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Abstract

This paper is concerned with the periodic functional differential equations
of retarded type (RFDEs). Sufficient conditions for the existence of positive
periodic solutions are established by combining the theory of monotone semiflows
generated by RFDEs and fixed point theorems. Nontrivial applications of our
results to some periodic ecologic systems are also presented.

1 Introduction

Beginning with the path-breaking work of Hirsch [3, 4] for monotone semiflows, there
is now an extensive literature on monotone dynamical systems. Smith, Wu et al.,
have successfully established the theory of monotone semiflows generated by functional
differential equations or FDEs (see [6-9, 12-14] and references cited therein). Recently,
there has been a remarkable advance in our understanding of the qualitative as well
as the asymptotic of semiflows generated by FDEs on partially ordered spaces which
preserve the partial order. One of the most striking results should be that almost every
precompact orbit of solutions of FDEs converges to the set of equilibria [6-7]. It is now
well-known that the theory of monotone dynamical systems provides a powerful tool
for the study of the global dynamics of multi-species cooperative systems, and that
a two-species competition system can be transformed into a cooperative system by a
simple change of variable. In addition, the theory of monotone semiflows generated by
FDEs has also been applied to investigate the asymptotic periodicity of solutions of
periodic FDEs [12].
It should be pointed out that Tang and Kuang [10] studied the existence of periodic

solutions of general Lotka-Volterra type n-dimensional periodic RFDEs

ẋi(t) = xi(t)Fi(t, x1(t), · · · , xn(t), x1(t− τ1(t)), · · · , xn(t− τn(t))), 1 ≤ i ≤ n, (1)

by combining the theory of monotone semiflow and Horn’s fixed point theorem. To
some extent, the results of [10] indicated that the uniform persistence and uniform
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boundedness implied the existence of periodic solutions of the system (1). The pa-
per [11] applied the Horn’s asymptotic fixed theorem in Banach spaces to periodic
Kolmogorov type system with finite delays

ẋi(t) = xi(t)fi(t, xt), i = 1, 2, ..., n (2)

to obtain the existence of positive periodic solutions under the fundamental assumption
that system (2) is uniformly persistent.
Motivated by [10,11], this paper is concerned with general periodic RFDEs

ẋ(t) = F (t, xt), t ≥ t0 (3)

where x ∈ Rn and F (t+ω,ϕ) = F (t,ϕ) for all t ∈ R and ϕ ∈ C([−r, 0];Rn). We make
full use of instinctive merits of monotone semiflow generated by the system (3), define
an abstract operator U which is similar to Poincare mapping of dynamical system, look
for the fixed point of U and obtain the existence of positive periodic solutions of the
system (3) under suitable conditions which are easy to be verified in practice.
This paper is organized as follows. In the next section, we present some notations

and preliminaries. The general existence of periodic solutions of the system (3) is given
in Section 3. The final section contains applications of our results to some well-known
ecologic systems.

2 Preliminaries

Let Rn+ be the cone of nonnegative vectors in Rn. Let x, y ∈ Rn. We write x ≤ y
if xi ≤ yi for each i ∈ N = {1, 2, ..., n}. C = C([−r, 0];Rn) is the Banach space of
continuous function mappings ϕ : [−r, 0]→ Rn with supremum norm. If ϕ,ψ ∈ C, we
write ϕ ≤ ψ (or ψ ≥ ϕ) in case the indicated inequality holds at each point of [−r, 0].
Let C+ = {ϕ ∈ C : ϕ ≥ 0}, then C+ is a positive cone of C which induces the above
order relation. Obviously, the cone C+ is normal, that is, for any ϕ,ψ ∈ C+ with
||ϕ|| = 1, ||ψ|| = 1, there exists a positive constant δ > 0 such that ||ϕ + ψ|| ≥ δ [1].
If ϕ,ψ ∈ C with ϕ ≤ ψ, we denote [ϕ,ψ] = {ξ ∈ C : ϕ ≤ ξ ≤ ψ}. Let ˆ denote
the inclusion Rn → C by x → x̂, x̂(θ) ≡ x, θ ∈ [−r, 0]. For any continuous function
x(·) : [t0 − r,σ) → Rn, xt denotes the element of C, given by xt(θ) = x(t + θ),
−r ≤ θ ≤ 0, t ∈ [t0,σ).
Suppose that Ω is an open subset of R×C and F : Ω→ Rn is continuous. Consider

the retarded functional differential equation (RFDE)

ẋ(t) = F (t, xt), t ≥ t0. (4)

We assume throughout this paper that solutions of the initial value problem (4) together
with xt0 = ϕ, for any (t0,ϕ) ∈ Ω, exist and are unique in [t0 − r,∞). We refer to [2]
for the fundamental theory of solutions of the system (4). We write x(t; t0,ϕ, F ) (or
xt(t0,ϕ, F )) for the solution of the initial value problem (4) together with xt0 = ϕ,
and we may drop the last argument F from x(t; t0,ϕ, F ) (resp. xt(t0,ϕ, F )) when no
confusion is caused.
We make the following assumptions:
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(H1) F (t,ϕ) is ω-periodic in t ∈ R, that is, F (t + ω,ϕ) = F (t,ϕ) for any t ∈ R
and ϕ ∈ C.
(H2) F (t,ϕ) is continuous in R× C.
(H3) F maps bounded sets of R× C into bounded sets of Rn.
(H4) If (t,ϕ), (t,ψ) ∈ Ω, ϕ ≤ ψ and ϕi(0) = ψi(0) for some i ∈ N, then

Fi(t,ϕ) ≤ Fi(t,ψ) for all t ≥ t0.
(H5) There exist a, b ∈ R, 0 ≤ a < b, such that

F (t, Â) ≥ 0 and F (t, B̂) ≤ 0 for any t ≥ t0,
where A = (a, ..., a) ∈ Rn, B = (b, ..., b) ∈ Rn.
We would like to point out that the assumptions (H1) and (H2) are almost always

satisfied by systems described in [5] since most of them are Lotka-Volterra type systems.
For Lotka-Volterra type systems, (H3) also holds as long as the coefficient functions
are bounded. The assumption (H4) guarantees that system (4) generates monotone
semiflows while (H5) is satisfied since there are effects of intraspecific crowdings.
In the study of realistic models, only nonnegative solutions of the system are of

interest. If (H4) is replaced by the following assumption

(H4)
3 For any ϕ ∈ C+, if ϕi(0) = 0 for some i ∈ N , one has Fi(t,ϕ) ≥ 0 for all

t ≥ t0, then our results is also true in C+.
In order to establish the existence of periodic solutions of the system (4), we need

the following lemma which is due to Smith [6,7].

LEMMA 2.1. Let Ω be an open subset of R×C, and F,G : Ω→ Rn be continuous.
Suppose that either F or G satisfies (H4) and F (t,ϕ) ≤ G(t,ϕ) for all (t,ϕ) ∈ Ω. Then
we have

xt(t0,ϕ, F ) ≤ xt(t0,ϕ, G)
for all t ≥ t0, whenever both are defined.
Lemma 2.1 not only establishes the desired monotonicity of the semiflow Φt but

also allows comparisons of solutions between related RFDEs, where a (local) semiflow
Φt on C can be defined by Φt(ϕ) = xt(t0,ϕ, F ).

LEMMA 2.2. Let (H4) and (H5) hold. Then the order interval [Â, B̂] = {ϕ ∈
C : Â ≤ ϕ ≤ B̂} is positively invariant under the solution semiflow generated by the
system (4), that is, xt(t0,ϕ) ∈ [Â, B̂] for any ϕ ∈ [Â, B̂] and all t ≥ t0.
PROOF. For any ϕ ∈ [Â, B̂], t ∈ R, if ϕi(0) = a (resp. ϕi(0) = b) for some

i ∈ N , then we have Fi(t,ϕ) ≥ Fi(t, Â) ≥ 0 (resp. Fi(t,ϕ) ≤ Fi(t, B̂) ≤ 0), where the
inequality follows from (H4) and (H5). From Remark 5.2.1 of [7], we know that the
conclusion of the lemma is true and the proof is completed.

3 General Results

In this section, we establish the existence of periodic solutions of system (4). Let K be
a positive cone of a real Banach space E and the order relation in E be induced by K.
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Let D be a subset of E. An operator P : D→ E is said to be monotone if ϕ ≤ ξ (where
ϕ, ξ ∈ D) implies Pϕ ≤ P ξ. The sequence {ϕm}∞m=0 ⊂ E is said to be nondecreasing
(resp. nonincreasing) with respect to m, if the order inequality ϕm ≤ ϕm+1 (resp.
ϕm ≥ ϕm+1) holds for any integer m ≥ 0.
LEMMA 3.1. Let (H1)-(H5) hold. Then

{xt0+mω(t0, Â)}∞m=0 (resp. {xt0+mω(t0, B̂)}∞m=0)
in C is nondecreasing (resp. nonincreasing) with respect to m.

PROOF. For any ϕ ∈ C, if ϕ ≥ Â and ϕi(0) = a for some i ∈ N , then by (H4) and
(H5), we know that Fi(t,ϕ) ≥ Fi(t.Â) ≥ 0. Therefore, by a similar proof of Lemma
2.2, it follows that [Â,∞) = {ϕ ∈ C : ϕ ≥ Â} is positively invariant under the system
(4), that is, xt(t0, Â) ≥ Â holds for all t ≥ t0. In particular, xt0+ω(t0, Â) ≥ Â. Then
Lemma 2.1 (F = G) implies that xt0+ω(t0, xt0+ω(t0, Â)) ≥ xt0+ω(t0, Â) ≥ Â. By (H1)
and the uniqueness of solutions, it follows that

xt0+2ω(t0, Â) ≥ xt0+ω(t0, Â) ≥ Â.
Continuing in this manner, we obtain that {xt0+mω(t0, Â)}∞m=0 is nondecreasing with
respect to m. Similar arguments apply to {xt0+mω(t0, B̂)}∞m=0 and the proof is com-
pleted.

LEMMA 3.2. If (H1)-(H5) hold, then both {xt(t0, Â) : t ≥ t0} and {xt(t0, B̂) : t ≥
t0} are precompact in C.
PROOF. From Lemma 2.2, we know that {xt(t0, Â)} is uniformly bounded because

of xt(t0, Â) ∈ [Â, B̂] for all t ≥ t0 and the fact that [Â, B̂] is bounded since C+ is a
normal cone of C [1]. For any s ∈ R, there exists an integer m such that s = mω+ s0,
where s0 ∈ [0,ω). Hence, from (H1) and (H3), there exists a constant number M > 0
such that |F (s, xs(t0, Â))| = |F (s0, xs(t0, Â))| ≤M for any s ≥ t0. From (4), we know
that

x(t; t0, Â) = x(t0; t0, Â) +

] t

t0

F (s, xs(t0, Â))ds

from which it follows that

|xt(t0, Â)(θ2)− xt(t0, Â)(θ1)| =
�����
] t+θ2

t+θ1

F (s, xs(t0, Â))ds

����� ≤M |θ2 − θ1|

for any θ1, θ2 ∈ [−r, 0], that is, {xt(t0, Â) : t ≥ t0} is equicontinuous. Hence, {xt(t0, Â) :
t ≥ t0} is precompact in C. Similar arguments apply to {xt(t0, B̂) : t ≥ 0} and the
proof is completed.

In order to show the existence of periodic solutions for the system (4), we define
a special solution operator U which is similar to the Poincare mapping of (4). Let
U : C → C be defined by

Uϕ = xω(ϕ) for any ϕ ∈ C. (5)

Here and in what follows, we write x(t;ϕ) for x(t; 0,ϕ), which denotes the unique
solution of system (4) together with x0 = ϕ. Then we have the following results.
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PROPOSITION 3.3. If (H1)-(H5) hold, then the operator U defined by (5) is
monotone in C and U maps [Â, B̂] into itself.

The proof is an immediate consequence of Lemmas 2.1 and 2.2.

PROPOSITION 3.4. If (H1)-(H5) hold, then the operator U defined by (5) has a
maximal fixed point ϕ∗ and a minimal fixed point ϕ∗ in [Â, B̂]. Moreover, let

A(0) = Â,B(0) = B̂,A(m) = UA(m−1) and B(m) = UB(m−1), m = 1, 2, ... .

Then we have

A(0) ≤ A(1) ≤ · · · ≤ A(m) ≤ · · · ≤ B(m) ≤ · · · ≤ B(1) ≤ B(0), (6)

ϕ∗ = lim
m→∞A

(m), ϕ∗ = lim
m→∞B

(m). (7)

PROOF. From Proposition 3.3 and the fact that the solutions of (4) depend con-
tinuously on the initial data [2], we know that U : [Â, B̂] → [Â, B̂] is monotone and
continuous. Again by Proposition 3.3 and induction, we see that (6) holds. Thus, we
have proved that {A(m)}∞m=0 is nondecreasing with respect to m in C. By Lemma
1.1.2 of [7] and Lemma 3.2, {A(m)}∞m=0 is convergent in [Â, B̂] and there exists a
point ϕ∗ ∈ [Â, B̂] such that A(m) → ϕ∗ as m → ∞ in C. Since U is continuous, we
get Uϕ∗ = ϕ∗. Similar arguments apply to {B(m)}∞m=0 and hence there is a point
ϕ∗ ∈ [Â, B̂] such that B(m) → ϕ∗ in C and Uϕ∗ = ϕ∗.
Next, we prove that ϕ∗ and ϕ∗ are the maximal and minimal fixed points of U in

[Â, B̂] respectively. Let ϕ ∈ [Â, B̂] and Uϕ = ϕ. Since U is monotone, it is easy to see
that UÂ ≤ Uϕ ≤ UB̂, i.e., A(1) ≤ ϕ ≤ B(1). By induction, we obtain A(m) ≤ ϕ ≤ B(m)
for m = 0, 1, 2, ... . Now, taking limit m → ∞, it follows from the normality of cone
C+ that ϕ∗ ≤ ϕ ≤ ϕ∗, and the proof is completed.

COROLLARY 3.5. Let (H1)-(H5) hold. If U has only one fixed point ϕ in [Â, B̂],
then for any ψ ∈ [Â, B̂], the successive iterates

ψ(m) = Uψ(m−1) (m = 1, 2, ...) with ψ(0) = ψ (8)

converge to ϕ in C, that is, ||ψ(m) − ϕ||→ 0 as m→∞.
PROOF. Since Â ≤ ψ = ψ(0) ≤ B̂ and U is monotone, we have

A(m) ≤ ψ(m) ≤ B(m), m = 0, 1, 2, ... . (9)

By hypotheses, we must have ϕ∗ = ϕ∗ = ϕ. It follows therefore from (7), (9), the
normality of cone C+ of C and Proposition 3.4 that ψ(m) → ϕ as m→∞. The proof
is completed.

THEOREM 3.6. Let (H1)-(H5) hold. Then x(t; Â) and x(t; B̂) converge to positive
ω-periodic solutions as t→∞.
PROOF. Let y(t) = A for t ∈ R, then

y3(t) = 0 ≤ F (t, Â) = F (t, yt).
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It follows from Lemma 2.1 that

A = y(t) ≤ x(t; Â) for all t ≥ 0.
In a similar way we know 0 ≤ x(t; B̂) ≤ B for all t ≥ 0. Again by Lemma 2.1, it follows
that

A ≤ x(t; Â) ≤ x(t; B̂) ≤ B for all t ≥ 0. (10)

From Proposition 3.4, we know that there exist ϕ∗,ϕ∗ ∈ [Â, B̂] such that
lim
m→∞U

m(Â) = ϕ∗, lim
m→∞U

m(B̂) = ϕ∗, Uϕ∗ = ϕ∗ and Uϕ∗ = ϕ∗

where Um(ϕ) denotes the m-th iterate of ϕ under U . It is easy to see from (10) that
x(t; Â) converges to the positive ω-periodic solution x(t;ϕ∗) and x(t; B̂) tends to the
positive ω-periodic solution x(t;ϕ∗) as t→∞. The proof is completed.
To conclude this section, we give the following remark.

REMARK 3.7. First, Theorem 3.6 implies that the system (4) has at least one
positive ω-periodic solution. Next, suppose the assumption (H5) is replaced by the
following:

(H5)
3 For any s ∈ (0, 1], ξ ∈ [1 +∞), F (t, Âs) ≥ 0 and F (t, B̂ξ) ≤ 0 for any t ≥ t0,

where As = (sa, · · · , sa) ∈ Rn, Bξ = (ξb, · · · , ξb) ∈ R+.
Then from Theorem 3.6 and Corollary3.5, we know that if the system (4) admits a
unique positive ω-periodic solution, then this periodic solution attracts each solution
x(t;ϕ) of system (4) with ϕ ∈ C+ and ϕ 9= 0, that is, this periodic solution is globally
attractive in C+ \ {0}.

4 Applications

The object of this section is to apply the results in the previous section to some well-
known population models.
We first consider the following n-dimensional delay Lotka-Volterra system

ẋi(t) = xi(t)

ci(t)− aii(t)xi(t) + n[
j=1,j 9=i

aij(t)xj(t) +
n[
j=1

bij(t)xj(t− τ(t))

 , (11)

where 1 ≤ i ≤ n. For the system (11) we assume that
(i) aij(t), ci(t), bij(t), i, j = 1, ..., n, and τ(t) are continuous, ω-periodic functions

with ci(t) > 0, aii(t) > 0, aij(t) ≥ 0, bij(t) ≥ 0 and τ(t) ≥ 0 for t ∈ R.
(ii) For t ∈ R and i = 1, ..., n,

aii(t) >
n[

j=1,j 9=i
aij(t) +

n[
j=1

bij(t). (12)

THEOREM 4.1. Under the above assumptions, the system (11) has positive ω-
periodic solutions.
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PROOF. Let r = max{τ(t) : t ∈ [0,ω]}, C = C([−r, 0];Rn), C+ = C([−r, 0];Rn+),
and for i = 1, 2, ..., n,

Fi(t,ϕ) = ϕi(0)

ci(t)− aii(t)ϕi(0) + n[
j=1,j 9=i

aij(t)ϕj(0) +
n[
j=1

bij(t)ϕj(−τ(t))
 .

Obviously, the assumption (i) yields (H1)-(H3). For any ϕ,ψ ∈ C+,ϕ ≤ ψ and ϕi(0) =
ψi(0) for some i ∈ N , we have

Fi(t,ψ)− Fi(t,ϕ) ≥ ϕi(0)
n[
j=1

bij(t)[ψi(−τ(t))− ϕj(−τ(t))] ≥ 0,

that is, (H4) holds. Furthermore, if A = (a, ..., a) and a > 0 is sufficiently small, by
the assumption (ii), we have

Fi(t, Â) = a

ci(t)− a
aii(t)− n[

j=1,j 9=i
aij(t)−

n[
j=1

bij(t)

 ≥ 0
for t ∈ R and i = 1, 2, ..., n. If B = (b, ..., b) and b > 0 is sufficiently large, we have

Fi(t, B̂) = b

ci(t)− b
aii(t)− n[

j=1,j 9=i
aij(t)−

n[
j=1

bij(t)

 ≤ 0
for t ∈ R and i = 1, 2, ..., n, that is, (H5)3 is valid. Hence the conclusion of theorem is
true and the proof is completed.

For single-species models with periodic delay and coefficients, we have the following
result.

COROLLARY 4.2. Consider the equation

ẋ(t) = x(t)[c(t)− a(t)x(t) + b(t)x(t− τ(t))] (13)

where c(t), a(t), b(t), τ(t) are continuous, ω-periodic. Suppose that (i) c(t) > 0, a(t) >
0, b(t) ≥ 0 and τ(t) ≥ 0 for t ∈ R, and (ii) a(t) > b(t) for t ∈ R. Then (13) has positive
ω-periodic solutions.

Finally, we consider a model to describe the growth of a single-species population
dispersing in an n patch environment which is periodically fluctuating as follows

Ṁi(t) = −βi(t)M2
i (t) +

n[
j=1,j 9=i

dij(t)[Mj(t)−Mi(t)] +
n[
j=1

bij(t)Mj(t− τ(t)) (14)

when t ≥ 0 and i = 1, · · · , n, Mi(t) denotes the concentration of mature populations in
the i-th patch. When the coefficients of system (14) are constant, (14) has been widely
investigated (see paper [5] and references cited therein). There are sufficient reasons to
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consider periodic cases of (14) (e.g., seasonal effects of weather, food supplies, mating
habits, etc.). For details, we refer to [5].
For system (14), we make the following assumptions:
(i) βi(t), dij(t) and τ(t) are continuous, ω-periodic in t ∈ R, dii(t) = 0, i, j =

1, 2, ..., n.
(ii) βi(t) > 0, dij(t) ≥ 0, bij(t) ≥ 0 and

Sn
j=1 bij(t) > 0 for t ∈ R.

THEOREM 4.3. Under the above assumptions,the system (14) has positive ω-
periodic solutions.

PROOF. Let r = max{τ(t); t ∈ [0,ω]} > 0, C = C([−r, 0];Rn), C+ = C([−r, 0];Rn+),
and

Fi(t,ϕ) = −βi(t)ϕ2i (0) +
n[

j=1,j 9=i
dij(t)[ϕj(0)− ϕi(0)] +

n[
j=1

bij(t)ϕj(−τ(t)).

Obviously, (H1)-(H3) is satisfied. For any ϕ ∈ C+, if ϕi(0) = 0 for some i ∈ N , we
have

Fi(t,ϕ) =
n[

j=1,j 9=i
dij(t)ϕj(0) +

n[
j=1

bijϕj(−τ(t)) ≥ 0,

that is, (H4)
3 is valid. Clearly, (H5)3 holds. Hence the conclusion of the theorem is

true from Theorem 3.6 and Remark 3.7.
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