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Abstract

Given a dynamical system, the task of exact feedback linearization by coordi-
nate transformation of the state vector is to look for a combination of coordinate
transformation and feedback which will make the system linear and controllable.

This paper studies linearization methods for stochastic SISO affine dynamical
systems represented by vectorfield triplets in Euclidean space.

The paper is divided into two self-contained parts. In this first part the prob-
lem is defined for both the Itô and the Stratonovich systems and the difference
between complete and incomplete linearizations is emphasized.

1 Introduction

The theory of exact linearization of deterministic dynamical systems has been thor-
oughly studied since the seventies with many applications in control and optimization.
See e.g. [1], [5], [9], and the references contained therein. Recently there have been
attempts to apply some of the results to stochastic systems. In this paper we extend
some of these results to linearization by state space transformation. We define the
problem of gσ-linearization (also called complete linearization) which linearizes both
the control and the dispersion part of the system and the problem of g-linearization
which linearizes only the control part. One of our main goals is to emphasize the
differences between these two classes of problems.
Our paper consists of two parts: in the first part we will define several classes of

stochastic dynamical systems, two transformations of such systems and their linearity
and controllability. Then we will study Itô transformations and prove useful invariance
properties of the correcting term which is the main point of the first part. Then we
will discuss the problem of g-linearization.
In the second part we will study in deeper detail the more useful problem – the

gσ-linearization. Finally, the results will be illustrated with a numerical example –
control of a crane under influence of noise.
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1.1 Previous Works

The problem of feedback g-linearization of SISO dynamical system defined in the Itô
formalism has been studied by Lahdhiri and Alouani [3]. The authors derive equations
corresponding to (10), (11). These equations are combined and then reduced to a set
of PDEs of a single unknown function T1. Because there is no commuting relation
similar to the Leibniz rule, the equations contain partial derivatives of T1 up to the
2n-th order. Next, the authors propose a lemma (Lemma 1) that identifies the linearity
conditions with non-singularity and involutivness of {adifg, 0 ≤ i ≤ n− 2}. However,
it can easily be verified that for σ = 0 this statement does not correspond to the
conditions known for deterministic systems (see [9]), because the deterministic case
requires non-singularity up to the (n−1)-th bracket, not only up to the (n−2)-th one.
Furthermore, although the method of finding T1 was given (solving PDE), we do not
think that the existence of T1 was proved as claimed.

The recent works of Pan [7] and [6] build on the idea invariance under transfor-
mation rule which is equivalent to our Theorem 1 (we speak of the correcting term).
In the article [6], Pan defines and solves the problem of feedback complete lineariza-
tion of stochastic nonlinear systems. In our terminology, this problem is equivalent to
feedback MIMO input—output Itô gσ-linearization. The deterministic uncertain sys-
tems considered by Pan can be identified with Stratonovich stochastic systems. In [7]
Pan examines three other canonical forms of stochastic nonlinear systems, namely the
noise-prone strict feedback form, zero dynamics canonical form and observer canonical
form.

1.2 Dynamical systems

From now on, let us assume that all objects are smooth and bounded on U ∈ Rn.
DEFINITION 1. A stochastic dynamical system Θ := (f(x), g(x),σ(x), U, x0) is

defined to be a triplet of vector fields f , g and σ defined on an open neighborhood U
of a point x0 ∈ Rn. We usually call U ∈ Rn the state space, f the drift vector field, g
the control vector field, and σ the dispersion vector field.

It is customary to study exact linearization problems for dynamical systems defined
at equilibrium, i.e., we require that f(x0) = 0 which can be linearized into a linear
system ẋ = Ax+Bu without a constant term (see [5] for details). This can be assumed
without any loss of generality because the non-equilibrium case can easily be handled
by extending the linear model with a constant term ẋ = Ax+Bu+A0. Moreover we
will require that all transformations preserve this condition.

The definition may be interpreted as follows: there is a stochastic process xt defined
on Rn which is a strong solution of the stochastic differential equation dxt = f(xt) dt+
g(xt)u(t) dt+σ(xt) dwt, with initial condition x0, where u(t) is a smooth function with
bounded derivatives and wt is a one-dimensional Brownian motion. The differential
dwt is just a notational shortcut for the stochastic integral.

For MIMO systems with m control inputs and k-dimensional noise the symbols
g and σ stand for n ×m (n × k respectively) matrix of vector fields having its rank
equal to m (k respectively). The class of all deterministic n-dimensional dynamical
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systems with m inputs will be called XD(n,m) and the class of stochastic systems with
k-dimensional noise will be denoted with X(n,m, k).
Theory of stochastic processes offers several alternative definitions of the stochastic

integral, among them the Itô integral and the Stratonovich integral ; each of them
is used to model different physical problems. Consequently there are two classes of
differential equations and two alternative definitions of a stochastic dynamical system
– Itô dynamical systems defined by Itô integrals and Stratonovich systems defined by
Stratonovich integrals. Itô and Stratonovich dynamical systems will be distinguished
by a subscript: ΘI ∈ XI(n,m, k) and ΘS ∈ XS(n,m, k).
Serious differences between these integrals exist but from our point of view there is

a single important one: the rules for coordinate transformations of dynamical systems
defined by Itô stochastic integral are quite different from the transformation rules which
are valid for Stratonovich systems .

1.3 Transformations

Furthermore, we will study two transformations of dynamical systems: the coordi-
nate transformation TT and the feedback Fα,β. The definition of these transformation
should be in accord with their common interpretation. This can be illustrated on
the definition of the coordinate transformation of a deterministic dynamical system
TT : XD(n,m) → XD(n,m) which is induced by a diffeomorphism T : U → Rn be-
tween two coordinate systems on an open set U ⊂ Rn. The mapping TT is defined by:
TT (f(x), g(x), U, x0) := (T∗f, T∗g, T (U), T (x0)). Recall that the symbol T∗ stands for
the contravariant transformation (T∗f)i =

n
j=0 fj∂Ti/∂xj .

Note that the words “coordinate transformation” are used in two different meanings:
first as the diffeomorphism T : U → Rn between coordinates; second as the mapping
between systems TT : XD(n,m)→ XD(n,m).
Coordinate transformation for stochastic systems distinguishes between the Itô and

the Stratonovich systems. One of the major complications of the linearization problems
for Itô systems is the second-order term in the transformation rules for Itô systems:

DEFINITION 2. Let U ∈ Rn be an open set and let T : U → Rn be a diffeomor-
phism from U to Rn such that T (x0) = 0. The mapping TT : XI(n,m, k)→ XI(n,m, k)
will be called a coordinate transformation of an Itô system induced by diffeomor-

phism T if the systems Θ1 := (f(x), g(x),σ(x), U, x0) and Θ2 := f̃ , g̃, σ̃, T (U), x0 ;

Θ2 = TT (Θ1) are related by: f̃ = T∗f+PσT, g̃i = T∗gi and σ̃j = T∗σj for 1 ≤ j ≤ k and
1 ≤ i ≤ m. We require that the transformation maps the equilibrium of the dynamical
systems into the origin, i.e., T (x0) = 0.

The symbol PσT stands for the Itô term which is a second order linear operator
defined by the following relation for the m-th component of PσT , 1 ≤ m ≤ n,

PσTm :=
1

2

n

i,j=1

∂2Tm
∂xixj

k

l=1

σilσjl. (1)

The transformation rules for Stratonovich system TT : XS(n,m, k)→ XS(n,m, k),
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(f, g,σ, U, x0) :−→ (T∗f, T∗g, T∗σ, T (U), T (x0)) are equivalent to rules valid for the de-
terministic systems; only the rules σ̃j = T∗σj for the drift vector field must be added.
Another important transformation of dynamical systems is the regular feedback

transformation. A feedback transformation is determined by two smooth nonlinear
functions α : Rn → Rm and β : Rn → Rm × Rm defined on U with β nonsingular for
every x ∈ U (see the following figure). Usually, α is written as a column m× 1 matrix
and β as a square m×m matrix.
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Regular State Feedback

DEFINITION 3. Let Θ = (f(x), g(x),σ(x), U, x0) ∈ X(n,m, k) be a stochastic
dynamical system. A regular state feedback is the transformation Fα,β : X(n,m, k)→
X(n,m, k), (f, g,σ, U, x0) :−→ (f + gα(x), gβ(x),σ(x), U, x0). Moreover we require that
the transformation preserves the equilibrium: α(x0) = 0, and β(x0) is nonsingular.

The symbol JT,α,β is used to indicate the combination of coordinate transformation
with feedback JT,α,β := Fα,β ◦ TT . Note that the order of the composition can be
interchanged.

1.4 Linearity

The definition of linearity is straightforward in the deterministic case. In contrast,
the stochastic case is more complex, because there are two “input” vector fields and
thereby several degrees of linearity can be specified.

DEINITION 4. The stochastic dynamical system Θ = (f, g,σ, U, 0) is g-linear if the
mapping f(x) = Ax is linear without constant term and g(x) = B is constant on U .
Θ is σ-linear if the mapping f(x) = Ax is linear without constant term and σ(x) = S
is constant on U . Θ is gσ-linear if it is both g-linear and σ-linear. Here, A is a square
n× n matrix, B is a n×m matrix and S is a n× k matrix.
For stochastic system we distinguish: g-linearizing transformation which transforms

Θ into a g-linear systems and gσ-linearizing transformation which transforms Θ into a
gσ-linear system.

2 Transformations of Itô Dynamical Systems

The transformation rules of Itô systems are motivated by the Itô differential rule (see
e.g. [10, Section 3.3]), which defines the influence of nonlinear coordinate transforma-
tions on Itô stochastic processes.
The Itô differential rule applies to the situation where a scalar valued stochastic

process xt defined by a stochastic differential equation dxt = f(xt) dt + σ(xt) dwt
(f : R→ R and σ : R→ R are smooth real functions and wt is a Brownian motion)
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is transformed by a diffeomorphic coordinate transformation T : R → R. Then the
stochastic process zt := T (xt) exists and is an Itô process. Further, the process zt is
the solution of the stochastic differential equation

dzt =
∂T

∂x
f(xt) dt+

∂T

∂x
σ(xt) dwt +

1

2
σ2

∂2T

∂x2
dt. (2)

All details together with a proof are available for example in [2].
The Itô rule can also be derived for the multidimensional case: for the m-th com-

ponent of an n-dimensional stochastic process the Itô rule can be expressed as follows:

dzm =
n

i=1

∂Tm
∂xi

fi dt+
1

2

n

i=1

k

j=1

∂Tm
∂xi

σij dwj +
1

2

n

i,j=1

∂2Tm
∂xixj

k

l=1

σilσjl dt, (3)

dzm = LfTmdt+
k

j=1

LσjTmdwj + PσTmdt. (4)

The operator PσTm is sometimes written using matrix notation as:

PσTm =
1

2
trace σTσ

∂2Tm
∂x2

.

Generally, Pσ vanishes for linear T or zero σ.

2.1 The Correcting Term

In this section we introduce an extremely useful equivalence between Itô and Stratonovich
systems, which allows us to use some Stratonovich linearization techniques for Itô prob-
lems. The motivation is following: let ΘI = (f(x), g(x),σ(x), U, x0) ∈ XI(n,m, k) be
an Itô system. We are looking for a Stratonovich system ΘS = �f(x),�g(x),�σ(x), U, x0

such that the trajectories of ΘI and ΘS are identical. The aim is to find equations
relating the quantities �f , �g and �σ with f , g and σ.

DEFINITION 5. LetΘ1I = (f(x), g(x),σ(x), U, x0) ∈ XI(n,m, k) be an n-dimensional
Itô dynamical system with k-dimensional Brownian motion w. The vector field corrσ(x)
whose r-th coordinate is equal to

(corrσ(x))r = −
1

2

n

i=1

k

j=1

∂σrj
∂xi

σij for 1 ≤ r ≤ n (5)

is called the correcting term. Note that the derivative is always evaluated in the
corresponding coordinate system. Further, let us define the correcting mapping Corrσ :
XI(n,m, k)→ XS(n,m, k) by Corrσ(f, g,σ, U, x0) := (f + corrσ(x), g,σ, U, x0).

The general treatment of the subject can be found for example in [10, p.160] or
in [8]. The following theorem describes the behavior of the correcting term under
the coordinate transformation. The usage of this relation for exact linearization of
stochastic system was first published in [6].
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THEOREM 1. Let ΘI = (f(x), g(x),σ(x), U, x0) ∈ XI(n,m, k) be an Itô dynamical
system. Let T be a diffeomorphism defined on U and the symbols T IT and T ST denote
a Itô coordinate transformation and a Stratonovich coordinate transformation induced
by the same diffeomorphism T and σ̃ = T∗σ. Then T IT = Corr−1σ̃ ◦ T ST ◦ Corrσ and
T ST = Corr−1σ ◦T IT ◦Corrσ̃. The notation Corr−1σ is used to denote the inverse mapping
Corr−1σ (f, g,σ, U, x0) := (f − corrσ(x), g,σ, U, x0).
The proof consist of evaluation of Θ2I in both ways. For details see for example [8],

[4] or [10].
Theorem 1 is valid also for combined transformations:

COROLLARY 1. Let ΘI = (f(x), g(x),σ(x), U, x0) ∈ XI(n, 1, 1), T, T IT and T ST
have the same meaning as in Theorem 1. Then for arbitrary regular feedback Fα,β :
Fα,β ◦ T IT = Corr−1σ̃ ◦ Fα,β ◦ T ST ◦ Corrσ.
PROOF. We want to prove equivalence of Θ4I and Corr

−1
T∗σΘ4S . The control and

dispersion vector fields of Θ4I and Θ4S are identical and they are not influenced by the
correcting mapping. The effect of feedback is purely additive and both the systems are
equal.

When Theorem 1 is used for exact linearization of Itô systems we require that the
Stratonovich system obtained by the correcting term is at equilibrium: �f(x0) = 0.
Therefore the Itô systems require an additional condition f(x0) + corrσ(x0) = 0.
Finally note that there are many physical systems in which the correcting term

vanishes. This happens when the drift vector σ is perpendicular to the gradient of σ,
for example on a pendulum like system (see e.g. the crane of Section 3 of the second
part of this article). Moreover, one can always find a coordinate system in which the
correcting term vanishes by straightening-out of σ (see Flow-box Theorem [5, p.48])
without any loss of generality.

3 Itô g-linearization

The Itô g-linearization problem is probably the most complicated variant of exact
linearization studied in this paper. The dispersion vector field of an Itô dynamical
system transformed by a coordinate transformation TT consists of two terms: the
transformed vector field T∗f and the Itô term Pσ. We require that the sum of these
terms is linear, thus the nonlinearity of the drift T∗f must compensate for the Itô term.
Since the Itô term behaves to T as a second order differential operator, this problems
generates a set of second order partial differential equations.

3.1 Canonical Form – n unknowns

The canonical form for the g-linearization is the integrator chain with a nonlinear drift

f̃i(x) = xi+1, 1 ≤ i ≤ n− 1 (6)

f̃n(x) = 0 (7)

g̃i(x) = 0, 1 ≤ i ≤ n− 1 (8)

g̃n(x) = 1. (9)
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Assume that there is a g-linear system ΘI = (Ax,B,σ(x), U, x0). Then the drift part
of ΘI can be transformed by a linear transformation into the integrator chain. This is
because the Itô term of a linear transformation vanishes.
The equations which define T can be obtained by comparing this canonical form

with the equations of Θ̃.

THEOREM 2. Let ΘI = (f(x), g(x),σ(x), U, x0) ∈ XI(n, 1, 1) be an Itô dynamical
system with f(x0) + corrσ(x0) = 0. There is a g-linearizing transformations JT,α,β of
the system ΘI into a g-controllable linear system if, and only if, there is a solution
Ti : R

n → r, 1 ≤ i ≤ n, to the set of partial differential equations defined on U :

Ti+1 = LfTi + PσTi, 1 ≤ i ≤ n− 1 (10)

LgTi = 0, 1 ≤ i ≤ n− 1 (11)

LgTn 9= 0. (12)

The symbol Pσ denotes the Itô operator. The feedback can be constructed as:

α = −(LfTn + PσTn)LgTn
, β =

1

LgTn
.

Indeed, the partial differential equations (10), (11) and (12) are obtained by com-
paring the equations of Definition 2 with the equations (6)-(9).
One can attempt to reduce the equations (10), (11) and (12) to a set of equations

of a single unknown in spirit of the deterministic case. In general, the equations of the
system are of an order up to 2n and cannot be reduced to a lower order. Because the
commutator of two second order operators is of third order as can be easily checked by
direct computation.

4 Conclusion

In this part of the article we defined the exact linearization problem for the state space
transformations. The main difficulty is the Itô term, which is a second order operator.
Unfortunately, for the gσ case we have not found any easy method to eliminate the Itô
term and the a set of second order partial differential equations must be solved to get
the linearizing transformation.
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