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Abstract

Sufficient conditions are established for the oscillation of all solutions of first
order neutral delay difference equations. Our approach is to reduce the oscillation
of neutral delay difference equation to the non-existence of positive solutions of
delay difference inequalities. The results obtained here extend and improve several
known results in the literature.

1 Introduction

Consider the neutral delay difference equation of the form

∆(yn + hnyn−k) + δqny
α
n−c = 0, n = 0, 1, 2, ..., (1)

where δ = ±1, α is a ratio of odd positive integers, ∆ is the forward difference operator
defined by ∆yn = yn+1 − yn and the following conditions (c1) and (c2) are assumed to
hold:

(c1) {hn} is a positive real sequence and k is a positive integer;
(c2) {qn} is a positive real sequence and c is any integer.

If α = 1, then equation (1) reduces to the linear equation

∆(yn + hnyn−k) + δqnyn−c = 0. (2)

By a solution of equation (1), we mean a real sequence {yn} which satisfies equation
(1) for n ≥ N for some integer N > 0. A solution {yn} of equation (1) is said to be
oscillatory if it is neither eventually positive nor eventually negative and nonoscillatory
otherwise.
In recent years there has been much interest in studying the oscillation of first order

neutral difference equations. For recent results and for references see the monograph
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by Agarwal [1]. In particular Thandapani and Sundaram [6] have shown that equation
(1) is oscillatory if and only if

∞

n=n0

qn =∞,

under one of the following conditions (a) and (b):

(a) δ = +1, 0 < α < 1, 1 < µ ≤ hn ≤ λ, c > k > 0;

(b) δ = −1,α > 1, 0 ≤ hn < λ < 1, k > 0, c < 0.

However, very little is known about sufficient conditions for equation (1) to be
oscillatory without the restrictions, viz. hn ≤ λ. For equation (2) with some restriction
on {hn} many oscillation criteria have been established, see for example [1, 2] and the
references cited therein.
The purpose of this paper is to establish sufficient conditions for the oscillation of

all solutions of equation (1) without the restrictive condition on {hn} or the periodicity
condition on {qn} as assumed in some papers. In Section 2, we reduce the oscillation of
the neutral difference equation (1) to the nonexistence of eventually positive solutions
of non-neutral difference inequalities of the form

δ∆zn + pnz
α
n−m ≤ 0 (3)

where m is an integer and {pn} is a positive real sequence. Sufficient conditions for
(3) to have no eventually positive solution have been established by many authors.
For example see [1, 2] and [4]. By combining these results with the results obtained
in Section 2, we derive oscillation criteria for equation (1) in Section 3. The results
obtained here extend and improve some of the results obtained in [7] and [5].

2 Non-Neutral Difference Inequalities

In this section we consider the equation

∆(yn + hnyn−k) + δqnf(yn−c) = 0 (4)

where δ = ±1 and conditions (c1), (c2) and the following conditions (c3)− (c5) hold:

(c3) f : R→ R is continuous, nondecreasing and uf(u) > 0 for u 9= 0 ;
(c4) there exists a continuous function ϕ : R→ R such that ϕ(u) is nondecreasing in

u ∈ R , uϕ(u) > 0 for u 9= 0 and

|ϕ(u+ v)| ≤ |f(u) + f(v)| for uv > 0;

(c5) there exists a continuous function ω : (0,∞) → (0,∞) such that |f(uv)| ≤
ω(u)|f(v)| for u > 0 and v ∈ R .
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REMARK 1. For the case f(u) = uα where α > 0, we can choose ϕ(u) =
min{1, 21−α}uα and ω(u) = uα.

THEOREM 1. Let δ = +1. Suppose that (c1)-(c5) hold. Then every solution
of equation (4) is oscillatory if there exists a positive real sequence {λn} such that
0 < λn < 1 for n ≥ n0 and the difference inequality

{∆zn +Qnϕ(zn+k−c)}sgnzn ≤ 0, (5)

does not have any nonoscillatory solution where

Qn = min λnqn,
[1− λn−k]qn−k

ω(hn−c)
. (6)

PROOF. Assume that there is a nonoscillatory solution {yn} for the equation (4).
We may assume that yn > 0 eventually since the case {yn} eventually negative can be
treated similarly. Let xn = yn + hnyn−k . Then by equation (4), xn > 0 and xn is
decreasing for all large n ≥ n0 . Summing (4) from n to ∞ , we have

xn = lim
n→∞xn +

∞

s=n

qsf(ys−c) ≥
∞

s=n

qsf(ys−c)

for all large n ≥ n0 . We see that

xn ≥
∞

s=n

λsqsf(ys−c) +
∞

s=n

(1− λs)qsf(ys−c)

=
∞

s=n

λsqsf(ys−c) +
∞

s=n+k

(1− λs−k)qs−kf(ys−k−c)

≥
∞

s=n+k

Qsf(ys−c) +
∞

s=n+k

Qsω(hs−c)f(ys−k−c)

≥
∞

s=n+k

Qsf(ys−c) +
∞

s=n+k

Qsf(hs−cys−k−c)

=
∞

s=n+k

Qs [f(ys−c) + f(hs−cys−k−c)]

≥
∞

s=n+k

Qsϕ (ys−c + hs−cys−k−c)

=
∞

s=n+k

Qsϕ (xs−c)

for all n ≥ n0. Set
zn =

∞

s=n

Qsϕ(xs−c) > 0.
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Then xn ≥ zn+k eventually. We see that
∆zn = −Qnϕ(xn−c) ≤ −Qnϕ(zn−c+k)

for all n ≥ n0 so that {zn} is an eventually positive solution of (5). This contradiction
completes the proof of the theorem.

THEOREM 2. Let δ = −1 . Assume that conditions (c1)− (c5) hold. Then every
solution of equation (4) is oscillatory if there exists a positive real sequence {λn} such
that 0 < λn < 1 for n ≥ n0 and the difference inequality

{−∆zn +Qnϕ(zn−c)}sgnzn ≤ 0
does not have any nonoscillatory solution where {Qn} is the same as defined by (6).
PROOF. Let {yn} be an eventually positive solution of equation (4). Let xn =

yn + hnyn−k > 0. Summation of (4) from N to n− 1 yields,

xn ≥
n−1

s=N

qsf(ys−c), n ≥ N,

where N is sufficiently large positive integer. Now by the same arguments as in the
proof of Theorem 1, we see that

xn ≥
n−1

s=N+k

Qsϕ (xs−c) ≡ zn > 0

for all n > N + k. Then we have

∆zn = Qnϕ(xn−c) ≥ Qnϕ(zn−c)
for all n > N + k, which is a contradiction. Now assume that {yn} is eventually
negative. Arguing as above we obtain

−∆zn +Qnϕ(zn−c) ≥ 0,
does not have any eventually negative solution. This completes the proof.
Applying Theorems 1 and 2 to equation (1), we obtain the following corollaries.

COROLLARY 3. Let δ = +1 and α > 0 . Assume that the conditions (c1) and
(c2) hold. Then every solution of equation (1) is oscillatory if the difference inequality

∆zn + Pnz
α
n−c+k ≤ 0

does not have any eventually positive solution, where

Pn = min 1, 21−α min
qn

1 + hαn−c+k
,
qn−k

1 + hαn−c
. (7)

COROLLARY 4. Let δ = −1 and α > 0. Assume that the conditions (c1) and (c2)
hold. Then every solution of equation (1) is oscillatory if the difference inequality

∆zn − Pnzαn−c ≥ 0
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does not have any eventually positive solution, where {Pn} is same as defined by (7).
PROOF of Corollaries 3 and 4: We know that

δ∆zn + pnz
α
n−m ≤ 0 (8)

does not have any eventually positive solution if and only if

{δ∆zn + pnzαn−m}sgnzn ≤ 0 (9)

does not have any nonoscillatory solution, where m is any integer and {pn} is any real
sequence. In fact , if {ωn} is an eventually negative solution of (9), then zn = −ωn
is an eventually positive solution of (8). Therefore, the conclusions of Corollaries 3
and 4 follow by applying Theorems 1 and 2 to equation (1) and by choosing ϕ(u) =
min{1, 21−α}uα,ω(u) = uα and λn = 1/(1 + h

α
n−c+k) (see Remark 1).

3 Oscillation Theorems

In this section we establish oscillation theorems for the equation (1). First we con-
sider the case α 9= 1. We need the following results proved in [4] for our subsequent
discussion.

LEMMA 1. Let 0 < α < 1 and c be a positive integer. Assume that (c2) holds.
Then the difference inequality

∆un + qnu
α
n−c ≤ 0, n = 0, 1, 2, · · ·

does not have any eventually positive solution if

∞

n=0

qn =∞. (10)

LEMMA 2. Let α > 1 and c be a negative integer. Assume that (c2) holds. Then
the difference inequality

∆un − qnuαn−c ≥ 0, n = 0, 1, 2, · · ·

does not have any eventually positive solution if (10) holds.

Combining Corollaries 3 and 4 with Lemmas 1 and 2, we derive the following
theorems.

THEOREM 5. Assume that (c1) and (c2) are satisfied and one of the following
cases holds:

(i) δ = +1, 0 < α < 1 and c > k ;

(ii) δ = −1,α > 1 and c is a negative integer.



Thandapani et al. 93

If ∞

n=n0

min
qn

(1 + hαn−c+k)
,

qn−k
(1 + hαn−c)

=∞, (11)

then every solution of equation (1) is oscillatory.

COROLLARY 6. Suppose that conditions (c1) and (c2) are satisfied and either (i)
or (ii) of Theorem 5 holds. Further assume that {hn} is bounded and

∞

n=n0

min {qn, qn−k} =∞. (12)

Then every solution of equation (1) oscillates.

PROOF. If {hn} is bounded for n ≥ n0, then it is easy to see that (12) implies (11).
Hence, the conclusion follows from Theorem 3.

Next we consider the equation (2). To prove our results we need the following
lemmas which can be found in [2, 3].

LEMMA 3. Assume condition (c2) holds and c > 0 . If

lim inf
n→∞

n−1

s=n−c
qs >

c

c+ 1

c+1

,

then the difference inequality

∆un + qnun−c ≤ 0

does not have any eventually positive solution .

LEMMA 4. Assume that condition (c2) holds and c > 0 . If

lim inf
n→∞

n+c−1

s=n

qs >
c

c+ 1

c+1

,

then the difference inequality

∆vn − qnvn+c ≥ 0
does not have any eventually positive solution.

From Corollaries 3 and 4, Lemmas 3 and 4, we have the following results.

THEOREM 7. Let δ = +1 and c > 0 and c− k > 1. Assume that conditions (c1)
and (c2) hold. If

lim inf
n→∞

n−1

s=n−c+k
min

qn
(1 + hn−c+k)

,
qn−k

(1 + hn−c)
>

c

c+ 1

c+1

holds, then every solution of equation (2) is oscillatory.
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THEOREM 8. Let δ = −1 and c > 0 . Assume that conditions (c1) and (c2) hold.
If

lim inf
n→∞

n+c−1

s=n

min
qn

(1 + hαn−c+k)
,

qn−k
(1 + hαn−c)

>
c

c+ 1

c+1

holds, then every solution of equation

∆(yn + hnyn−k)− qnyn+c = 0

is oscillatory.

REMARK 2. Note that restrictive conditions on {hn} such as hn ≤ λ is not assumed
in Theorems 5, 7 and 8. Theorem 7 improves some of the results obtained in [5, 7].

REMARK 3. Recently Zhang [8] considered equation of type (1) and obtained
oscillation results for the case {hn} is a negative constant in (−1, 0] where as we obtain
results for the case {hn} is a positive real sequences.
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