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Abstract

In this paper we prove an existence result for a second order differential in-
clusion

2 eF (x,x') + f (t,a:,x') , (0) = o, 2’ (0) = yo,
where F' is an upper semicontinuous, compact valued multifunction, such that

F (z,y) C OV (y), for some convex proper lower semicontinuous function V, and
f is a Carathéodory function.

1 Introduction

For the Cauchy problem
i’ € F(x), z(0) =¢,

where F' is an upper semicontinuous, cyclically monotone, compact values multifunc-
tion, the existence of local solutions was obtained by Bressan, et al. [4]. For some
extensions of this results we refer to [1], [7], [12] and [13]. On the other hand, for
second order differential inclusions

2" € F(x,2"),2(0) = z0, 2’ (0) = o,

existence results were obtained by many authors (we refer to [3], [8], [9], [11], [13]).
The case when F' is an upper semicontinuous, compact valued multifunction, such
that F' (z,y) C OV (y), for some convex proper lower semicontinuous function V, was
considered in [10].

In this paper we prove an existence result for a second order differential inclusion

2 € F(x,2")+ f(t,x,2"), x(0) = zo, 2’ (0) = o,

where F' is an upper semicontinuous, compact valued multifunction, such that F (x,y) C
OV (y), for some convex proper lower semicontinuous function V', and f is a Carathéodory
function.

*Mathematics Subject Classifications: 34G20, 47HO04.
tUniversitatea “Constantin Brancusi”, Bulevardul Republicii Nr. 1, 1400 Targu-Jiu, Romania

115



116 Differential Inclusions

2 Statement of Result

Let R™ be the m-dimensional Euclidean space with scalar product (.,.) and norm ||.||.
For x € R™ and € > 0 let

Be(z) ={y e R™ : |z -yl <e}

be the open ball centered at x with radius €, and let B.(z) be its closure. For z € R™
and for a closed subsets A C R™ we denote by d(z, A) the distance from x to A given
by
d(z, A) = inf {[lz —y|| : y € A}.
Let V : R™ — R be a proper lower semicontinuous convex function. The multi-
function 9V : R™ — 28" defined by

OV (x) = {£€R™ : V(y) — V(2) > (£,y — z), ¥y € R™}

is called the subdifferential (in the sense of convex analysis) of the function V.
We say that a multifunction F : R™ — 28" is upper semicontinuous if for every
x € R™ and every ¢ > 0 there exists 6 > 0 such that

F(y) C F(x)+ B:(0), Yy € Bs ().

For a multifunction F : Q € R?™ — 28" and for any (z¢,%0) € Q we consider the
Cauchy problem

.I” EF(.’L’,.’L‘/)—Ff(t,x,x/), '/I;(O) = o, xl (O) = Yo, (1)
under the following assumptions:

(Hy) © C R?™ is an open set and F : Q — 2R™ is an upper semicontinuous compact
valued multifunction.

(H3) There exists a proper convex and lower semicontinuous function V : R™ — R
such that
F(z,y) COV (y),Y(z,y) € Q. (2)

(H3) f: RxRM™xR™ — R™ is a Carathéodory function, i.e. for every z,y € R™,
t— f(t,z,y) is measurable, for t € R, (x,y) — f (¢, z,y) is continuous and there
exists m (.) € L? (R%) such that:

If oz, )| <m(t), (V) (z,y) € R"XR™, a.e. t € R. (3)

By a solution of the problem (1) we mean any absolutely continuous function z :
[0,T] — R™ with absolutely continuous derivative z’ such that z(0) = zg, £(0) = ypo,
and

2’ (t) € F(x(t),2' (t)) + f (t,x (t),2' (), a.e. on [0,T).
Our main result is the following;:
THEOREM 1. If F: Q c R?™ — 28" f: R xR™xR™ - R™ and V : R™ — R

satisfy assumptions (Hy), (Hz) and (Hs) then for every (xo,y0) € Q2 there exist T' > 0
and a solution z : [0,7] — R™ of the problem (1).
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3 Proof of Our Result

Let (20,y0) € Q. Since Q is open, there exists r > 0 such that the compact set K :=
B, (x0, o) is contained in €. Moreover, by the upper semicontinuity of F' in (H;) and
by Proposition 1.1.3 in [2], the set

F(K):= |J Flay)

(z,y)eK
is compact, hence there exists M > 0 such that

sup{[[v|| : v € F(2,y), (z,y) € K} < M.

T ::min{L - ;}
M7\ M’ 2([lyoll +1)

By (Hs) there exists 7" > 0 such that

Set

/T (m () + M) dt < r.

We shall prove the existence of a solution of the problem (1) defined on the interval
[0,T], where 0 < T' < min{T",T"}. ‘
For each integer n > 1 and for 1 < j < n we set }, := L&, I7 = [t/=1,#]] and for
t € I} we define
) 1 . . t o
o ) =+ (= )0+ 5= P+ [ =0 faladds @)

T

Jn
where 20 = x¢, y% = yo, and, for 0 < j <n—1, vl € F(z,y)),

n —

o =+ T+ 3 (5)
(5)

ytt =yl + Lol

Set, for t € (tiﬁl,‘t%),‘j € {1,2,..,n}, fn(t):= f(s, 2, yl).

We claim that (z7,,v?) € K for each j € {1,2,...,n}. By the choice of T one has

T 1.7 1
), — 2ol < o llvoll + g(g)Q Jvoll < T [[yoll + §MT2 <r
and
19 = voll < T'llvoll <,

hence the claim is true for j = 1.
We claim that for each j > 1 one has

wd = 2%+ 5Zy0 4+ L (D)2 (25 — 1)0° + (25 — 3) v} + ... + 03]
(6)

Io=y0 + L0 ol + .0l
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The statement holds true for j = 0. Assume it holds for j, with 1 < j < n. Then by
(5) one obtains that

. T 1T .
= oy b ()
n 2'n
i’ 1T . . P
= x%+%y2+§(g)2[(2]—1)1}2—1—(2]—1)1},114-...—&-1)% N+
T T .. 1T )
Fyn + () [on + o+ 0T o+ 5 ()
0 . Ty 1T, 0 . 1 j

and T T
YA = Yh vl =yl 4 [+ vl 440l

Therefore the relations in (6) are satisfied for each j, with 1 < j < n and our claim
was proved.

Now, by (6) it follows easily that
| T 1T, ‘
27, = zoll - < = lgoll + 5(=)*[(2 = 1) + (2 =3) + .. + 3+ 1] M

JjTr 1. 3T 5 1.
- lyoll + 2M( - )2 < T |lyoll + SMT? <.

and -
I, — woll < ==Ar <,

proving that (27, yJ) € K := B, (20,%0) , for each j, with 1 < j < n.
By (4) we have that

t

St = ()l + / fo (5) ds,
it

i (t) = UZ;Jrfn(t),VtGIfl,

hence
o @) | < M +m(t),vte 0,17,

27, DI < llyoll + 2r, vt € [0, T] (7)

[zn @I < [lzoll +2r (T'+ 1), vt € [0, T]
Moreover, for all ¢ € [0,T] we have

(1), 2,(0),2(0) — F (8) graph()) < ZTHL) (8)

Then, by (7), we have

T T
[ letoras [ orsmora
0 0
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and therefore the sequence (7)), is bounded in L? ([0,7],R™).

n

For all 7, t € [0, T], we have that

t
/ ()] ds
!

so that the sequence (7,),, is equiuniformly continuous. Moreover, by (7) we see that
(@n),, is equi-Lipschitzian, hence equiuniformly continuous.
Therefore, (z/!), is bounded in L? ([0,7],R™), (z},),, and (z,), are bounded in

[l () = af, (7] < <

[ a2 as

n n

C([0,7],R™) and equiuniformly continuous, hence, by Theorem 0.3.4 in [2] there
exist a subsequence, still denoted by (x,), , and an absolutely continuous function
x:[0,T] — R™ such that

n?

(i) (), converges uniformly to x;

N . .
(¢1) («,), converges uniformly to a’;
/

)
(iii) (x7)

Since (fy (.)),, converges to f(.,(.)) in L? ([0,T],R™), then, by (H>), (8) and The-
orem 1.4.1 in [2] we obtain

2 (t) = f(t,z(t),2 (t)) € coF (x(t),2' (t)) C OV (2 (t)), a.e.,t €[0,T], (9)

converges weakly in L? ([0,T],R™) to 2.

n

where co stands for the closed convex hull.
By (9) and Lemma 3.3 in [5] we obtain that

DV (1) = @ (1), 2" ()~ F (1o (1), (), ae.t e [0,T],
hence,

T

T
V(' (T)) =V (' (0)) = / 2" (£)])* dt — / (@ (t), f(ta(t),a’(t)dt.  (10)
0 0
On the other hand, since
2 () = fu (t) = v}, € F(a), y}) C OV (2, (t))),Vt € I,
and so from the properties of the subdifferential of a convex function, it follows that

VL) - VL) = @) (), 26 — ()
S CEEACH RO

-

n

i1
t,

lo" @) Pt~ [ * (2 (0,1 0) dt.

n

By adding the n inequalities from above, we get

T T
V (2l (T)) ~ V (y0) > / e (1)1 dt / (o (£), 2 (1)) dt. (11)
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The convergence of (fy (.)),, in L?-norm and of (2/(.)),, in the weak topology of L?
implies that

T

T
lim <nwwumﬁzl<ﬂmwwm»wwMt

n—oo 0
By passing to the limit as n — oo in (11) and using the continuity of V' we see that

T 5 T
V(x/(T))—V(yo)Zlimsup/O 2z, @] dt—/o (f (£, x(t),2'(t)), 2" (1)) dt, (12)

n—oo

hence, by (10) and (12), we obtain
& (®)z2 > limsup [l (D]]7

Since, by the weak lower semicontinuity of the norm,
o (0)lFz2 < Timinf 1237 (072
n—oo
we have that [|z” (t)”ig = lim, o |2} (t)Hiz ie. (), converge to z” strongly in
L2 ([0, T],R™) (Proposition IT1.30 in [6]). Hence a subsequence again denoted by (z!)

converge pointwise to z”.
Since by (Hy) the graph of F is closed and, by (8),

lim d ((zn (1), 2, (t), 25 (t) = fu (1)), graph (F)) = 0,

n—oo

n

we obtain that
2" (t) e F(z(t), (t))+ f(t,x(t),2'(t)), ae.,te]0,T].

Since = obviously satisfies the initial conditions, it is a solution of the problem (1).

4 An Example

For D C R™ and x € D, denote by Tp (x) the Bouligand’s contingent cone of D at z,
defined by

T = {v € R™;liminf
(@)= {v e Ry

d(x + hv, D) }
S 0

Also, Np (x) is the normal cone of D at x, defined by
Np (z) ={ve R™;(y,v) <0,(V)veTp(x)}

In what follows we consider D as a closed subset such that §# € D and 0 ¢ Int(D),
where 0 is the zero element of R™.

We set K = Tp (0), Q@ = Int (Np (0)), Q = B; () x Q and denote by 7k (y) the
projection
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THEOREM 2. Suppose Int (Np (7)) # 0 and f : R x R™ x R™ — R™ satisfies
the assumption (Hs). Then there exist 7' > 0 and a solution z : [0,7] — R™ for the
following Cauchy problem

2’ € (1= |zl 7 (2") + f(t, 2, 2"), (2(0),27(0)) = (2o, yo) -
PROOF. By Proposition 2 in [4] there exists a convex function V' such that
i (y) COV(y), (V)y € Q.
We recall (see [4]) that the function V is defined by

V(y) = sup{eu(y); v € K},

where .
Puly) = (w,y) = 5llul® v € Q.
Also, we observe that the following assertions are equivalent:
(1) v e Tk (y);
(i) ly —ull < ly — o], (V)0 € K (13)
(iii) ou(y) = @u(y), (V)v € K.

Let (x,y) € Q be and let z € F(z,y). Then there exists u € mx (y) such that z =
(1 = |jz||) u. We have that

paceu) = (1~ lal)u9) — 5 (1 llal)? Jul?
(=l wg) — 5 (@~ o)l

= (g~ gl = Il ) — 5 ll)
(1 el o),

Y

hence
Pa—lalyu(y) = (1= llz])) puly)- (14)
Since u € i (y), then ¢, (y) > ¢, (y), for every v € K, and by (14) it follows that

Ca—feu®) —euy) > (1 —z]) eu(y) — u(y)
> (L= lzl]) pu(y) — oo (y) = =[lz[lpu(y),

hence
Ca—|ze(y) — eu(y) = —llzllpw(y) (15)
for every v € K.
Since y € Q = Int (Np (0)) we have that

(y,v) <0, for every v e K =Tp (0),
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hence 1
wu(y) = (y,v) — §||v||2 <0, for every v € K. (16)

From (15) and (16), it follows that
Pa-lzlyu(y) = oY), v E K. (17)
Then (17) and the equivalent assertions in (13) imply that
z=(1—|zl)u ek (y) COV(y).
If we define the multifunction F : Q — 28" by
Fle,y) = (1= |lzl)) 7 (v) ,

then F' is with compact valued and upper semicontinuous and there exists a convex
function V : R™ — R such that

F(z,y) coV(y), (V) (z,y) € Q.

Therefore, F' and f satisfies assumptions (H;), (Hz) (Hs) and our proof is complete.
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