the exit points on the sepa-
ratrix is located at a distance O(

√
) from the saddle point and the probability

vanishes altogether at the saddle point. The stochastic dynamics of the escaping
trajectories, conditioned on not returning to a given critical energy contour, are
studied analytically and numerically.

1 Introduction

This paper continues the research started in “Analytical and Numerical Study of
Kramers’ Exit Problem I” (see [1]). We remind the reader that the main purpose
of this work is to give a complete description of the exit distribution in the Kramers
problem which is concerned with the motion of a Brownian particle in a field of force.
The motion is described by the dimensionless Langevin equation

ẍ+ βẋ+ U 3(x) = 2�β ẇ, (1)

where U(x) is a potential that forms a well with barrier height normalized to 1, β is
the dissipation constant, normalized by the frequency of vibration at the bottom of
the well, � is dimensionless temperature, normalized by the barrier height, and ẇ is
standard Gaussian white noise [2]. If � is a small parameter (e.g., if the barrier of the
well is high), the stochastic trajectories of eq.(1) stay inside the well for a long time,
but ultimately escape [2].
To describe the escape process the Langevin equation is converted to the phase

plane system
ẋ = y
ẏ = −βy − U 3(x) +√2�β ẇ. (2)
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148 Kramers’ Exit Problem

The domain of attraction of the stable equilibrium point of the noiseless dynamics,

ẋ = y
ẏ = −βy − U 3(x), (3)

located at the bottom of the potential well, is denoted by D and is bounded by a
separatrix, Γ, that is, the locus of points where the random trajectories of (2) are
equally likely to escape or to return to the well (see Figure 1.1). Here the potential
U is given by U(x) = 2x4 − 1.2x3 − 2x2 + 1.45, and the dissipation constant β = 2.
The plotting process was done with the help of the MATLAB program. The specific
exit problem for (2) is to determine the probability density function (pdf) of the points
where escaping trajectories hit Γ.
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Fig. 1.1. The domain of attraction D is bounded by the separatrix Γ.

The domain D − {E ≤ EC} is bounded between Γ and by the critical energy contour ΓC .

This is achieved by mapping the exit distribution on the critical energy contour
onto the separatrix, as found in [3], by means of the tails of the escaping trajectories.
The tails, which are the trajectories of the original dynamics conditioned on reaching
the separatrix before returning to the critical energy contour, obey different dynamics
than the original trajectories [4]. The idea of conditioning was proposed in [4] and used
in [5] for elucidating some of the features of the phenomenon of saddle point avoidance.
The application of the method of conditioning to Kramers’ problem requires separate
analysis because the noise matrix is degenerate. We construct a boundary layer for the
solution of the Fokker-Planck equation of the conditioned dynamics and match it with
the outer solution. The numerical study of the noiseless conditioned dynamics reveals
the peculiar behavior of the escaping trajectories near the separatrix. The tails of
the escaping trajectories tend to move in the opposite direction to that of the original
dynamics and aggregate near a point on the separatrix removed a distance of O (

√
�)

away from the saddle point.

Our main results are the uniform leading order asymptotic expansion of the solution
of the stationary Fokker-Planck equation for the pdf of the tails, and an asymptotic
expansion of the pdf of their exit points on Γ, in the limit of small �. We give a
numerical and graphical representation of the important components of the asymptotic
solution and also compare the graph of the expression for the exit pdf with a normalized
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histogram of exit points obtained by numerical simulation of the original stochastic
dynamics (2). The result indicates that this pdf is asymmetric about its maximum
which is achieved at a point on Γ whose distance from the saddle point is O (

√
�).

2 Previous results

A trajectory that crosses ΓC goes on to cross Γ and escape the domain of attraction
D. The part of an escaping trajectory from the last point where it hits ΓC to the first
point it hits Γ is referred to as the tail of the escaping trajectory. To investigate the
problem of escape, we track the tails of the escaping trajectories.
The tails of the escaping trajectories form a new diffusion process, denoted by

(x∗(t), y∗(t)), and defined in the domain D − {E ≤ EC}, enclosed between ΓC and Γ.
This process has the same noise matrix as the original one and drift vector

b∗(x, y) =
y

−βy − U 3(x) + 2�β ∂ lnP (x, y)
∂y

. (4)

That means

ẋ∗(t) = y∗(t)
ẏ∗(t) = −βy∗(t)− U 3(x∗(t)) + 2�β ∂ lnP (x∗(t), y∗(t))

∂y +
√
2�β ẇ .

(5)

Note that the first component of the new drift is the same as that of the original drift,
but the second component has the additional term 2�β∂ lnP (x, y)/∂y.
The function P (x, y) is the solution of the backward Kolmogorov equation [7] in

the domain D − {E ≤ EC}, with the boundary conditions
P (x, yΓ(x)) = 1, P (x, yC(x)) = 0. (6)

We transformed P (x, y) to the form P (x, y) = 2
π

χ(x, y)/
√
�

−∞ e−z
2/2 dz, where the

function χ(x, y) satisfies the equation

y
∂χ(x, y)

∂x
− [βy + U 3(x)] ∂χ(x, y)

∂y
= β χ(x, y)

∂χ(x, y)

∂y

2

− �
∂2χ(x, y)

∂y2
. (7)

The boundary conditions for χ(x, y) on Γ and ΓC are

χ(x, yΓ(x)) = 0, χ(x, yC(x)) = 0,

respectively. Obviously,
χ(x, y) < 0 (8)

for (x, y) ∈ D − {E ≤ EC}, outside a boundary layer.
The function χ(x, y) is one of the most important component of P (x, y), and can

be expanded in a regular asymptotic power series away from ΓC ,

χ(x, y) = χ0(x, y) + �χ1(x, y) + · · · , (9)
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where χ0(x, y) satisfies the reduced equation (7), corresponding to � = 0 and (8). Ac-
cording to [7], for small �, the asymptotic approximation to P (x, y) outside a boundary
layer near ΓC is given by

P0(x, y) =
2

π

χ0(x, y)/
√
�

−∞
e−z

2/2 dz. (10)

To satisfy the second boundary condition (6), the approximation (10) has to be cor-
rected by an additional boundary layer near ΓC , as done below.

We found that inside the boundary layer (near Γ),

∂ lnP (x, y)

∂y
=

∂P (x, y)/∂y

P (x, y)
≈ 1√

�

∂χ0(x, y)

∂y
=

1

�
γ(x)

∂ρ(x, y)

∂y
+O

ρ√
�
, (11)

where the function γ(x) is a solution of the Bernoulli equation (see [1]) and ρ = ρ(x, y)
is the signed distance from the point (x, y) to Γ, such that ρ < 0 in D. Using (11), we
can write inside the boundary layer

b∗2(x, y) ≈ −βy − U 3(x) +
√
� βγ(x)

∂ρ(x, y)

∂y
. (12)

The asymptotic expansion of ∂ lnP (x, y)/∂y near ΓC was also constructed in the form

∂ lnP

∂y
≈ y

�

eζ

eζ − 1 . (13)

Here

ζ =
E −EC

�

is the stretched variable, E is the energy, and EC the critical energy measured from the
bottom of the well, that is, the height of the barrier. In dimensionless units EC = 1.

Then the analysis of the function χ0(x, y) inside a boundary layer near Γ, and then
in D − {E ≤ EC}, outside the layer was done. We proved that outside the layer,

∂ lnP (x, y)

∂y
≈ −1

�
χ0(x, y)

∂χ0(x, y)

∂y
. (14)

The two expansions, (13) and (14), have to match near ΓC , outside the boundary
layer. Taking the limit ζ →∞ in (13), we obtained the form of χ0(x, y) near y = yC(x)
and also the matched uniform expansion of ∂ lnP/∂y (see [1], section 3).

3 The exit pdf of the tails

Now we construct the exit pdf, pΓ(x) of trajectories (x
∗(t), y∗(t)) that start at a point

(x0, y0) in D − {E ≤ EC}. It is the normalized normal component of the probability
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flux density of p∗(x, y, � |x0, y0), the solution of the stationary Fokker-Plank equation
(FPE)

−y∂p
∗

∂x
+

∂

∂y
βy + U 3(x)− 2�β ∂ lnP (x, y)

∂y
p∗ + �β

∂2p∗

∂y2

= −δ(x− x0, y − y0) (15)

in D − {E ≤ EC} with the absorbing boundary condition [8]
p∗(x, yΓ(x), � |x0, y0) = 0.

Choosing (x0, y0) on a contour Γ�δ close to ΓC , the exit pdf is obtained by integrating
the normal component of the flux of

p∗(x, y, �) =
Γ�δ

p∗(x, y, � |x0, yΓ�δ (x0))pC(x0) dx0. (16)

4 The outer solution

We follow the method of [6] for the asymptotic construction of the solution, with the
necessary modifications. The asymptotic solution of the FPE (15) is constructed in
the form of an outer solution multiplied by a boundary layer function. A solution of
the form

p∗(x, y, � |x0, y0) = e−ψ(x,y)/�Q(x, y, �), (17)

is substituted into the FPE (15) and terms of the same orders of magnitude are bal-
anced. At the leading order O �−1 , we find that the function ψ(x, y) is the solution
of the eikonal equation

y
∂ψ

∂x
− βy + U 3(x)− 2�β ∂ lnP (x, y)

∂y

∂ψ

∂y
+ β

∂ψ

∂y

2

= 0. (18)

The function Q(x, y, �) is assumed to have a finite limit,

lim
�→0

Q(x, y, �) = Q(x, y, 0), (19)

for all fixed (x, y) ∈ D− {E ≤ EC}, and Q(x, y, �) has a boundary layer structure near
Γ (see Section 5 below). The limit function Q(x, y, 0) does not vanish inD−{E ≤ EC},
so that for any (x, y) ∈ D − {E ≤ EC} the essential singularity of p∗(x, y, � |x0, y0) at
� = 0 is contained in the exponential term in eq.(17).
Using eq.(14), we find that outside the boundary layer near Γ the eikonal equation

(18) has the form

y
∂ψ

∂x
− βy + U 3(x) + 2β χ0(x, y)

∂χ0(x, y)

∂y

∂ψ

∂y
+ β

∂ψ

∂y

2

= 0. (20)

We use the expansion (13) in the outer region to write the eikonal equation for the
outer solution (17) evaluated inside the boundary layer as

y
∂ψ

∂x
− βy + U 3 (x) + 2γ2 (x) ρρy

∂ψ

∂y
+ β

∂ψ

∂y

2

= 0. (21)
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This outer solution has to be matched by the boundary layer solution in the matching
region.
We construct a boundary layer solution of the Fokker-Planck equation (15) by ex-

tending the outer approximation of the drift coefficient (14) up to the boundary, rather
than using the boundary layer approximation eq.(12). This approximation simplifies
the calculations. A similar result is obtained if the approximation (14) is used instead.
Near the saddle point, we can approximate the separatrix by the line y = −λx. Then

ρ is a linear function of (x, y) and the coefficients of the first order partial derivatives
in the eikonal equation (21) become linear functions. Since the saddle point is a stable
attractor of noiseless dynamics, the eikonal function ψ(x, y) is locally a quadratic form
in the neighborhood of the saddle point, that is,

ψ(x, y) =
1

2
ax2 + 2bxy + cy2 . (22)

Substituting ψ into equation (21) and simplifying, gives

a =
β + 2γ2

β
−ω2 + 2γ2λ , b = 0, c =

β + 2γ2

β
. (23)

It follows that the partial derivatives of ψ(x, y) near the saddle point are given by

ψy (x, y) = cy, ψyy (x, y) = c.

5 The boundary layer equation

The equation for Q (x, y) is obtained by substituting the solution (17) in the Fokker-
Planck equation (15) and setting the sum of the pre-exponential terms that are of order
1 equal to 0. Taking into consideration the eikonal equation (18), we obtain near Γ the
equation

βεQyy + −2βψy + βy + U 3 (x) + 2βγ2 (x) ρρy Qy − yQx
+ β + 2βγ2ρ2y + 2βγ

2ρρyy − βψyy Q = 0
(24)

for (x, y) ∈ D− {E ≤ EC}. The boundary condition is Q (x, yΓ (x)) = 0. Next we give
the uniform asymptotic approximation to p∗(x, y). We introduce the following changes
of variables. First, we change (x, y)→ (x, ρ) and then scale with

ρ =
√
εζ, x = εξ. (25)

Now, we introduce the variable
µ = γ1(ξ)ζ,

where γ1 (x) is the solution of the Bernoulli equation

−yΓ (x) γ31(x) + b0 (x)− βψ33 (x) + 2βγ2 (x) ρ2y γ1(x) = γ21(x)βρ
2
y

with the initial condition

γ1(0) =
b0 (0)− βc+ 2βγ2(0)ρ2y (0, 0)

βρ2y (0, 0)
.
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Note that the explicit form of b0(x) is given in [1] and [3].
The uniform approximation to p∗(x, y, � |x0, y0), valid up to the boundary, is given

by

punif (x, y, � |x0, y0) = C|x|2
√
1+β2−1

S̃(x, y) exp −ψ(x, y)
�

, (26)

where C is a normalization constant and

S̃(x, y) =
2

π

0

µ

e−s
2/2 ds.

Note that S̃(x, yΓ(x)) = 0 and for all (x, y) ∈ D − {E ≤ EC} ,
lim
�→0

S̃(x, y) = 1.

The approximation (26) is valid for all (x0, y0) ∈ ΓC , outside the boundary layer near Γ
(that is, for y0 = yC(x0)). On the portion of ΓC contained in the boundary layer near
Γ the density pC(x0) is small, because pC(x0) vanishes at x0 = xC . Thus, the uniform
approximation to p∗(x, y, �), as defined in eq.(16), is to leading order independent of
x0. That is, punif (x, y, �) is also given by the right hand side of eq.(26).
Note that punif (x, y, �) satisfies both the boundary condition on Γ and the matching

condition in the outer region. The pdf per unit arc length of the exit points on Γ is
converted to the pdf per unit x by the following identities

p̃Γ(s) ds = N−1J(x, yΓ(x)) · ν(x, yΓ(x)) ds
= −N−1�β ∂p

∗(x, yΓ(x))
∂y

ν2(x, yΓ(x)) ds

= −N−1�β ∂p
∗(x, yΓ(x))

∂y
dx

= pΓ(x) dx, (27)

where the normalization constant is N = −
Γ
�β ∂p∗(x,yΓ(x))

∂y dx. Thus pΓ(x) is asym-
metric about its maximum and vanishes at the saddle point.
Figure 5.1 shows a histogram of the exit points on Γ vs x, collected from a direct

simulation of eq.(2). Simulations were run with initial conditions given near the bottom
of the well. The exit distribution is essentially independent of the initial points of the
trajectories of (2), because all trajectories converge first to a neighborhood of the
attractor at the bottom of the well and only after a long time there they escape to Γ.
Figure 5.2 shows two curves: (a) an analytic curve of eq.(27) which is divided by the
area value under the curve, and (b) a curve obtained by interpolating the vertices of
the histogram shown in Figure 5.1 (using a polynomial of seventh degree), and then
dividing it by the area value appearing under the curve. This means that in Figure
5.2 we see two curves after the normalization process, so that the underlying area is
1. The most likely exit point, denoted xM , maximzes pΓ(x). It is determined by the
equation p3Γ(x) = 0, which in view of eq. (22) gives, to leading order,

xM =
2�( 1 + β2 − 1)

2acλ2
.
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It follows that the most likely exit point is C
√
� away from the saddle point.
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Fig. 5.1. A histogram of the exit points on Γ vs x.

Trajectories of (2) start near the bottom of the well.
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Fig. 5.2. The graphs of the analytic expression eq.(27)

and of an interpolated histogram, both normalized so that the underlying area is 1.
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