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Abstract

The study of parabolic operators in nonsmooth domains often requires the
asymptotic behavior of the eigenvalues and eigenfunctions of some derivative op-
erators. The aim of this work is to determine some spectral properties for an
operator of order 2m.

1 Introduction

We have studied the parabolic operators ∂t−∂2x and ∂t+∂4x in a nonsmooth (polygonal)
domain (Sadallah [7,8,9], Labbas and Sadallah [2] and Labbas et al. [3]). The solutions
of the associated problems contain some singular parts. Our aim was to determine the
optimal regularity of these singular parts in anistropic Sobolev spaces. When we try
to generalize this study to the 2m-parabolic operator ∂t + (−1)m∂2mx (with m ∈ N),
it is necessary to consider the derivative operator A defined by Au = (−1)mu(2m) with
domain

D(A) = H2m(0, 1) ∩Hm
0 (0, 1)

where
Hm(0, 1) = u ∈ L2(0, 1) : u(k) ∈ L2(0, 1), k = 1, ...,m

and
Hm
0 (0, 1) = u ∈ Hm(0, 1) : u(j)(0) = u(j)(1) = 0, j = 0, ...,m− 1 ,

where L2(0, 1) stands for the usual Lebesgue space.
It is well known that L2(0, 1) admits an orthonormal basis (ϕn)n∈N which is a

solution of the spectral problem

Aϕn = λnϕn
ϕn ∈ D(A), (1)

where (λn)n∈N is a sequence of positive numbers such that limn→∞ λn = +∞ (see
Dautry and Lions [1]). The indicated generalization requires some asymptotic estimates
about the spectral elements (λn)n∈N and (ϕn)n∈N. In this work, we prove the following
inequalities, where C1 and C2 are two positive constants :
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1. C1n
2m ≤ λn ≤ C2n2m,∀n ∈ N,

2. C1n
k ≤ ϕ

(k)
n

L2(0,1)
≤ C2nk, k = 0, ..., 2m,∀n ∈ N,

3. C1n
k ≤ ϕ

(k)
n (1) ≤ C2nk, k = m, 2m− 1;∀n ∈N,

4. ϕ
(k)
n (1) ≤ C2nk+ 1

2 , k = m+ 1, ..., 2m− 2;∀n ∈ N.

Observe that ϕ
(k)
n (1) can be replaced by ϕ

(k)
n (0) in the previous inequalities.

The proof of the first estimate uses the widths of Kolmogorov and Gelfand (see
Triebel [10]). The other ones are obtained by classical techniques in Sobolev spaces.

2 Estimate of the eigenvalues λn

This short section is devoted to the asymptotic estimate of the eigenvalues λn of Prob-
lem (1).

THEOREM 1. There exist two constants C1 > 0 and C2 > 0 such that

C1n
2m ≤ λn ≤ C2n2m, ∀n ∈N. (2)

In the sequel, the relation (2) will be expressed as λn ∼ n2m.
Theorem 1 is a consequence of the two following lemmas. We denote by N(λ) =

|λn|≤λ 1 where λ is a given positive number; this means that N(λ) is the number of
the eignevalues λn of Problem (1) such that |λn| ≤ λ.

LEMMA 1. Let τ be an arbitrary positive number. Then N(λ)+1 ∼ λτ +1 if, and

only if, λτ + 1 ∼ n 1
τ .

For the proof, see Triebel [10, p. 392].

LEMMA 2. N(λ) + 1 ∼ λ
1
2m + 1.

The proof of this lemma uses the widths of Kolmogorov and Gelfand (see Pietsch
[5]).

Relation (2) of Theorem 1 is obtained from the previous lemmas by putting τ =
1/2m.

REMARK 1. There is another method for the estimate of (λn) based on some
numerical techniques (see Raviard and Thomas [6]).

3 Estimate of ϕ(k)n L2(0,1)

The main result of this section is

THEOREM 2. ϕ
(k)
n

L2(0,1)
∼ nk for k = 0, 1, ..., 2m and n ∈ N.
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PROOF. We shall use some properties of Sobolev spaces Hs(0, 1) with s > 0 and
the interpolation inequality

∃C > 0, nun[D(A),L2(0,1)]θ ≤ C nun
1−θ
D(A) nunθL2(0,1) , ∀θ ∈ [0, 1] ,

where D(A), L2(0, 1)
θ
is the interpolation real space between D(A) and L2(0, 1) with

index θ (see Lions and Magenes [4, p.32]). The norm of D(A) is the graph norm, while
D(A), L2(0, 1)

θ
is equipped with one of his equivalent norms, for instance the norm

of space H2m(1−θ)(0, 1) (see Lions & Magenes [4, p.49]). Then

nun[D(A),L2(0,1)]θ = nunH2m(1−θ)(0,1) , ∀u ∈ D(A),∀θ ∈ [0, 1] .
Thus, putting u = ϕn and k/2m = 1 − θ, with k = 0, 1, ..., 2m, we deduce (note that
nϕnnL2(0,1) = 1)

∃C > 0, ϕ(k)n
L2(0,1)

≤ nϕnnHk(0,1) ≤ C nϕnn
k
2m

D(A) .

But
nunD(A) ∼ nunL2(0,1) + u(2m)

L2(0,1)
, ∀u ∈ D(A),

therefore
∃C > 0, ϕ(k)n

L2(0,1)
≤ Cnk. (3)

Next, we prove the estimate

∃C > 0, Cnk ≤ ϕ(k)n
L2(0,1)

, ∀k = 0, 1, ..., 2m,∀n ∈N.

Integrating by parts, we obtain for every k = 0, 1, ...,m

λn = ϕ(m)n

2

L2(0,1)
=

1

0

ϕ(m)n (x)
2

dx = (−1)k
1

0

ϕ(m+k)n (x)ϕ(m−k)n (x)dx.

Then, Theorem 1 gives

Cn2m ≤ λn ≤ ϕ(m+k)n
L2(0,1)

ϕ(m−k)n
L2(0,1)

, ∀k = 0, 1, ...,m,∀n ∈ N.

On the other hand, in view of (3), it is easy to see that ∃C > 0,

Cnm+k ≤ ϕ(m+k)n
L2(0,1)

, ∀k = 0, 1, ...,m,∀n ∈ N,

Cnm−k ≤ ϕ(m−k)n
L2(0,1)

, ∀k = 0, 1, ...,m,∀n ∈ N.
This means that

∃C > 0, Cnk ≤ ϕ(k)n
L2(0,1)

, ∀k = 0, 1, ..., 2m,∀n ∈ N.

This ends the proof of Theorem 2.
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4 Estimate of ϕ(k)n (1)

This section is devoted to the estimate of the derivatives ϕ
(k)
n (1) and ϕ

(k)
n (0) for all

k = m,m+1, ..., 2m−1.Observe that ϕ(k)n (1) = ϕ
(k)
n (0) = 0 for all k = 0, 1, ...,m−1, 2m,

because ϕn ∈ Hm
0 (0, 1). In the sequel, we shall give the details of the estimate of ϕ

(k)
n (1).

That of ϕ
(k)
n (0) is treated in a similar way.

THEOREM 3. (i) ϕ
(m)
n (1) ∼ nm,∀n ∈ N, and (ii) ϕ(2m−1)n (1) ∼ n2m−1,∀n ∈ N.

PROOF. 1) Thanks to the relation

ϕ(k)n (1) = ϕ(k)n (0) = 0,∀k = 0, 1, ...,m− 1,∀n ∈ N,

and integrating by parts, we get,

ϕ(m)n (1)
2

=

1

0

d

dx
x ϕ(m)n (x)

2

dx

= ϕ(m)n

2

L2(0,1)
+ 2

m−1

k=1

(−1)k
1

0

ϕ(m+k)n (x)ϕ(m−k)n (x)dx+

2(−1)m−1
1

0

xϕ(2m)n (x)ϕ3n(x)dx.

In addition, we have

ϕ(m)n

2

L2(0,1)
= λn,

1

0

ϕ(m+k)n (x)ϕ(m−k)n (x)dx = (−1)kλn,

and

(−1)m
1

0

xϕ(2m)n (x)ϕ3n(x)dx = λn

1

0

xϕn(x)ϕ
3
n(x)dx = −

λn
2
,

thus

ϕ(m)n (1)
2

= λn + 2λn(m− 1) + λn = 2mλn.

So, Theorem 1 implies

ϕ(m)n (1) ∼ nm,∀n ∈N.
2) The same method gives

ϕ(2m−1)n (1)
2
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=

1

0

d

dx
x ϕ(2m−1)n (x)

2

dx

= ϕ(2m−1)n

2

L2(0,1)
+ 2(−1)mλn

m−1

k=1

(−1)k−1(−1)m−k−1 ϕ(m−1)n

2

L2(0,1)

−λn ϕ(m−1)n

2

L2(0,1)

= ϕ(2m−1)n

2

L2(0,1)
+ (2m− 1)λn ϕ(m−1)n

2

L2(0,1)
.

Consequently, Theorem 1 and Theorem 2 lead to

ϕ(2m−1)n

2

L2(0,1)
+ (2m− 1)λn ϕ(m−1)n

2

L2(0,1)
∼ n2(2m−1).

Hence
ϕ(2m−1)n (1) ∼ n2m−1.

This ends the proof of Theorem 3.

REMARK 2. We do not know whether the generalisation of the previous result for
k = m+ 1, ..., 2m− 2 is possible or not. Indeed, our method do not allow us to prove
the relation

ϕ(k)n (1) ∼ nk,∀k = m+ 1, ..., 2m− 2,∀n ∈ N. (4)

However, relation (4) is true form = 1, 2 (see Sadallah [7, 8]). Furthermore, the method
used here permits us to show relation (4) for m = 3.
The following result partially answers the question in the previous Remark 2.

THEOREM 4. ϕ
(k)
n (1) ≤ nk+1/2 for k = m+ 1, ..., 2m− 2 and for n ∈N.

PROOF. There exists a constant C > 0 such that

ϕ(k)n (1)
2

=

1

0

d

dx
x ϕ(k)n (x)

2

dx

= ϕ(k)n
2

L2(0,1)
+ 2

1

0

xϕ(k)n (x)ϕ(k+1)n (x)dx

≤ ϕ(k)n
2

L2(0,1)
+ 2 ϕ(k)n ϕ(k+1)n

L2(0,1)

≤ Cn2k+1

for k = m+1, ..., 2m−2 and for n ∈ N. This relation leads to the inequality of Theorem
4.

REMARK 3. It is possible to prove the relation

Cnk−1 ≤ xϕ(k)n
L2(0,1)

,∀k = 0, 1, ..., 2m,∀n ∈ N,
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but the converse of this inequality is not sure to hold.
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