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Abstract

In this note we study the following question: Under which minimal assump-
tions on the function f is it true that the condition (∆N+1

h f)(a) = 0 for all a ∈
R and h ≥ 0 implies that f is a polynomial of degree less than or equal to N?

1 Introduction

The Finite Difference Calculus was developed before Infinitesimal Calculus and was an
important tool for its creation by Newton and Leibnitz (see [1, 5]). For example, the
computation of tables for some elementary functions such as trigonometric functions,
logarithms, etc., was a main problem at that period, since these functions were very
useful for their applications in Celestial Mechanics, Navigation, Geography, etc. and
such tables were computed by methods based on the Finite Difference Calculus. In par-
ticular, Newton studied methods based on the forward differences for the interpolation
of functions and the summation of power series.
Nowadays, the Finite Difference Calculus is still an important tool for the study

of numerical methods in Science and Engineering [7], since many formulas can be
expressed in terms of the forward differences ∆khf , where f is evaluated at a table
of equidistant points, {x, x + h, x + 2h, ..., x + Nh}, (∆0hf)(x) = f(x), (∆1hf)(x) =
f(x+ h)− f(x) and

(∆khf)(x) = (∆
1
h(∆

k−1
h f))(x) = (∆k−1h f)(x+ h)− (∆k−1h f)(x), k = 2, 3, ... .

On the other hand, many discrete dynamical systems are modeled by the use of fi-
nite difference operators [3] and there are many people interested in their numerical
simulation, in the study of their stability properties, etc. Another motive why the dif-
ference operators are of interest is that they are related with the convexity properties of
functions and the approximation by linear operators that preserve convexities ([9, 8]).
Thus, there are many reasons that justify the importance of the forward difference
operators ∆kh.
In the sequel, we denote by ΠN the space of real polynomials of degree less than or

equal to N .
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2 Forward Differences

We note that many formulas from Numerical Analysis are based on the use of the
interpolation polynomial of a function f at the points {a + kh}Nk=0. This polynomial
satisfies the relation

p(t) = f(a) +
∆1hf(a)

1!h
(t− a) + ...+ ∆

N
h f(a)

N !hN
(t− a) · · · (t− (a+ (N − 1)h)),

a formula that is usually interpreted as the analog of Taylor’s expansion of a function
for the Finite Difference Calculus, although there are some important differences be-
tween both expressions. For example, Taylor’s formula requires from f to admit the
derivatives {f 3(a), f 33(a), ..., f (N)(a)} but the formula above requires nothing from f .
It follows from the expression of the error in the Taylor formula (see [5]),

R(f)(t) = f(t)−
N

k=0

f (k)(a)

k!
(t− a)k = f (N+1)(ηa)

(N + 1)!
(t− a)N+1

that any function f ∈ C(N+1)[a, b] which satisfies f (N+1)(t) = 0 for all t ∈ [a, b] is a
polynomial of degree less than or equal to N . Of course, there are other ways to prove
the claim. For example, we can just integrate several times the derivative f (N+1)(t) = 0
of f , and use in each step the fundamental theorem of Calculus.
Another form to guarantee that a certain function f is a polynomial of degree ≤ N

is through the use of the divided differences: f [xi] = f(xi),

f [xi0 , xi1 , ..., xin ] :=
f [xi0 , xi1 , ..., xin−1 ]− f [xi1 , xi1 , ..., xin ]

xi0 − xin
,

where σ(k) = ik, k = 0, ..., n is an arbitrary permutation of {0, ..., n}, n = 1, 2, ... . It
is a well known theorem by Newton (see [5]) that

pN (t) = f [x0] + f [x0, x1](t− x0) + ...+ f [x0, ..., xN ](t− x0)(t− x1) · · · (t− xN−1)

is the unique polynomial that interpolates f at the nodes {x0, ..., xN}. Hence

f(t)− pN (t) = f [x0, ..., xN , t](t− x0)(t− x1) · · · (t− xN )

gives the expression of the error of interpolation when approximating f by pN (t). More-
over, it follows that f is a polynomial of degree ≤ N (on the interval [a, b]) if, and only
if, f [x0, · · · , xN , t] = 0 for a certain choice of {xi}Ni=0 ⊂ [a, b] and all t ∈ [a, b] \ {xi}Ni=0.
We have assumed nothing with respect to the continuity, the differentiability, etc. of the
function f . Thus, it is possible to characterize a function to be a polynomial without
a priori assumptions about its smoothness, a fact that is somewhat surprising. There
are several easy explanations of such a phenomenon. Perhaps the most understandable
reason is that there are many ways to determine uniquely a polynomial of degree ≤ N
since there are many forms to choose a basis of the vector space ΠN . Thus, fixing the
basis {1, (t− a), (t− a)2, · · · , (t− a)N} of ΠN is only a choice between infinitely many
others. When we fix this basis, the expansion of p(t) as a linear combination of the
basis is its Taylor expansion

p(t) =
N

k=0

p(k)(a)

k!
(t− a)k
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but, for example, if we fix the basis {1, (t−x0), (t−x0)(t−x1), · · · , (t−x0)(t−x1)(t−
xN−1)} of ΠN , the expansion of p ∈ ΠN as a linear combination of this basis is given
by

p(t) = p[x0] + p[x0, x1](t− x0) + · · ·+ p[x0, · · · , xN ](t− x0)(t− x1) · · · (t− xN−1)

Now we can ask: what about the basis {1, (t−a), (t−a))(t−(a+h)), · · · , (t−a) · · · (t−
(a+ (N − 1)h)}? In this case we obtain that

p(t) = p(a) +
∆1hp(a)

1!h
(t− a) + · · ·+ ∆

N
h p(a)

N !hN
(t− a) · · · (t− (a+ (N − 1)h)).

The main question we solve in this note is the following: Under which assumptions on
the function f is it true that the condition given by

(∆N+1h f)(a) = 0 for all a ∈ R and h ≥ 0

implies that f is a polynomial of degree less than or equal to N?. We will see that the
answer is not so easy as in the divided differences case.
We close this introductory section by recalling that if we write ∆1h = 1d−Th, where

1d(f)(x) = f(x) and Th(f)(x) = f(x + h) and we use the Binomial theorem (since
both operators 1d and Th commute), we have that

∆k+1h f(x) = (1d −Th)k+1(f)(x) =
k+1

i=0

k + 1
i

(−1)k+1−if(x+ ih),

a formula that will be used several times throughout this note.

2 Main results

Let us start this section with an example of a function f : R → R which is not a
polynomial but satisfies (∆2hf)(a) = 0 for all a ∈ R and h ≥ 0. To this purpose, we
use the following well known result from Linear Algebra:

THEOREM 1 ([4, Theorem 2.1]). Suppose that A is a subset of a vector space V
over the field K which spans V and C is a linearly independent subset of A. Then
there exists a basis B of V such that C ⊂ B.
It follows the existence of a basis B of R as a Q-vector space, with 1 ∈ B. Now,

we can define the map L as the unique Q-linear map L : R → R that satisfies the
relations:

L(v) = v if v ∈ B \ {1}
0 if v = 1.

Given x ∈ R and h ≥ 0, we have that

∆2hL(x) = L(x+ 2h)− 2L(x+ h) + L(x)
= L(x) + 2L(h)− 2L(x)− 2L(h) + L(x) = 0,



4 Forward Differences

since L is Q-linear. On the other hand, it is clear that L /∈ Π1. In fact, L is nowhere
continuous. To prove this it is enough to prove that L is not continuous at the origin.
We can assume without loss of generality that |v| ≥ 1 for all v ∈ B. Now, if v ∈ B\{1}
then v ∈ R \Q, since {v, 1} is Q-linearly independent. This implies that for all ε > 0
there exists integers n,m such that |mv − n| < ε and |L(nv − m)| = |nv| ≥ n ≥ 1.
Hence L is nowhere continuous.
On the other hand, any Q-linear map T : R → R satisfies that for all α ∈ R, the

limit limx→0;x∈αQ T (x) exits and is equal to zero. This motivates us to introduce the
following concept:

DEFINITION 1. Let f : R→ R be a function. We say that f is Q-continuous at
x0 ∈ R if for all α ∈ R the relation limx→x0;x∈αQ f(x) = f(x0) holds. We say that f
is Q-continuous on a set Ω ⊂ R if f is Q-continuous at x0 for all x0 ∈ Ω.
Of course, theQ-continuity at a point does not imply the continuity at that point, as

we have already proved. On the other hand, the map L defined above is Q-continuous
only at x = 0.

REMARK 1. Discontinuous Q-linear maps, like the L above, were introduced
in 1905 by G. Hamel [6], as examples of additive functions f : R → R that are
discontinuous everywhere, a problem that was open for many years in the XIX century,
after the treatise of A. L. Cauchy [2], who proved that the linear maps f(t) = at are
the unique solutions of the so called Cauchy functional equation,

f(x+ y) = f(x) + f(y), x, y ∈ R,

that are continuous at least at one point.
We now state the main result of this note.

THEOREM 2. Let us assume that ∆N+1h f(x) = 0 for all x ∈ R and all h > 0. If f
is Q-continuous on a set {xi}Ni=0 of N + 1 points, then f ∈ ΠN .
PROOF. Let us assume that f is Q-continuous at the points {x0, ..., xN} ⊂ R and

denote by p(t) the unique polynomial from ΠN that interpolates f at these points. We
will show that f = p.
Let us fix a value a ∈ R and set

y
(0)
i = i

a

N
; i ∈ Z.

For all j ∈ Z, there exists a unique polynomial pj(t) ∈ ΠN such that pj(y
(0)
i ) = f(y

(0)
i ),

i = j, j + 1, ..., j +N . We denote by F the set

F = {z ∈ R : f(z) = p0(z)}.

Clearly, {y(0)i }Ni=0 ⊂ F. On the other hand,

∆N+1a
N

f (0) =
N+1

i=0

N + 1
i

(−1)N+1−if i
a

N

=
N

i=0

N + 1
i

(−1)N+1−if(y(0)i ) + f(y
(0)
N+1),
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so that ∆N+1a
N

f (0) = 0 implies that

f(y
(0)
N+1) = −

N

i=0

N + 1
i

(−1)N+1−if(y(0)i )

= −
N

i=0

N + 1
i

(−1)N+1−ip0(y
(0)
i )

= p0(y
(0)
N+1)− ∆N+1a

N
p0 (0) = p0(y

(0)
N+1),

since ∆N+1a
N

p0 (0) = 0 (p0 is a polynomial of degree less than or equal to N). This

means that p0 = p1. The same argument proves that pj = pj+1 for all j ∈ Z. Of
course, this means that

{y(0)i }∞i=−∞ ⊂ F. (1)

Let us now set y
(1)
i = i a2N ; i ∈ Z and denote by p0 the unique polynomial from ΠN

that interpolates f at the nodes y
(1)
i = i a2N ; i ∈ {0, ..., N}. We can follow an argument

analogous to the one that we have already used for the proof of (1), to prove that

f(y
(1)
i ) = p0(y

(1)
i ), i ∈ Z,

being the unique difference that now we need to use that ∆N+1a
2N

f (x) ≡ 0 (we change
the step h = a/N by the step h = a/(2N)). Taking into account that {y(0)i }∞i=−∞ ⊂
{y(1)i }∞i=−∞ and f |{y(0)

i
}∞
i=−∞

= (p0)|{y(0)
i
}∞
i=−∞

, we conclude that p0 = p0. Hence

{y(1)i }∞i=−∞ ⊂ F. Once again, the repetition of an analogous argument proves that the
set {y(n)i }∞i=−∞ := {i a

2nN }∞i=−∞, satisfies {y
(n)
i }∞i=−∞ ⊂ F for all n ∈ N. It follows

that F ∩ aQ is a dense subset of R.
From the Q-continuity of f (and p0) at the points {xi}Ni=0, it follows that for all

ε > 0 there exists some δ > 0 such that if {yδi }Ni=0 ⊂ aQ∩F and maxi=0,···,N |xi−yδi | < δ
then

max
i=0,···,N

f(xi)− f(yδi ) < ε/2 and max
i=0,···,N

p0(xi)− p0(yδi ) < ε/2.

Of course, it follows from the density of F∩aQ in R that such a set of points {yδi }Ni=0 ⊂
F always exists. Hence,

|f(xi)− p0(xi)| ≤ f(xi)− f(yδi ) + f(yδi )− p0(xi)
= f(xi)− f(yδi ) + p0(y

δ
i )− p0(xi)

≤ ε/2 + ε/2 = ε,

for i = 0, 1, ..., N. This implies

f(xi) = p0(xi) for i = 0, 1, ..., N,
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since ε was arbitrarily chosen. Thus p0(t) = p(t) and

f(a) = f(y
(0)
N ) = p0(y

(0)
N ) = p(y

(0)
N ) = p(a).

Now, a ∈ R was arbitrarily chosen, so that f = p. The proof is complete.

REMARK 2. Theorem 2 is sharp, since for all N ≥ 1 there are functions f /∈ ΠN
that satisfy ∆N+1h f(x) = 0 for all x ∈ R and all h > 0 and are Q-continuous at exactly
N distinct points {x1, ..., xN}.
PROOF. We set F(t) = R(t)L(t), where R(t) = (t− 1)(t− 2) · · · (t− (N − 1)). It

is obvious that F(t) is Q-continuous exactly at the N distinct points {0, 1, ..., N − 1},
and it is not a polynomial. Thus, we only need to check that ∆N+1h F(x) = 0 for all
x ∈ R and h > 0. Now,

∆N+1h F(x) = L(x)∆N+1h R(x) + L(h)
N+1

i=0

N + 1
i

(−1)N+1−iR(x+ ih)i

= L(h)∆N+1h R∗(x) = 0,

where R∗(t) is defined to be R(t) t−xh which belongs to ΠN .

In the proof of Theorem 2 we have already shown that if f satisfies ∆N+1h f(x) ≡ 0,
then for all α ∈ R, its restriction to the set of points { iα

2nN }∞n=0 coincides with a certain
polynomial pα ∈ ΠN . The following proposition is an improvement of this result, and
will be useful for the rest of the note.

PROPOSITION 3. Let us assume that ∆N+1h f(t) = 0 for all t ∈ R and all h > 0.
Then, for every (x,α) ∈ R2 there exists a polynomial px,α(t) ∈ ΠN such that f(t) =
px,α(t) for all t ∈ x+ αQ.

PROOF. Let f be such that it satisfies the hypothesis of the proposition. Let
(x,α) ∈ R2 be fixed and let us set g(t) = f(t+ x), t ∈ R. Then ∆N+1h g(t) = 0 for all
t ∈ R and all h > 0. We follow the proof of Theorem 1 to claim that there exists a
polynomial p0 ∈ ΠN such that

g
iα

2nN
= p0

iα

2nN
for all n ∈ N and all i ∈ Z.

Let us now fix p
q ∈ Q. If we change α by

p
qα in the above argument, we can also prove

that there exists a polynomial p1 ∈ ΠN such that

g
i

2nN

p

q
α = p1

i

2nN

p

q
α for all n ∈ N and all i ∈ Z.

Now, we set i = q in the above expression to obtain that

p1
q

2nN

p

q
α = g

q

2nN

p

q
α = g

pα

2nN
= p0

pα

2nN
for all n ∈ N.

Of course, this implies that p0 = p1. Hence g(
p
qα) = p0(

p
qα) for all p/q ∈ Q. This

implies that

f x+
p

q
α = g

p

q
α = p0

p

q
α = p(x,α) x+

p

q
α , for all p/q ∈ Q,
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where p(x,α)(t) = p0(t− x), t ∈ R. This ends the proof, since p(x,α) ∈ ΠN . The proof
is complete.

Although Theorem 2 is sharp, it is not easy to handle with the concept of Q-
continuity. Thus, it should be desirable to have another result which depends on the
more familiar concept of continuity. Moreover, the hypothesis of continuity of a function
at a point is stronger than the corresponding hypothesis of Q-continuity, so that if we
assume continuity of the function at several points, it should be reasonable to reduce
our hypothesis on the number of points where continuity holds in order to guarantee
that the function is a polynomial. This is what we make in the next theorem:

THEOREM 4. Let us assume that ∆N+1h f(x) = 0 for all x ∈ R and all h > 0. If f
is continuous on a set {xi}Ni=1 of N points, then f ∈ ΠN .
PROOF. Let us assume that f satisfies the hypotheses of the theorem. It follows

from Proposition 3 that for each α ∈ R, there exists a polynomial pα ∈ ΠN such that
f(t) = pα(t) for all t ∈ αQ. The continuity of f at the points {xi}Ni=1 implies that

pα(xi) = lim
t→xi

pα(t) = lim
t→xi;t∈αQ

pα(t) = lim
t→xi;t∈αQ

f(t) = f(xi)

for all α ∈ R. Let α,β ∈ R \ {xi}Ni=1, α 9= β. It follows from Proposition 3 that there
exists a polynomial pα,β(t) ∈ ΠN such that

f(t) = pα,β(t) for all t ∈ α+ (β − α)Q.

Clearly, f(xi) = pα,β(xi), i = 1, 2, ..., N as a consequence of the continuity of f at
the points {xi}Ni=1) (at this point, the Q-continuity of f at these points is not enough,
since we are now taking limits on sets of the form α + (β − α)Q with α 9= 0, α 9= β).
Furthermore, pα,β(α) = pα(α), pα,β(β) = pβ(β), since {α,β} ⊂ α + (β − α)Q. This
implies that pα = pα,β = pβ since all these polynomials have degree less than or equal
to N and #{x1, ..., xN ,α} = #{x1, ..., xN ,β} = N + 1. It follows that there exists a
polynomial p ∈ ΠN such that

f(t) = p(t) for all t ∈
α∈R\{xi}Ni=1

αQ = R.

This ends the proof.

REMARK 3. The hypotheses of Theorem 4 can be weakened, since we have only
used the existence of the limits

lim
t→xi,t∈α+(β−α)Q

f(t) = f(xi), i = 1, ..., N.

Here, we would like to remark that the example given at Remark 2 does not enter
in contradiction with Theorem 4, formulated in its weakest form, since if we set t =
α+ (β − α)pq , then

p
q =

t−α
β−α and the function F satisfies:

F(t) = R(t)L α+ (β − α)
p

q
= R(t) L(α) + (L(β)− L(α))p

q

= R(t) L(α) + (L(β)− L(α))(t− α)

β − α
,
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so that,

lim
t→xi,t∈α+(β−α)Q

F(t) = R(0)(L(α)β − L(β)α)
β − α

9= 0 = F(0).

Unfortunately, it seems that the above result is not sharp. At least, in certain cases
it is possible, in order to guarantee that f ∈ ΠN , to assume continuity at a set of less
than N points, once we know that the function ∆N+1h f(x) vanishes for all x ∈ R ,
h > 0. In this sense, we prove the following partial result:

PROPOSITION 5. Let us assume that ∆3hf(x) = 0 for all x ∈ R , h > 0 and f is
continuous at a point x0 ∈ R. Then f ∈ Π2.
PROOF. We may assume without loss of generality that f is continuous at x0 = 0

and f(0) = 0. Let α,β ∈ R be such that α 9= β. Proposition 3 implies that there exists
polynomials pα,pβ ,pα,β ∈ Π2 such that

(pα)|αQ = f |αQ, (pβ)|βQ = f |βQ and (pα,β)|α+(β−α)Q = f |α+(β−α)Q.

Hence

pα,β(α) = pα(α) = f(α),

pα,β(β) = pβ(β) = f(β),

pα,β(0) = pα(0) = pβ(0) = f(0) = 0.

If we write pα,β(t) = At2 + Bt and we use the identities above, we can compute the
constants A,B, and then we obtain the identity

pα,β(α+ β) =
(f(α)− f(β))(α+ β)

α− β
.

If f /∈ Π2 then there are points α0,β0 ∈ R such that α0 < β0 and pβ0(α0) 9= f(α0) =
pα0(α0). Moreover, it follows from the density of α0Q in R and the fact that two
distinct polynomials may interpolate each other only at a finite number of points, that
there exists a sequence of points {xn}∞n=1 ⊂ α0Q such that |xn− 1

n | ≤
1
2n for all n ≥ 1

and
Cn = |pα0(xn)− pβ0(xn)| 9= 0, n = 1, 2, · · ·

Hence fixed n ≥ 1, we can find a sequence {yn,m}∞m=1 ⊂ β0Q such that limm→∞ yn,m =
xn and

lim
m→∞pβ0(yn,m) = pβ0(xn),

so that we can assume without loss of generality that |yn,m − xn| ≤ min{ 1
2n ,

Cn
2n } and

|f(xn)− f(yn,m)| = |pα0(xn)− pβ0(yn,m)| ≥
Cn
2

for all m,n ≥ 1. Thus,

pxn,yn,m(xn + yn,m) =
(f(xn)− f(yn,m))(xn + yn,m)

xn − yn,m

≥ Cn |xn + yn,m|
2 |xn − yn,m|

≥ 2nCn
2nCn

= 1.
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Finally, it follows from the density of xn + (yn,m − xn)Q in R and the continuity of
pxn,yn,m that there exists ξn,m ∈ xn + (yn,m − xn)Q, |ξn,m − (xn + yn,m)| ≤ 1

4n such
that

pxn,yn,m(xn + yn,m)− f(ξn,m) = pxn,yn,m(xn + yn,m)− pxn,yn,m(ξn,m) <
1

2
,

so that limn,m→∞ ξn,m = 0 and |f(ξn,m)| ≥ 1/2 for all n,m. This is in contradiction
with the continuity of f at x0 = 0. The proof is complete.

Notice that Theorem 4 implies that if (∆2hf)(x) ≡ 0 and f continuous at one point
then f ∈ Π1. On the other hand, Proposition 5 claims that continuity at a point is also
enough to guarantee that the functions f such that (∆3hf)(x) ≡ 0 are parabolas. This
motivate us to end this note with the conjecture that a Cauchy-type theorem holds for
the functional equation we are considering:

Conjecture: If f is continuous at one point and (∆N+1h f)(x) = 0 for all x ∈ R
and h > 0, then f ∈ ΠN .
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