Existence Of Solutions For Nonconvex Second Order Differential Inclusions *

Vasile Lupulescu†

Received 20 April 2002

Abstract

In this paper we prove an existence result for a second order differential inclusion

\[x'' \in F(x, x') + f(t, x, x'), \quad x(0) = x_0, \quad x'(0) = y_0, \]

where \(F \) is an upper semicontinuous, compact valued multifunction, such that \(F(x, y) \subset \partial V(y) \), for some convex proper lower semicontinuous function \(V \), and \(f \) is a Carathéodory function.

1 Introduction

For the Cauchy problem

\[x' \in F(x), \quad x(0) = \xi, \]

where \(F \) is an upper semicontinuous, cyclically monotone, compact valued multifunction, the existence of local solutions was obtained by Bressan, et al. \[4\]. For some extensions of this results we refer to \[1\], \[7\], \[12\] and \[13\]. On the other hand, for second order differential inclusions

\[x'' \in F(x, x'), \quad x(0) = x_0, \quad x'(0) = y_0, \]

existence results were obtained by many authors (we refer to \[3\], \[8\], \[9\], \[11\], \[13\]). The case when \(F \) is an upper semicontinuous, compact valued multifunction, such that \(F(x, y) \subset \partial V(y) \), for some convex proper lower semicontinuous function \(V \), was considered in \[10\].

In this paper we prove an existence result for a second order differential inclusion

\[x'' \in F(x, x') + f(t, x, x'), \quad x(0) = x_0, \quad x'(0) = y_0, \]

where \(F \) is an upper semicontinuous, compact valued multifunction, such that \(F(x, y) \subset \partial V(y) \), for some convex proper lower semicontinuous function \(V \), and \(f \) is a Carathéodory function.

*Mathematics Subject Classifications: 34G20, 47H04.
†Universitatea “Constantin Brâncuși”, Bulevardul Republicii Nr. 1, 1400 Târgu-Jiu, Romania
2 Statement of Result

Let \mathbb{R}^m be the m-dimensional Euclidean space with scalar product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$. For $x \in \mathbb{R}^m$ and $\varepsilon > 0$ let

$$B_\varepsilon (x) = \{ y \in \mathbb{R}^m : \| x - y \| < \varepsilon \}$$

be the open ball centered at x with radius ε, and let $\overline{B}_\varepsilon (x)$ be its closure. For $x \in \mathbb{R}^m$ and for a closed subsets $A \subset \mathbb{R}^m$ we denote by $d(x, A)$ the distance from x to A given by

$$d(x, A) = \inf \{ \| x - y \| : y \in A \}.$$

Let $V : \mathbb{R}^m \to \mathbb{R}$ be a proper lower semicontinuous convex function. The multifunction $\partial V : \mathbb{R}^m \to 2^{\mathbb{R}^m}$ defined by

$$\partial V (x) = \{ \xi \in \mathbb{R}^m : V(y) - V(x) \geq \langle \xi, y - x \rangle, \forall y \in \mathbb{R}^m \}$$

is called the subdifferential (in the sense of convex analysis) of the function V.

We say that a multifunction $F : \mathbb{R}^m \to 2^{\mathbb{R}^m}$ is upper semicontinuous if for every $x \in \mathbb{R}^m$ and every $\varepsilon > 0$ there exists $\delta > 0$ such that

$$F(y) \subset F(x) + B_\varepsilon (0), \forall y \in B_\delta (x).$$

For a multifunction $F : \Omega \subset \mathbb{R}^{2m} \to 2^{\mathbb{R}^m}$ and for any $(x_0, y_0) \in \Omega$ we consider the Cauchy problem

$$x'' \in F(x, x'), x(0) = x_0, x'(0) = y_0,$$

under the following assumptions:

(H1) $\Omega \subset \mathbb{R}^{2m}$ is an open set and $F : \Omega \to 2^{\mathbb{R}^m}$ is an upper semicontinuous compact valued multifunction.

(H2) There exists a proper convex and lower semicontinuous function $V : \mathbb{R}^m \to \mathbb{R}$ such that

$$F(x, y) \subset \partial V(y), \forall (x, y) \in \Omega. \quad (2)$$

(H3) $f : \mathbb{R} \times \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m$ is a Carathéodory function, i.e. for every $x, y \in \mathbb{R}^m$, $t \mapsto f(t, x, y)$ is measurable, for $t \in \mathbb{R}$, $(x, y) \mapsto f(t, x, y)$ is continuous and there exists $m(.) \in L^2(\mathbb{R}_+^1)$ such that:

$$\| f(t, x, y) \| \leq m(t), \forall (x, y) \in \mathbb{R}^m \times \mathbb{R}^m, \text{a.e. } t \in \mathbb{R}. \quad (3)$$

By a solution of the problem (1) we mean any absolutely continuous function $x : [0, T] \to \mathbb{R}^m$ with absolutely continuous derivative x' such that $x(0) = x_0, x(0) = y_0$, and

$$x''(t) \in F(x(t), x'(t)) + f(t, x(t), x'(t)), \text{a.e. on } [0, T].$$

Our main result is the following:

THEOREM 1. If $F : \Omega \subset \mathbb{R}^{2m} \to 2^{\mathbb{R}^m}$, $f : \mathbb{R} \times \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m$ and $V : \mathbb{R}^m \to \mathbb{R}$ satisfy assumptions (H1), (H2) and (H3) then for every $(x_0, y_0) \in \Omega$ there exist $T > 0$ and a solution $x : [0, T] \to \mathbb{R}^m$ of the problem (1).
3 Proof of Our Result

Let \((x_0, y_0) \in \Omega\). Since \(\Omega\) is open, there exists \(r > 0\) such that the compact set \(K := \overline{B_r} (x_0, y_0)\) is contained in \(\Omega\). Moreover, by the upper semicontinuity of \(F\) in \((H_1)\) and by Proposition 1.1.3 in [2], the set

\[
F (K) := \bigcup_{(x,y) \in K} F (x,y)
\]

is compact, hence there exists \(M > 0\) such that

\[
\sup \{ \| v \| : v \in F (x,y), (x,y) \in K \} \leq M.
\]

Set

\[
T' := \min \left\{ \frac{r}{M} \sqrt{\frac{r}{M^2 - 2 (\| y_0 \| + 1)}} \right\}.
\]

By \((H_3)\) there exists \(T'' > 0\) such that

\[
\int_0^{T''} (m(t) + M) \, dt < r.
\]

We shall prove the existence of a solution of the problem (1) defined on the interval \([0, T]\), where \(0 < T \leq \min \{ T', T'' \}\).

For each integer \(n \geq 1\) and for \(1 \leq j \leq n\) we set \(t_n^j := \frac{j T'}{n}\), \(I_n^j = [t_n^{j-1}, t_n^j]\) and for \(t \in I_n^j\) we define

\[
x_n (t) = x_n^0 + (t - t_n^j) y_n^j + \frac{1}{2} (t - t_n^j)^2 v_n^j + \int_{t_n^j}^t (s - t) f (s, x_n^j, y_n^j) \, ds,
\]

where \(x_n^0 = x_0, y_n^0 = y_0\), and, for \(0 \leq j \leq n - 1\), \(v_n^j \in F (x_n^j, y_n^j)\),

\[
\begin{align*}
x_n^{j+1} &= x_n^j + \frac{T}{n} y_n^j + \frac{1}{2} \left(\frac{T}{n} \right)^2 v_n^j, \\
y_n^{j+1} &= y_n^j + \frac{T}{n} v_n^j.
\end{align*}
\]

Set, for \(t \in (t_n^{j-1}, t_n^j), j \in \{ 1, 2, ..., n \}\), \(f_n (t) := f (s, x_n^j, y_n^j)\).

We claim that \((x_n^j, y_n^j) \in K\) for each \(j \in \{ 1, 2, ..., n \}\). By the choice of \(T\) one has

\[
\| x_n^1 - x_0 \| \leq \frac{T}{n} \| y_0 \| + \frac{1}{2} \left(\frac{T}{n} \right)^2 \| v_0 \| < T \| y_0 \| + \frac{1}{2} M T^2 < r
\]

and

\[
\| y_n^1 - y_0 \| \leq T \| v_0 \| < r,
\]

hence the claim is true for \(j = 1\).

We claim that for each \(j > 1\) one has

\[
x_n^j = x_n^0 + j \frac{T}{n} y_n^0 + \frac{1}{2} \left(\frac{T}{n} \right)^2 [(2j - 1) v_n^0 + (2j - 3) v_n^1 + ... + v_n^{j-1}]
\]

\[
y_n^j = y_n^0 + \frac{T}{n} [v_n^0 + v_n^1 + ... + v_n^{j-1}].
\]
The statement holds true for \(j = 0 \). Assume it holds for \(j \), with \(1 \leq j < n \). Then by (5) one obtains that
\[
x^{j+1}_n = x^j_n + \frac{T}{n}y^j_n + \frac{1}{2}\left(\frac{T}{n}\right)^2 v^j_n
\]
\[
= x^0_n + \frac{jT}{n}y^0_n + \frac{1}{2}\left(\frac{T}{n}\right)^2 [(2j - 1)v^0_n + (2j - 1)v^1_n + ... + v^{j-1}_n] +
\]
\[
+ \frac{T}{n}y^0_n + \frac{T}{n}[(2j + 1)v^0_n + (2j - 1)v^1_n + ... + v^{j+1}_n] + \frac{1}{2}\left(\frac{T}{n}\right)^2 v^{j+1}_n
\]
\[
= x^0_n + (j + 1)\frac{T}{n}y^0_n + \frac{1}{2}\left(\frac{T}{n}\right)^2 [(2j + 1)v^0_n + (2j - 1)v^1_n + ... + v^{j+1}_n],
\]
and
\[
y^{j+1}_n = y^j_n + \frac{T}{n}v^j_n = y^0_n + \frac{T}{n}[v^0_n + v^1_n + ... + v^j_n].
\]
Therefore the relations in (6) are satisfied for each \(j \), with \(1 \leq j \leq n \) and our claim was proved.

Now, by (6) it follows easily that
\[
\|x^j_n - x_0\| \leq \frac{jT}{n}\|y_0\| + \frac{1}{2}\left(\frac{T}{n}\right)^2 [(2j - 1) + (2j - 3) + ... + 3 + 1] M
\]
\[
= \frac{jT}{n}\|y_0\| + \frac{1}{2}\left(\frac{jT}{n}\right)^2 < T\|y_0\| + \frac{1}{2}MT^2 < r.
\]
and
\[
\|y^j_n - y_0\| \leq \frac{jT}{n} M < r,
\]
proving that \((x^j_n, y^j_n) \in K := B_r (x_0, y_0), \) for each \(j \), with \(1 \leq j \leq n \).

By (4) we have that
\[
x^j_n (t) = y^j_n + (t - t^j_n)v^j_n + \int_{t^j_n}^t f_n (s) ds,
\]
\[
x^{j+1}_n (t) = v^j_n + f_n (t), \forall t \in I^j_n,
\]
hence
\[
\|x^{j+1}_n (t)\| \leq M + m (t), \forall t \in [0, T],
\]
\[
\|x^j_n (t)\| \leq \|y_0\| + 2r, \forall t \in [0, T]
\]
(7)
\[
\|x_n (t)\| \leq \|x_0\| + 2r (T + 1), \forall t \in [0, T]
\]
Moreover, for all \(t \in [0, T] \) we have
\[
d ((x_n(t), x'_n(t), x''_n(t) - f_n(t), \text{graph}(F)) \leq \frac{2r(T + 1)}{n}. \)
(8)

Then, by (7), we have
\[
\int_0^T \|x''_n(t)\|^2 dt \leq \int_0^T (M + m(t))^2 dt
\]
and therefore the sequence \((x_n')_n\) is bounded in \(L^2 ([0, T], \mathbb{R}^m)\).

For all \(\tau, t \in [0, T]\), we have that

\[
\|x' (t) - x' (\tau)\| \leq \left| \int_{\tau}^{t} \|x'' (s)\| \, ds \right| \leq \left| \int_{\tau}^{t} (M + m(s))^2 \, ds \right|
\]

so that the sequence \((x_n')_n\) is equiuniformly continuous. Moreover, by (7) we see that \((x_n)_n\) is equi-Lipschitzian, hence equiuniformly continuous.

Therefore, \((x_n')_n\) is bounded in \(L^2 ([0, T], \mathbb{R}^m)\), \((x_n')_n\) and \((x_n)_n\) are bounded in \(C ([0, T], \mathbb{R}^m)\) and equiuniformly continuous, hence, by Theorem 0.3.4 in [2] there exist a subsequence, still denoted by \((x_n)_n\), and an absolutely continuous function \(x : [0, T] \to \mathbb{R}^m\) such that

(i) \((x_n)_n\) converges uniformly to \(x\);
(ii) \((x_n')_n\) converges uniformly to \(x'\);
(iii) \((x_n'')_n\) converges weakly in \(L^2 ([0, T], \mathbb{R}^m)\) to \(x''\).

Since \((f_n (\cdot))_n\) converges to \(f (\cdot, \cdot)\) in \(L^2 ([0, T], \mathbb{R}^m)\), then, by \((H_2)\), (8) and Theorem 1.4.1 in [2] we obtain

\[
x'' (t) - f (t, x(t), x' (t)) \in \text{co} \mathcal{F} (x (t), x' (t)) \subset \partial V (x' (t)), \text{ a.e., } t \in [0, T], \quad (9)
\]

where \(\text{co}\) stands for the closed convex hull.

By (9) and Lemma 3.3 in [5] we obtain that

\[
\frac{d}{dt} V (x' (t)) = \langle x'' (t), x'' (t) - f (t, x(t), x' (t)) \rangle, \text{ a.e., } t \in [0, T],
\]

hence,

\[
V (x' (T)) - V (x' (0)) = \int_{0}^{T} \|x'' (t)\|^2 \, dt - \int_{0}^{T} \langle x'' (t), f (t, x(t), x' (t)) \rangle \, dt. \quad (10)
\]

On the other hand, since

\[
x_n'' (t) - f_n (t) = v_n^j \in F (x_n (t), y_n^j) \subset \partial V (x_n (t)), \forall t \in I_n^j,
\]

and so from the properties of the subdifferential of a convex function, it follows that

\[
V (x_n (t_n) + 1)) - V (x_n (t_n)) \geq \langle x'' (t) - f_n (t), x_n (t_n) + 1) - x_n (t_n) \rangle = \langle x'' (t) - f_n (t), \int_{t_n}^{t_n + 1} x_n (s) \, ds \rangle = \int_{t_n}^{t_n + 1} \|x'' (t)\|^2 \, dt - \int_{t_n}^{t_n + 1} \langle f_n (t), x_n (t) \rangle \, dt.
\]

By adding the \(n\) inequalities from above, we get

\[
V (x_m (T)) - V (y_0) \geq \int_{0}^{T} \|x'' (t)\|^2 \, dt - \int_{0}^{T} \langle f_n (t), x_n (t) \rangle \, dt. \quad (11)
\]
The convergence of \((f_n(\cdot))_n\) in \(L^2\)-norm and of \((x''_n(\cdot))_n\) in the weak topology of \(L^2\) implies that
\[
\lim_{n \to \infty} \int_0^T \langle f_n(t), x''_n(t) \rangle dt = \int_0^T \langle f(t, x(t), x'(t)), x''(t) \rangle dt.
\]

By passing to the limit as \(n \to \infty\) in (11) and using the continuity of \(V\) we see that
\[
V(x'(T)) - V(y_0) \geq \limsup_{n \to \infty} \int_0^T \|x''_n(t)\|^2 dt - \int_0^T \langle f(t, x(t), x'(t)), x''(t) \rangle dt,
\]
and, by (10) and (12), we obtain
\[
\|x''(t)\|_{L^2} \geq \limsup_{n \to \infty} \|x''_n(t)\|_{L^2}.
\]

Since, by the weak lower semicontinuity of the norm,
\[
\|x''(t)\|_{L^2} \leq \liminf_{n \to \infty} \|x''_n(t)\|_{L^2},
\]
we have that \(\|x''(t)\|_{L^2}^2 = \lim_{n \to \infty} \|x''_n(t)\|_{L^2}^2\) i.e. \((x''_n)_n\) converge to \(x''\) strongly in \(L^2([0, T], \mathbb{R}^m)\) (Proposition III.30 in [6]). Hence a subsequence again denoted by \((x''_n)_n\) converge pointwise to \(x''\).

Since by \((H_1)\) the graph of \(F\) is closed and, by (8),
\[
\lim_{n \to \infty} d((x_n(t), x'_n(t), x''_n(t) - f_n(t)), \text{graph}(F)) = 0,
\]
we obtain that
\[
x''(t) \in F(x(t), x'(t)) + f(t, x(t), x'(t)), \text{ a.e., } t \in [0, T].
\]

Since \(x\) obviously satisfies the initial conditions, it is a solution of the problem (1).

4 An Example

For \(D \subset \mathbb{R}^n\) and \(x \in D\), denote by \(T_D(x)\) the Bouligand’s contingent cone of \(D\) at \(x\), defined by
\[
T_D(x) = \left\{ v \in \mathbb{R}^m; \liminf_{h \to 0^+} \frac{d(x + hv, D)}{h} = 0 \right\}.
\]

Also, \(N_D(x)\) is the normal cone of \(D\) at \(x\), defined by
\[
N_D(x) = \{ v \in \mathbb{R}^m; \langle y, v \rangle \leq 0, (\forall) v \in T_D(x) \}.
\]

In what follows we consider \(D\) as a closed subset such that \(\theta \in D\) and \(\theta \notin \text{Int}(D)\), where \(\theta\) is the zero element of \(\mathbb{R}^m\).

We set \(K = T_D(\theta), Q = \text{Int}(N_D(\theta)), \Omega = B_1(\theta) \times Q\) and denote by \(\pi_K(y)\) the projection
\[
\pi_K(y) = \{ u \in K : d(y, u) = d(y, K) \}.
\]
THEOREM 2. Suppose \(\text{Int} \left(N_D(x) \right) \neq \emptyset \) and \(f : R \times R^m \times R^m \to R^m \) satisfies the assumption \((H_3)\). Then there exist \(T > 0 \) and a solution \(x : [0, T] \to R^m \) for the following Cauchy problem

\[
x'' \in (1 - \|x\|) \pi_K (x') + f(t, x, x'), \quad (x(0), x'(0)) = (x_0, y_0).
\]

PROOF. By Proposition 2 in [4] there exists a convex function \(V \) such that

\[
\pi_K (y) \subset \partial V(y), \quad (\forall) y \in Q.
\]

We recall (see [4]) that the function \(V \) is defined by

\[
V(y) = \sup \{ \varphi_u(y); u \in K \},
\]

where

\[
\varphi_u(y) = \langle u, y \rangle - \frac{1}{2} \|u\|^2, \quad y \in Q.
\]

Also, we observe that the following assertions are equivalent:

\[
\begin{cases}
(i) \; u \in \pi_K (y); \\
(ii) \; \|y - u\| \leq \|y - v\|, \quad (\forall) v \in K; \\
(iii) \; \varphi_u(y) \geq \varphi_v(y), \quad (\forall) v \in K.
\end{cases} \quad (13)
\]

Let \((x, y) \in \Omega \) be and let \(z \in F(x, y) \). Then there exists \(u \in \pi_K (y) \) such that \(z = (1 - \|x\|) u \). We have that

\[
\varphi_{(1-\|x\|)}(y) = \langle (1 - \|x\|) u, y \rangle - \frac{1}{2} (1 - \|x\|)^2 \|u\|^2 \\
\geq \langle (1 - \|x\|) u, y \rangle - \frac{1}{2} (1 - \|x\|) \|u\|^2 \\
= \langle u, y \rangle - \frac{1}{2} \|u\|^2 - \|x\| \langle \langle u, y \rangle - \frac{1}{2} \|u\|^2 \rangle \\
= (1 - \|x\|) \varphi_u(y),
\]

hence

\[
\varphi_{(1-\|x\|)}(y) \geq (1 - \|x\|) \varphi_u(y). \quad (14)
\]

Since \(u \in \pi_K (y) \), then \(\varphi_u(y) \geq \varphi_v(y) \), for every \(v \in K \), and by (14) it follows that

\[
\varphi_{(1-\|x\|)}(y) - \varphi_v(y) \geq (1 - \|x\|) \varphi_u(y) - \varphi_v(y) \\
\geq (1 - \|x\|) \varphi_v(y) - \varphi_v(y) = -\|x\| \varphi_v(y),
\]

hence

\[
\varphi_{(1-\|x\|)}(y) - \varphi_v(y) \geq -\|x\| \varphi_v(y) \quad (15)
\]

for every \(v \in K \).

Since \(y \in Q = \text{Int} \left(N_D(\theta) \right) \) we have that

\[
\langle y, v \rangle \leq 0, \quad \text{for every } v \in K = T_D(\theta),
\]

\[
\varphi_{(1-\|x\|)}(y) - \varphi_v(y) \geq -\|x\| \varphi_v(y) \quad (15)
\]

for every \(v \in K \).

Since \(y \in Q = \text{Int} \left(N_D(\theta) \right) \) we have that

\[
\langle y, v \rangle \leq 0, \quad \text{for every } v \in K = T_D(\theta),
\]

\[
\varphi_{(1-\|x\|)}(y) - \varphi_v(y) \geq -\|x\| \varphi_v(y) \quad (15)
\]

for every \(v \in K \).

Since \(y \in Q = \text{Int} \left(N_D(\theta) \right) \) we have that

\[
\langle y, v \rangle \leq 0, \quad \text{for every } v \in K = T_D(\theta),
\]

\[
\varphi_{(1-\|x\|)}(y) - \varphi_v(y) \geq -\|x\| \varphi_v(y) \quad (15)
\]

for every \(v \in K \).

Since \(y \in Q = \text{Int} \left(N_D(\theta) \right) \) we have that

\[
\langle y, v \rangle \leq 0, \quad \text{for every } v \in K = T_D(\theta),
\]
hence
\[\varphi_v(y) = (y, v) - \frac{1}{2} \| v \|^2 \leq 0, \text{ for every } v \in K. \] \hfill (16)

From (15) and (16), it follows that
\[\varphi((1-\|x\|)u) \geq \varphi_v(y), \quad v \in K. \] \hfill (17)

Then (17) and the equivalent assertions in (13) imply that
\[z = (1-\|x\|)u \in \pi_K(y) \subset \partial V(y). \]

If we define the multifunction \(F : \Omega \to 2^{\mathbb{R}^m} \) by
\[F(x, y) = (1-\|x\|) \pi_K(y), \]
then \(F \) is with compact valued and upper semicontinuous and there exists a convex function \(V : \mathbb{R}^m \to \mathbb{R} \) such that
\[F(x, y) \subset \partial V(y), \quad (\forall) (x, y) \in \Omega. \]

Therefore, \(F \) and \(f \) satisfies assumptions \((H_1), (H_2), (H_3)\) and our proof is complete.

References

