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Abstract

By employing a discrete analogue of Langenhop’s inequality, we establish lower
bounds on the norm of solutions of the difference system

∆zn = f(n, zn), n ∈ N(l) = {l, l + 1, . . .},
and derive an oscillation criterion for higher order delay difference equations of
the form

∆mxn + pn∆
m−1xn + qn|xσ(n)|α−1xσ(n) = 0, 0 < α < 1.

1 Introduction

There is no doubt that the Gronwall inequality and its generalization the Bihari in-
equality in continuous and discrete cases have been the most powerful tools in studying
the qualitative behavior of differential and difference equations. These inequalities have
been applied very successfully to investigate the global existence, uniqueness, stabil-
ity, boundedness and other properties of solutions of various nonlinear differential and
difference equations.
In 1960, Langenhop [1] proved the following theorem.

THEOREM 1.1. Let g(x) be a continuous and nondecreasing function for x ≥ 0
and g(x) > 0 for x > 0. If u(t) and v(t) are continuous nonnegative functions satisfying

u(t) ≥ u(s)−
t

s

v(r)g(u(r)) dr for all t, s ∈ [t0, T ], (1.1)

then

u(t) ≥ G−1 G(u(s))−
t

s

v(r) dr (1.2)

for all t, s ∈ [t0, T ] for which G(u(s))− t

s
v(r) dr is in the domain of G−1, where

d

du
G(u) =

1

g(u)
.
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If g(u) = u in (1.1), then (1.2) reduces to

u(t) ≥ u(s) exp(−
t

s

v(r) dr) for all t, s ∈ [t0, T ]. (1.3)

We note that the above conclusions remain valid as s tends to t0, but if s is fixed
as t0 in (1.1), then as was shown by Langenhop they are no longer true.
Langenhop type inequalities have also been used quite successfully in studying the

qualitative behavior of differential equations [2, 3].
In this paper by using a discrete analogue of Theorem 1.1, we establish lower bounds

on the norm of a solution of a general difference equation, and obtain sufficient condi-
tions for oscillation of solutions of higher order delay difference equations.
In what follows we denote by N(a) the set of integers greater than or equal to a,

where a ≥ 0 is a given integer. For all m > n, n ∈ N(a) and any sequence {b(n)}
defined for n ∈ N(a), we shall use the usual conventions that

n

i=m

b(i) = 0 and
n

i=m

b(i) = 1.

As usual, ∆ denotes the forward difference operator defined by ∆un = un+1 − un.

2 Discrete Langenhop Inequality

We begin with the following result.

THEOREM 2.1. Let {un} and {vn} be nonnegative sequences defined for n ∈ N(l)
and g(u) a nondecreasing function for u ≥ 0 with g(u) > 0 for u > 0. If

un ≥ uk −
n−1

i=k

vig(ui), for all k, n ∈ N(l) (2.4)

then

un ≥ G−1 G(uk)−
n−1

i=k

vi (2.5)

for all k, n ∈ N(l) for which G(uk) − n−1
i=k vi is in the domain of G

−1, where G is
defined by

∆G(un) =
∆un
g(un)

.

PROOF. For a fixed n, n ∈ N(l), we define for l ≤ k ≤ n

wk = un +
n−1

i=k

vig(ui). (2.6)

It is clear that
∆wk + vkg(uk) = 0 (2.7)
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and

wn = un. (2.8)

Moreover, by (2.4) and (2.6), we have

wk ≥ uk, for k ∈ N(l). (2.9)

Using (2.9) in (2.7), we obtain

∆wk
g(wk)

+ vk ≥ 0. (2.10)

Summation of (2.10) from k to n− 1 leads to

G(wn)−G(wk) +
n−1

i=k

vi ≥ 0. (2.11)

Using (2.4), (2.6), (2.8), and the monotonicity of G, it follows from (2.11) that

G(un) ≥ G(uk)−
n−1

i=k

vi. (2.12)

Since G−1 is nondecreasing, we see from (2.12) that (2.5) is satisfied for those k, n ∈
N(l) for which G(uk)− n−1

i=k vi is in the domain of G
−1. Thus, the proof is complete.

THEOREM 2.2. Let {un} and {vn} be nonnegative sequences defined for n ∈ N(l).
If

un ≥ uk −
n−1

i=k

viui, for all k, n ∈ N(l),

then

un ≥ uk
n−1

i=k

(1− vi), for all k, n ∈ N(l).

PROOF. We proceed as in the proof of Theorem 2 until inequality (2.10) is obtained.
That is,

wk+1
wk

+ vk − 1 ≥ 0. (2.13)

It is easy to see from (2.13) that

wn
wk
≥

n−1

i=k

(1− vi). (2.14)

By using (2.8) and (2.9) in (2.14), we complete the proof.
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3 Bounds on the Norm of Solutions

Let {zn} be a sequence with terms zn ∈ Cm and f(n, zn) a C
m valued sequence. We

consider the first order difference system

∆zn = f(n, zn), n ∈ N(l), (3.15)

where ∆ is the forward difference operator, ∆zn = zn+1 − zn.
Let us assume that for some norm in Cm, which we shall denote by |.|, the function

f satisfies
|f(n, zn)| ≤ vng(|zn|), n ≥ N(l), (3.16)

where

(i) {vn} is a sequence of nonnegative real numbers, and
(ii) g(u) is nondecreasing for u ≥ 0 and strictly positive for u > 0.
It follows from (3.15) and (3.16) that

|zn| ≤ |zk|+
n−1

i=k

vig(|zi|) (3.17)

and

|zn| ≥ |zk|−
n−1

i=k

vig(|zi|) (3.18)

for all k, n ∈ N(l).
The main results of this section are as follows.

THEOREM 3.1. If zn is solution of (3.15), then

|zn| ≤ G−1 G(|zl|) +
n−1

i=l

vi (3.19)

and

|zn| ≥ G−1 G(|zl|)−
n−1

i=k

vi (3.20)

for all n ∈ N(l). for which G(|zl|) ± n−1
i=l vi is in the domain of G

−1, where G is
defined by

∆G(un) =
∆un
g(un)

. (3.21)

THEOREM 3.2. Let g(u) = u. If zn is solution of (3.15), then

|zn| ≤ |zl|
n−1

i=l

(1 + vi) (3.22)
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and

|zn| ≥ |zl|
n−1

i=l

(1− vi) (3.23)

for all n ∈ N(l).
Upper bounds in (3.19) and (3.22) can be obtained from (3.17) by applying the

discrete Bihari and Gronwall inequalities [5], respectively. Lower bounds (3.20) and
(3.23), however, are new and follow from (3.18) on using Theorem 2.1 and Theorem
2.2, respectively.

4 Oscillation of Higher Order Difference Equations

We shall consider the following m-th order delay difference equation

∆mxn + pn∆
m−1xn + qn|xσ(n)|αsgn(xσ(n)) = 0, 0 < α < 1, n ∈ N(n0), (4.24)

where ∆mxn means ∆(∆
m−1xn) for m > 1. We shall assume that the sequences {pn}

and {qn} are nonnegative having infinitely many nonzero terms, pn < 1 for n ∈ N(n0),
σ(n) ∈ N(n0), and σ(n) ≤ n with limn→∞ σ(n) =∞.
A solution {xn} of (4.24) is called oscillatory if for a given integer n1 ≥ n0 there

exists a k ∈ N(n1) such that xk xk+1 ≤ 0; otherwise the solution is said to be nonoscil-
latory.
Recently, the present author [4], proved that

∞
[σ(n)]α(n−1)qn =∞ (4.25)

is a necessary and sufficient condition for every solution of

∆mxn + qn|xσ(n)|αsgn(xσ(n)) = 0
to be oscillatory when m is even, and to be either oscillatory or limn→∞∆jxn = 0
for j = 0, 1, 2, . . . ,m−1 when m is odd. Here n(s) denotes the usual factorial function;
that is, n(s) = n(n− 1) . . . (n− s+ 1), n(0) = 1, and nα(s) = [n(s)]α.
It is of both theoretical and practical interest to know the effect of a middle term

on the oscillatory character of the solutions. We will show that the above conclusion
still remains valid for the solutions of (4.24), if, in addition to (4.25), condition (4.26)
is also satisfied. First we present a lemma which we will make use of in the proof of
our oscillation theorem. The proof will be accomplished by the help of Theorem 2.2.

LEMMA 4.1. Suppose that {xn} is a nonoscillatory solution of (4.24) and for any
fixed M ∈ N(n0),

lim
n→∞

n−1

j=M

j−1

i=M

(1− pi) =∞. (4.26)

Then there exists n1 ∈ N(n0) such that for n ∈ N(n1),
xn∆

m−1xn > 0. (4.27)
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PROOF. Let {xn} be an eventually positive solution of (4.24). Suppose that
{∆m−1xn} is oscillatory. Then, given any K ∈ N(n0) there exists i ≥ K such that

∆m−1xi < 0 and ∆m−1xi+1 > 0. (4.28)

From (4.24),
∆mxi + pi∆

m−1xi ≤ 0
or

∆m−1xi+1 ≤ (1− pi)∆m−1xi < 0
which clearly contradicts (4.28). Therefore {∆m−1xn} must be nonoscillatory. We
shall show that ∆m−1xn is eventually positive. Assume on the contrary that there
exists k1 ∈ N(n0) such that ∆m−1xn < 0 for all n ∈ N(k1). From (4.24), we have

∆m−1xn∆mxn + pn(∆m−1xn)2 ≥ 0, n ∈ N(k1). (4.29)

In view of
∆(∆m−1xn)2 = (∆mxn)2 + 2∆m−1xn∆mxn

and
(∆mxn)

2 ≥ p2n(∆m−1xn)2,
it follows from (4.29) that

∆(∆m−1xn)2 ≥ (p2n − 2pn)(∆m−1xn)2, n ∈ N(k1). (4.30)

Summing (4.30) from k1 to n− 1 leads to

(∆m−1xn)2 ≥ (∆m−1xk1)2 −
n−1

i=k1

(2 pi − p2i )(∆m−1xi)2. (4.31)

Employing Theorem 2.2, we obtain

(∆m−1xn)2 ≥ (∆m−1xk1)2
n−1

i=k1

(1− 2pi + p2i ),

and hence

∆m−1xn ≤ ∆m−1xk1
n−1

i=k1

(1− pi). (4.32)

In view of (4.26), we may conclude from (4.32) that

lim
n→∞∆

m−2xn = −∞,

which clearly is a contradiction with {xn} being eventually positive.
A similar proof can easily be given if {xn} is eventually negative. Thus, the proof

is complete.
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THEOREM 4.1. Assume that (4.25) and (4.26) are satisfied, and 0 ≤ pn < 1. Then
every solution {xn} of (4.24) is oscillatory when m is even, and is either oscillatory or
satisfies limn→∞∆jxn = 0 for j = 0, 1, 2, . . . ,m− 1 when m is odd.

PROOF. Let {xn} be a nonoscillatory solution of (4.24). We may assume that {xn}
is eventually positive. The proof when {xn} is eventually negative is similar. Because
of Lemma 4.1, {∆m−1xn} must also be eventually positive. This implies that there
exists n1 ≥ n0 such that for n ≥ n1,

∆mxn + qn|xσ(n)|αsgn(xσ(n)) ≤ 0. (4.33)

The remainder of the proof follows easily from (4.33) by using the arguments developed
in [4].
The above result can easily be generalized to obtain an oscillation theorem for

neutral type difference equations of the form

∆mzn + pn∆
m−1zn + qn|xσ(n)|αsgn(xσ(n)) = 0, 0 < α < 1, n ∈ N(n0), (4.34)

where zn = xn + anxn−r with 0 ≤ an < 1 and r > 0.
THEOREM 4.2. Let (4.26) be satisfied, and for any fixed L ≥ 0

∞

n=L

[σ(n)]α(n−1)[1− an−r]αqn =∞.

If m is even, then every solution {xn} of (4.34) is oscillatory.
PROOF. Let {xn} be an eventually positive solution of (4.34). In view of (4.26),

as in Lemma 4.1, one can show that {∆m−1zn} is eventually positive. Since m is even,
it follows that {∆zn} is also eventually positive, see [4, Lemma 1]. Then,

zn = xn + anxn−r ≤ xn + anzn
and so

xn−k ≥ (1− an−k)zn−k.
It follows that

∆mzn + pn∆
m−1zn + qn(1− an−k)αzαn−k ≤ 0.

The remainder of the proof is similar to that of Theorem 4.1.
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