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Abstract

A mathematical model of predator-prey interactions in a chemostat is consid-
ered. It incorporates both general response functions and distinct removal rates.
A slight change in the removal rate of prey or predator destroys the form of the
conservation principle. So, we construct a Lyapunov function in the study of the
global stability of a predator-free and interior steady states. Local stability of
steady states is studied by using the Routh-Hurwitz criterion.

1 Introduction

A simple example of exploitative competition occurs in a laboratory device, called a
chemostat, that models competition in a very simple lake. This device is important in
ecological studies because the mathematics is tractable and the relevant experiments
are possible. Its place in theoretical ecology is well documented in the surveys of [11,
12, 13]. Moreover, the chemostat model is the starting point for many variations (food
chain, etc.) that yield more realistic biological models and interesting mathematical
problems [2, 8, 9].
A food chain in a chemostat with one predator ad one prey is considered. In this

case, the predator feeds exclusively on the prey and on the nutrient, and the prey
consumes the nutrient in the chemostat.
A system of equations is considered in this paper:

s3 = (so − s(t))D − 1
γ1
F1(s(t))x(t)− 1

γ2
F2(s(t))y(t),

x3(t) = x(t)(F1(s(t))−D − �1)− 1
γ3
F3(x(t))y(t),

y3(t) = y(t)(F2(s(t)) + F3(x(t))−D − �2),

(1)

with s(0) > 0, x(0) > 0 and y(0) > 0.
The functions s(t), x(t) and y(t) represent the concentration of nutrient, prey and

predator at time t, respectively. so represents the input concentration of the nutrient.
F1, F2 and F3 denote the specific growth rate of prey, predator on nutrient and on
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184 Food Chain in a Chemostat

prey, respectively. D denotes the washout rate of the chemostat. �i denote the specific
death rates of prey when i = 1 and of predator when i = 2, respectively.
If the death rates of prey and predator are insignificant (i.e. �i = 0, i = 1, 2), then

the only loss of organisms is due to “washout” at the same rate that the nutrient is
lost. In this case, an organism’s death rate is not negligible, thus the removal rates of
this organism should be the sum of washout rate of the chemostat and the death rate.
Assume that the functions Fi satisfy the following:

Fi : R+ → R+, (2)

Fi(0) = 0, (3)

Fi is continuously differentiable, (4)

F 31(s) > 0, F
3
2(s) > 0 for all s ≥ 0 and F 33(x) > 0 for x ≥ 0. (5)

We begin by scaling the equation (1) by s(t)→ sos(t), t→ t/D, x(t)→ soγ1x(t) and
y(t)→ soγ2y(t). Moreover, letting γ2 = γ1γ3, then we obtain the following differential
equations:

s3(t) = 1− s(t)− f1(s(t))x(t)− f2(s(t))y(t),
x3(t) = x(t)(f1(s(t))−D1)− f3(x(t))y(t),
y3(t) = y(t)(f2(s(t)) + f3(x(t))−D2),

(6)

with s(0) > 0, x(0) > 0 and y(0) > 0, where,

Di = 1− �i
D
, fi(s) =

Fi(s
os)

D
, i = 1, 2,

and

f3(x) =
F3(γ1s

ox)

D
.

It is easy to check that fi satisfy (2)-(5).
The organization of this paper is as follows. In Section 2, the results on the positivity

and boundedness of solutions are presented. An existence and local stability of steady
states are studied in Section 3. Global stability of steady states and persistence analysis
are provided in Section 4. Discussion is carried out in the last section.

2 Preliminaries

The positivity and boundedness are considered in the following two lemmas the proofs
of which are similar to those in [8].

LEMMA 2.1 [8]. The solutions (s(t), x(t), y(t)) of (6) are positive, and for large t,
s(t) < 1.

LEMMA 2.2 [8]. For � > 0, the solutions (s(t), x(t), y(t)) of (6) satisfy

1

Dmax
− � ≤ s(t) + x(t) + y(t) ≤ 1

Dmin
+ �, (7)

for large t, where

Dmax = max{1,D1,D2} and Dmin = min{1,D1,D2}. (8)
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3 Steady States and Their Stability

E1(1, 0, 0) denotes the washout steady state. E2 = (λs, (1 − λs)/D1, 0) denotes the
predator-free steady state, where λs is defined as the unique solution of f1(s) = D1
(if it exists). Ec = (s

∗,λx,λx(f1(s∗)−D1)/(D2 − f2(s∗))) denotes the interior steady
state, where λx and s

∗ are defined as the unique solutions of f2(s) + f3(x) = D2 and
they satisfy the equation

s∗ + f1(s∗)λx +
f2(s

∗)
f3(λx)

(f1(s
∗)−D1)λx = 1 (9)

with s∗ ∈ (0, 1). Prey-free with predator steady state does not exist. To discuss the
existence of steady states, their components must be non-negative. Since all compo-
nents of the washout rate is non-negative, E1 always exists. Since f1 is increasing with
f1(0) = 0, λs exists, satisfies 0 < λs < 1 and

f1(λs) = D1 ⇐⇒ D1 < f1(1). (10)

In this case, there is a predator-free steady state E2 = (λs, (1− λs)/D1, 0), otherwise,
no such steady state exists. In the case where f1(s) < D1 for all s > 0, we regard
λs = +∞. In case of the mixed-culture steady state Ec, since f2 and f3 are increasing
with f2(0) = f3(0) = 0, s

∗ and λx exist and satisfy

f2(s
∗) + f3(λx) = D2 ⇐⇒ f2(1) + lim

x→+∞ f3(x) > D2. (11)

For the existence of Ec, we have two cases:
CASE 1. D2 − f2(s∗) = f3(λx) > 0, then no condition is necessary.
CASE 2. f1(s

∗)−D1 > 0 or s∗ > λs.
Note that

F (s) = 1− s− f1(s)λx − f2(s)λx f1(s)−D1
D2 − f2(s) (12)

is decreasing in S with F (0) = 1 > 0, F (s∗) = 0 and F (λs) = 1 − λs − Dλx. So,
s∗ > λs if, and only if, λx < (1 − λs)/D1. In the case where f2(s) + f3(x) < D2 for
all s, x > 0, we regard λx = +∞. Therefore, E2 exists if, and only if, λs < 1, and Ec
exists if, and only if, λs < 1 and λx < (1− λs)/D1.
Now, the local stability of these steady states will be investigated by studding the

eigenvalues of the associated Jacobian matrices. The Jacobian matrix of (6) has the
form

J =

 −1− xf 31(s)− yf 32(s) −f1(s) −f2(s)
xf 31(s) f1(s)−D1 − yf 33(x) −f3(x)
yf 32(s) yf 33(x) f2(s) + f3(x)−D2

 . (13)

At E1,

J(E1) =

 −1 −f1(1) −f2(1)
0 f1(1)−D1 0
0 0 f2(1)−D2

 .
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The eigenvalues lie on the diagonal. They are all negative if, and only if, f1(1)−D1 < 0
and f2(1)−D2 < 0 or, equivalently, λs > 1 and λx > 0, s

∗ > 1, respectively.
When E2 exists, the Jacobian matrix at E2 is

J(E2) =


−1− (1−λs)f 31(λs)

D1
−f1(λs) −f2(λs)

(1−λs)f 31(λs)
D1

0 −f3
�
1−λs
D1

�
0 0 f2(λs) + f3

�
1−λs
D1

�
−D2

 .
The determinant of the upper left-hand 2 × 2 matrix is positive and its trace is neg-
ative, so its eigenvalues have negative real parts. The third eigenvalue of J(E2) is
f2(λs)+f3((1−λs)/D1)−D2, the entry in the lower right-hand corner. Therefore E2 is
asymptotically stable if, and only if, f2(λs)+f3((1−λs)/D1)) < D2 or (1−λs)/D1 < λx
and λs < s

∗.
When Ec exists, the Jacobian matrix J(Ec) at Ec is given by
−1− λxf

3
1(s
∗)− (f1(s

∗)−D1)λxf
3
2(s
∗)

(D2−f2(s∗)) −f1(s∗) −f2(s∗)
λxf

3
1(s
∗) f1(s

∗)−D1 − (f1(s
∗)−D1)λxf

3
3(λx)

(D2−f2(s∗)) −f3(λx)
(f1(s

∗)−D1)λxf
3
2(s
∗)

(D2−f2(s∗))
(f1(s

∗)−D1)λxf
3
3(λx)

(D2−f2(s∗)) 0

 .
The eigenvalues of J(Ec) satisfy

µ3 + a1µ
2 + a2µ+ a3 = 0,

where

a1 = 1 + λxf
3
1(s
∗) +

�
λxf

3
3(λx)

f3(λx)
− 1
�
(f1(s

∗)−D1) + λxf
3
2(s
∗)
�
f1(s

∗)−D1
D2 − f2(s∗)

�
,

a2 =

�
1 + λxf

3
1(s
∗) + λxf

3
2(s
∗)
�
f1(s

∗)−D1
D2 − f2(s∗)

���
λxf

3
3(λx)

f3(λx)
− 1
�
(f1(s

∗)−D1)

+λxf2(s
∗)f 32(s

∗)
�
f1(s

∗)−D1
D2 − f2(s∗)

�
+ λxf1(s

∗)f 31(s
∗) + λxf

3
3(λx)(f1(s

∗)−D1)

and

a3 = λxf2(s
∗)
�
f1(s

∗)−D1
D2 − f2(s∗)

�
×
�
λxf

3
1(s
∗)f 33(λx) + f

3
2(s
∗)
�
λxf

3
3(λx)

f3(λx)
− 1
�
(f1(s

∗)−D1)
�

+λxf
3
2(s
∗)
�
f1(s

∗)−D1
D2 − f2(s∗)

�
{λxf 33(λx)(f1(s∗)−D1) + f1(s∗)(f2(s∗)−D2)}

+λxf
3
3(λx)(f1(s

∗)−D1)(1 + λxf
3
1(s
∗)).

The Routh-Hurwitz criterion says that Ec will be asymptotically stable if, and only if,
a1 > 0, a3 > 0 and a1a2 > a3.
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We can summarize the above results in the following theorem.

THEOREM 3.1. If λs > 1, then only E1 exists and E1 is locally asymptotically
stable. If λs < 1 and (1−λs)/D1 < λx, then only E1 and E2 exist, E1 is unstable and
E2 is locally asymptotically stable. If λs < 1 and (1− λs)/D1 > λx, then E1 , E2 and
Ec exist, and E1 and E2 are unstable. Ec is locally asymptotically stable if a1 > 0,
a3 > 0 and a1a2 > a3.

4 Global Analysis

In the last section, we shall show that E1 is globally asymptotically stable if only E1
exists. The proof is very straightforward. Most importantly, we shall show that if
only E1 and E2 exist then E2 is globally asymptotically stable. The proofs involve
the construction of a Lyapunov function and the application of the Lyapunov-LaSalle
theorem. (We shall use Theorem 2.1 in Wolkowicz and Lu [13], which is a slightly
modified version of the statements given in LaSalle [5] and Hale [3]). Also, if E1, E2
and Ec exist, then Ec may be globally asymptotically stable by showing that system
(6) is uniformly persistent.

The following theorem states that E1 is a global attractor if it is the only steady
state (i.e. 1 < λs).

THEOREM 4.1. If λs > 1, then all solutions of (6) satisfy lim
t→+∞(s(t), x(t), y(t)) =

(1, 0, 0).

PROOF. Since s(t) < 1 for large t and f1(1)−D1 < 0 or 1 < λs, there is α > 0 such
that x3(t) < −αx(t) for t sufficiently large, and α = min

0≤t
{D1−f1(s)+(y/x)f3(x)}. This

shows that lim
t→+∞x(t) = 0. It follows from the third equation of (6) that y3 < −βy(t)

where β = min
0≤t
{D2− f2(s)} which implies that lim

t→+∞ y(t) = 0. Then the first equation

of (6) yields lim
t→+∞ s(t) = 1. The proof is complete.

THEOREM 4.2. If λs < 1 and D−1min < λs + λx, then all solutions of (6) satisfy
limt→+∞(s(t), x(t), y(t)) = (λs, (1− λs)/D1, 0).

PROOF. If we have (λs+λx)Dmin > 1, then λs+D1λx > 1. That is, D
−1
min < λs+λx

implies (1−λs)/D1 < λx. We chooseDmax < d1 andDmin > d2 such that d
−1
2 < λs+λx

and that (7) gives d−11 < s(t) + x(t) + y(t) < d−12 for large t. Let

α = 1 + max
0 ≤ x ≤ 1−λs

D1

0 ≤ s ≤ λs

+
f3(x)(

1−λs
D1
− x)

x(D2 − f2(s)− f3(x))

,
(14)

and

β = 1 + max
λx ≤ x ≤ 1

Dmin
+ 1

s∗ ≤ s ≤ 1

�
α(f2(s) + f3(x)−D2)

(D2 − f2(s))
�

(15)
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Let C(u) be a continuously differentiable function and C3(u) is given by

C3(u) =


0 u ≤ 1

d2
− λs,

β
λx+λs− 1

d2

(u− ( 1d2 − λs))
1
d2
− λs ≤ u < λx

β u ≥ λx

. (16)

C 3(u) is linear on [d−12 − λs,λx]. Since, x+ y ≤ d−12 −λs if s ≥ λs, therefore, if s ≥ λs,
then C 3(x+ y) = 0.
Define a Lyapunov function V (s, x, y) as follows

V =

] S

λs

(f1(ξ)−D1)(1− λs)

D1(1− ξ)
dξ + x− x∗ lnx+ αy + C(x+ y), (17)

on the set

φ =

�
(s, x, y) : s ∈ (0, 1), x, y ∈ (0,+∞), s+ x+ y ∈

�
1

d1
,
1

d2

��
,

where

x∗ =
1− λs
D1

.

Then the time derivative of V along solutions of the differential equation is

V̇ =

�
C3(x+ y) + 1− (1− λs)(f1(s) +

y
xf2(s))

D1(1− s)
�
(f1(s)−D1)x

+

�
f3(x)

x

�
1− λs
D1

− x
�
+ α(f2(s) + f3(x)−D2)

�
y

+(f3(s)−D2)C 3(x+ y)y. (18)

To discuss the sign of V̇ , we will investigate each term of V̇ . The term�
1− (1− λs)(f1(s) +

y
xf2(s))

D1(1− s)
�
(f1(s)−D1)x

is non-positive for 0 < s < 1 and equals zero for s ∈ [0, 1) if, and only if, s = λs. The
term C3(x+y)(f1(s)−D1)x is non-positive for s ∈ [0, 1), since C 3(x+y) = 0 for s ≥ λs
and C3(u) ≥ 0 for u ≥ 0, and f1(s) −D1 < 0 for s < λs. Therefore, the first term in
V̇ is always non-positive and equals zero for s ∈ [0, 1) if and only if s = λs. Define

G(s, x, y) =
f3(x)

x

�
1− λs
D1

− x
�
+α(f2(s)+f3(x)−D2)−(D2−f2(s))C 3(x+y). (19)

Note that (D2 − f2(s))C 3(x + y) is always nonnegative. If 0 < x ≤ (1 − λs)/D1 and
0 < s ≤ λs, then by the definition of α, we get

G(s, x, y) = (f2(s) + f3(x)−D2)− (D2 − f2(s))C 3(x+ y) < 0.
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If (1 − λs)/D1 < x ≤ λx and λs < s ≤ s∗, then all three terms in G(s, x, y) are non-
positive and one can easily see that G(s, x, y) < 0. If x ≥ λx and s ≥ s∗, and therefore
C 3(x+ y) = β, then by the definition of β, we have

G(s, x, y) =
f3(x)

x
(
1− λs
D1

− x)− (D2 − f2(s)) < 0.

Therefore G(s, x, y) < 0 for x ≥ 0 and s ≥ 0.
By Lemma 2.1, every bounded solution of (6) is contained in φ, and hence by

Theorem 2.1 in [13] every solution of (6) approaches the set ψ, the largest invariant
subset M of η = {(s, x, y) ∈ φ : V̇ = 0)}. η is made up of only one point of the
following form (λs, x, 0), where x ∈ [0,∞). Since V is bounded above, the unique point
of the form (λs, x, 0) ∈ M implies that s(t) = λs and y(t) = 0, which in turn leads to
0 = s3(t) = 1−λs−f1(λs)x(t) and hence x = (1−λs)/D1. Therefore M = {E2}. This
completes the proof.

THEOREM 4.3. If λs < 1 and (1 − λs)/D1 > λx, then system (6) is uniformly
persistent, i.e., there exists a constant � > 0, independent of initial conditions, such
that

lim inf
t→+∞ s(t) ≥ �, lim inf

t→+∞ x(t) ≥ �, and lim inf
t→+∞ y(t) ≥ �. (20)

PROOF. Choose

X1 = {(s, x, y); 0 ≤ s ≤ 1, 0 < x ≤ 1

Dmin
+ 1, 0 < y ≤ 1

Dmin
+ 1},

Y1 = {(s, x, 0); 0 ≤ s ≤ 1, 0 ≤ x ≤ 1

Dmin
+ 1},

Y2 = {(s, 0, y); 0 ≤ s ≤ 1, 0 ≤ y ≤ 1

Dmin
+ 1}

and
X2 = Y1 ∪ Y2.

Then X1 and X2 are two disjoint subsets of R
3, X2 is compact, X = X1 ∪X2 is also

compact, and X1 and X2 are positively invariant for (6). By lemma 2.2, Y1, Y2 and
X1 are global attractors in the union of the s − x plane and s − y plane and in R3,
respectively. We prove that X2 is a uniformly strong repeller for X1 (for the definitions
of a uniformly strong repeller as well as a weak repeller, see Thieme [10]). E1 and
E2 are the only steady states in X2. E1 is a saddle in R

3 and its stable manifold is
{(s, 0, y); y ≥ 0}. E2 is also a saddle in R3 and its stable manifold is {(s, x, 0);x > 0}.
Therefore E1 and E2 are weak repellers for X1.
The stable manifold structures of E1 and E2 (E2 is a global attractor in the s− x

plane) imply that they are not cyclically chained to each other on the boundary X2.
By Proposition 1.2 of Thieme [10], X2 is a uniform strong repeller for X1; that is,
there are δ1 > 0 and δ2 > 0 such that lim inft→+∞ x(t) > δ1 and lim inft→+∞ y(t) > δ2
where δ1 and δ2 do not depend on the initial values in X1. Applying Proposition
2.2 of Thieme [10] to the first equation of (6) yields that there is δ3 > 0 such that
lim inft→+∞ s(t) > δ3 where δ3 does not depend on the initial values of X1. This
completes the proof.
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5 Discussion

In this paper, we considered a food chain with one prey and one predator in the
chemostat. In this model, the prey consumes the nutrient and the predator consumes
the prey and the nutrient. We assumed that the functional response functions are
general monotone response functions and the removal rates are different.

A conservation principle was lost due to the different removal rates. In the case
of different removal rates, the system cannot be reduced to a two-dimensional system
and we therefore must look at the full system. We found that the washout steady state
E1 is the global attractors if it is the only steady state (this happens when λs > 1).
This confirms the intuition that both prey and predator can not persist if the removal
rate of the prey is relatively large. When E1 and E2 are the only steady states, we
found that E1 is unstable and E2 is locally asymptotically stable. By constructing a
Lyapunov function, we were able to show that if E1 and E2 are the only steady states,
E2 is a global attractor. The construction of the Lyapunov function is rather novel
and nontrivial. This novel idea has been used in [6, 7, 8]. This condition does not
depend on the specific properties of the functional response functions, and it becomes
necessary if Dmin is close to both D1 and 1. The global stability of E2 implies that
the predator will be washed out in the chemostat regardless of the initial density levels
of prey and predator. We also showed that, when Ec exists, the prey and predator
coexist in the sense that the system is uniformly persistent. In this case, a switch of
the stability of the interior steady state Ec may occur.

If D1 = D2 = 1, the conservation principle holds; that is, the w-limit sets of
solutions of (6) lie in the plane

S
: s + x + y = 1. In this case, one can easily show

that Ec (if it exists) is locally asymptotically stable if, and only if,

f 33(λx)
f 32(s∗)

(f3(λx) + λxf
3
1(s
∗)) > f3(λx) +

�
1− λxf

3
3(λx)

f3(λx)

�
(f1(s

∗)− 1), (21)

and

λxf
3
1(s
∗) +

λxf
3
2(s
∗)

f3(λx)
(f1(s

∗)− 1) >
�
1− λxf

3
3(λx)

f3(λx)

�
(f1(s

∗)− 1). (22)

When one of these inequality is reversed, Ec will be a repeller in
S
, and there will

be at least one periodic orbit (by an application of the Poincaré-Bendixson theorem).
Determining the number of periodic solutions is a deep mathematical problem. In case
of f2(s) = 0; s ∈ [0, 1), and Michaelis-Menten-type response function, Kuang [4] has
shown that if

f 31(s
∗)λx + (λxf 33(λx)− 1)(f1(s∗)− 1), (23)

is small and negative, then the limit cycle is unique and asymptotically stable. Also,
in [1] it was shown that in the case of Michaelis-Menten-type response functions and
D1 = D2 = 1, Ec is globally asymptotically stable if it is locally asymptotically stable.
In [8] it is asserted that this may be true for general response functions.

It remains open if this is true in the case of general response functions and different
removal rates in [8] and in the current paper.
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