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Abstract

We prove some uniqueness theorems for meromorphic functions that share
weighted values.

1 Introduction and Definitions

Let f and g be two nonconstant meromorphic functions defined in the open complex
plane C. If for some a € C U {oo} the roots of f —a and g — a (if @ = oo, roots
of f —a and g — a are the poles of f and g respectively) coincide in locations and
multiplicities we say that f and g share the value @ CM (counting multiplicities) and if
coincide in locations only we say that f and g share a IM (ignoring multiplicities). We
do not explain the standard notations of the value distribution theory because those
are available in [3]. However, we explain some definitions which will be needed in the
sequel. Also we denote by f, g two nonconstant meromorphic functions defined on C
unless otherwise stated.

DEFINITION 1 ([6]). If s is a positive integer, we denote by N(r,a; f |= s) the
counting function of those a-points of f whose multiplicity is s, where we count an
a-point according to its multiplicity.

DEFINITION 2 ([6]). If s is a positive integer, we denote by N(r,a; f |> s) the
counting function of those a-points of f whose multiplicities are greater than or equal
to s, where each a-point is counted only once.

DEFINITION 3 (cf. [1, 6]). If s is a positive integer, we denote by Ng(r, a; f) the
counting function of a-points of f where an a-point of multiplicity m is counted m
times if m < s and s times if m > s. We put Noo(r,a; f) = N(r, a; f).

DEFINITION 4 ([6]). Let f, g share a value a IM. We denote by N.(r,a; f,g) the
counting function of those a-points of f whose multiplicities are not equal to multi-
plicities of the corresponding a-points of g, where each such a-point is counted only
once.

Clearly N.(r,a; f,9) = N.(r,a;9, f).
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DEFINITION 5 (ct. [2]). We put

To(?“,f)z/r T(tt’f)dz; No(na;f):/lrwdt

1
Ng(rja;f):/ Ns(t,a;f)dt’ mo(r,f)z/ m(t,f)da
1 t 1 t
mo(r,a;f):/ m(t’t‘“f)dt, So(r,f):/ S(tt’f)dt
1 1
DEFINITION 6 (cf. [11]). We define 6;(a; f) as 8s(a; f) = 1 — limsupW

r—00

where a € C'U {o0}.
Clearly
0 < 68(a; f) < bs(as ) < 8s-1(a; f) < -+ < 8a(a; f) < bi(a; f) = O(a; f) < 1

where O(a; f) =1 — limsup Nézaf{)

DEFINITION 7 (cf. [2, 5]). We put do(a; f) = 1 — limsup 22020 0y (a; f) =

1- limsup Nﬁ({raff) 8a; f)=1- hmsup T((T af{) where a € C' U {cc}.

Yang in [9] asked: what can be sald about the relationship between two entire
functions f and g if f,g share 0 CM and f’, ¢’ share 1 CM?
To answer this question, Yi [10] proved the following theorem.

THEOREM A. Let f and g be two nonconstant entire functions. Assume that f, g
share 0 CM and £, ¢ share 1 CM and 26(0; f) > 1, where n is a nonnegative
integer. Then either f™ . ¢ =1or f =g.

Inspired by this result, in [4], the following question was asked: what can be said
about the relationship between two meromorphic functions f, g when two differential
polynomials, generated by them, share certain values?

Let (D) = Y% | a;D" be a linear differential operator with constant coefficients
where D = d/dz (cf. [4]). The following theorem was proved in [4].

THEOREM B ([4]). Let f, g be of finite order such that f,g share co CM,

5(asf) o
¥(D)f,¥(D)g are nonconstant and share 0,1 CM, and 1%(1# 7)) 2§ S Z)}) >

1, where > asoo 0(as f) > 0. Then either (a) [¢(D)f][¢(D)g] =1 or (b) f —g =q,
where ¢ = ¢(z) is a solution of the differential equation ¢(D)w = 0. Further, if f has
at least one pole or ¢(D) f has at least one zero, then the possibility (a) does not arise.

The purpose of the paper is to make a twofold improvement of Theorem B: firstly by
weakening the condition on deficiencies and secondly by relaxing the nature of sharing
of values. In order to relax the nature of sharing values we consider a gradation of
sharing of values which measures how close a shared value is to being shared IM or to
being shared CM and is called weight of the sharing.

DEFINITION 8 ([6, 7]). Let k be a nonnegative integer or infinity. For a € CU{oc0}
we denote by Ejy(a; f) the set of all a-points of f where an a-point of multiplicity m



64 Differential Polynomials Sharing Values

is counted m times if m < k and k + 1 times if m > k. If Ex(a; f) = Ex(a; g), we say
that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k then zg is a zero of
f — a with multiplicity m (< k) if and only if it is a zero of g — a with multiplicity m
(< k) and 2g is a zero of f — a with multiplicity m (> k) if and only if it is a zero of
g — a with multiplicity n (> k) where m is not necessarily equal to n.

We say that f, g share (a, k) if f, g share the value a with weight k. Clearly if f, g
share (a, k), then f, g share (a,p) for any integer p, 0 < p < k. Also we note that f,g
share a value a IM or CM if and only if f, g share (a,0) or (a,c0) respectively.

2 Lemmas

In this section we present some lemmas which are necessary in the sequel.

LEMMA 1. If f, g share (0,0), (1,0) and (o0, 0), then (i) T'(r, f) < 3T(r,g)+S(r, f),
and (i) T'(r, g) < 3T(r, f) + S(r, g).

PROOF. The lemma follows from the second fundamental theorem (see p.43 in [3]).

LEMMA 2. Let ¢ ti— c2g = c3, lvhere c1,co and c3 are nonzero constants. Then (i)
T(r, f) < N(1,0; f) + N(r,0;9) + N(r,00; f) + S(r, f), and (ii) T(r,g) < N(r,0; f) +

N(r,0;9) + N(r,00;9) + S(r, g).
PROOF. By the second fundamental theorem [3], we get

T(r,f) < N(r,0;f)+ N(r,cs/er; f) + N(r,00; f) + S(r, f)
= W(T,O;f)—i—N(T,O;g)—&-N(noo;f)—i—S(r,f%

which is (i). In a similar way we can prove (ii). This proves the lemma.

LEMMA 3. Let f,g share (1,0) and h = f'/f — ¢'/g. If N(r,1; f) # S(r, f) and
h =0, then f =g.

PROOF. Since h = 0, it follows that f = cg, where c is a constant. Since f, g share
(1,0) and N(r,1; f) # S(r, f), there exists zp € C such that f(z9) = g(z0) = 1 so that
¢ = 1. Therefore f = g. This completes the proof.

LEMMA 4. If f, g share (0,0),(1,1) and (00,0) and f /=g, then (i) N(r, 15 f |>
2) < N.(1,0; f,9) + Nu(r,00; f,g) + S(r, f), and (ii) N(r, 1,9 [> 2) < Nu(r,0; f,9) +
N*(T,oo;f,g) +S(T7f)

PROOF. Since N_(r, 1; f) = N(r,1;g), the lemma is obvious if N(r,1; f) = S(r, f).
So we suppose that N(r,1; f) # S(r, f). Let h=f'/f — ¢’'/g. Since f £g, by Lemma
3 we get h £0. Also since f, g share (1, 1), a multiple 1-point of f is a multiple 1-point
of g and vise-versa and so it is a zero of f’ and ¢g’. Hence

N(r,1; f |>2) < N(r,0;h) < T(r, f) +O(1) = N(r,h) + m(r,h) + O(1),

ie.,

N1 f |2 2) < N(r.h) + S(r, f), (1)
by Milloux theorem (see p.55 in [3]) and Lemma 1.
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The possible poles of h occur at the zeros and poles of f, g. Clearly if z; is a zero
or a pole of f and g with the same multiplicity then zg is not a pole of h. Since all the
poles of h are simple, it follows that

N(r,h) = N(r,h) < N.(r,0; f,9) + Nu(r,00; f, 9)- (2)

Now (i) follows from (_) ). Also (ii) follows from (i) because f, g share (1,1) so

d (2
that N(r,1;g |>2) = N(r,1; f |> 2). This completes our proof.
LEMMA 5. If f, g share (1,1) and H £0, WhereH:*le,/—f2 : —iJL,—i—EL
() N(r,1; f |= 1) < N(r, H) + S(r, f) + S(r, ), and (ii) N(r, 1ig |= 1) <
S(r, f)+S(r.g).
PROOF. Since f, g share (1,1), it follows that a simple 1-point of f is a simple

1-point of g and conversely. Let zy be a simple 1-point of f and g. Then in some
neighbourhood of zy we get

f—-1=(z—z)aand g—1=(z—20)0

where a, 8 are analytic at zg and «a(z9) # 0, 3(20) # 0. This implies by a simple
calculation that in some neighbourhood of zj

(s aa” —2(a’)? BB = 2(6)?
L P gy Yy B poppon

This shows that zg is a zero of H. Hence

N(r,0; f|I=1) < N(r,0;H)<T(r,H)+0O()=N(r,H)+m(r,H)+ O(1)
= N(@,H)+S(r f)+S(rg)

by Milloux theorem (see p.55 in [3]).

Now (ii) follows from (i) because N(r,1;g |= 1) = N(r,1; f |= 1). The proof is
complete.

LEMMA 6. Let f, g share (0,0),(1,0) and (00,0) and H £0, where H is defined
as in Lemma 5. Then

N(r,H) < N.(r,0;f,g)+ N.(r,00 f,9) + Nu(r,1; f, 9)
+Ng(r,0; ') + Ng(r,0; '),

where Ng(r,0; f’) is the counting function of those zeros of f’ which are not the zeros
of fand f —1 and Ng(r,0;g’) is the analogous quantity.

PROOF. The possible poles of H occur at (i) multiple zeros of f, g; (ii) zeros of
f =1, g—1; (iii) poles of f, g; and (iv) zeros of f’, ¢’ which are not the zeros of f,
f—1and g, g — 1 respectively. Let 2y be a zero of f —1 and g — 1 with multiplicities
m and n respectively. Then in some neighbourhood of zy, we get f — 1 = (2 — 29)"«
and g — 1 = (z — 29)" 0, where «, § are analytic at zg and a(zg) # 0, 8(20) # 0. Then
in some neighbourhood of zy we get

H(z) = 2L 6(2) + v(2),

zZ— 20
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where ¢, ¢ are analytic at zg and ¢(zg) # 0. This shows that if m = n, then zpis not
a pole of H and if m # n then z; is a simple pole of H.

Similarly we can show that if z; is a zero or a pole of f, g with multiplicities m
and n respectively, then z; is not a pole of H if m = n and z; is a simple pole of H if
m # n.

Since all poles of H are simple, the lemma follows from the above discussion. The
proof is complete.

LEMMA 7 ([2]) lim, ;SE:% = 0 for all values of r.

LEMMA 8 (cf. [5, 8]). For a € CU{o0}, é(a; f) < do(a; f), O(a; f) < Op(a; f) and
8s(as f) < 87(a; ).
LEMMA 9 ([5]) (i) limsup, o, LELID > 52 80(a; f), and (ii) 60(0; (D) ) >

To(r,f)
Za’ - o(a;f)
1+p(1-06(o0sf)) -

LEMMA 10 ([5]). If 3, 89(a; £) > 0 then ©g(c0;3(D)f) > 1 — %
a#oo PN

3 Theorems

In this section we present the main results of the paper.

THEOREM 1. Let ¥(D)f, ¥(D)g be nonconstant such that (i) f, g share (oo, 0);
.. e Do Saif) —©(co:
(ii) (D) f, ¥(D)g share (0,1),(1,1); and (iii) 1+p(1;i@(oo;f)) > 14 i(;j(ép(vi);) , where
> a0 Op(a; f) > 0. Then either [(D)f][¥(D)g] =1 or f — g =g, where ¢ = q(2) is a
solution of the differential equation ¥ (D)w = 0.
THEOREM 2. Let ¥(D)f, ¥(D)g be nonconstant such that (i) f, g share (0o, 00);
.. ees Za 0o §(a’f) —O(o0:
(i) (D) f, ¥(D)g share (0,1), (1,1); and (iii) e %—|— Zla#o(%’(i);f)’ where
> a0 Op(a; f) > 0. Then either [/(D)f][¥(D)g] =1 or f — g = g, where ¢ = q(2) is a
solution of the differential equation ¥ (D)w = 0.

REMARK 1. If f has at least one pole or )(D)f has at least one zero then the
possibility [¢(D)f][t/(D)g] =1 does not arise in Theorems 1 and 2.

The following example shows that the theorems are sharp.

EXAMPLE 1. Let f = Zexp(2) + § exp(2z), g = g exp(—2) — 75 exp(—22) and
(D) = D? — 5D. Then ¥(D)f, 9(D)g share (0,00),(1,00) and f, g share (0o, 0).
Also >, 6(a; f) = 1/2 and ©(oc; f) = 1 but neither [¢(D)f][¢(D)g] = 1 nor
f—g=c1+ caexp(bz) for any constants ¢, ¢a.

We shall prove Theorem 1 only because Theorem 2 can be proved similarly noting
that N, (r,00; f,g) = 0 when f, g share (0o, ).
Proof of Theorem 1. Let F = ¢(D)f and G = ¥(D)g. Then clearly F,G share

(0,1), (1,1), (00,0) and in view of Lemma 8 , Lemma 9 and Lemma 10, the given
condition implies 265(0; F) + 40,(c0; F) > 5.
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Let FF £G. We shall show that F.G = 1. If possible, suppose that H £0, where

H= ‘;—/,/ — 2—5/ — %l,/ + é—(_;/l Now by the second fundamental theorem (see p.43 in [3])

and Lemma 1 we get

T(r,f)+T(r,g) < N(r0;F)+N(r,1;F)+ N(r,o0; F)
+N(r,0;G) + N(r,1;G) + N(r,00; G)
—Ng(r,0; F') — Ng(r,0;G") + S(r, F).

Since F, G share (0,1),(1,1), (c0,0), we obtain

T(r,f)+T(r,g) < 2N(r,0;F)+2N(r,1;G) + 2N(r, 00; F)
—Ng(r,0; F') = Ng(r,0;G) + 5(r, f). 3)

Again since F, G share (1, 1), we get

2N(r,1;G) < N(r,1;G|=1)+ N(r,1,G)
< N(n1F = 1)+ T(r,G) +O(1).

So from (3) we get

T(r,F) < 2N(r,0;F)+ N(r,1;F |=1)+2N(r,00; F)
—Ng(r,0; F') — Ng(r,0;G') + S(r, F). (4)
Since F,G share (0,1),(1,1), it follows that N,(r,0;F,G) < N(r,0;F [> 2) and

N.(r,1;F,G) < N(r,1; F |> 2) and so by Lemma 1, Lemma 4, Lemma 5 and Lemma
6, we get

N(r,1;F|=1) < N(r,H)+ S(r, F)

< N.(r0;F,G) + N.(r,1;F,G) + N.(r,00; F,G)
+Ng(r,0; F') + Ng(r,0;G") + S(r, F)

N(r,0;F|>2)+ N(r,1;F |>2) + N(r,00; F)

+Ng(r,0; F') + Ng(r,0;G") + S(r, F)

2N (r,0; F |> 2) 4+ 2N (r,00; F)

+Ng(r,0; F') + Ng/(r,0;G') + S(r, F).

IA

IN

So from (4) we obtain

T(r,F) <2N(r,0; F) + 2N(r,0; F| > 2) + 4N(r,00; F) + S(r, F)
+2Ny(r,0; F) + 4N (r,00 : F) + S(r, F),

which gives on integration
To(r, F) < 2N3(r,0; F) + 4No(r, 00; F) + So(r, F). (5)
Henceforth e stands for a quantity satisfying

0 < 2¢ < 269(0; F) 4+ 40¢(oc0; F) — 5.
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Now from (5) we get by Lemma 7

To(r,F) < {6 —289(0; F) — 40¢(c0; F) + € + o(1)}To(r, F)
< {l—e+o(1)}To(r, F),

which is a contradiction. Therefore H = 0 and so
=B (6)

where A and B are constants. Since F' is nonconstant, A # 0. Let B = 0. Since
F £G, it follows that A # 1. Then we get from (6) F + % =1- %. So by Lemma 2
and Lemma 7 we obtain on integration

To(r,F) < No(r,0; F) + No(r,0; G) + No(r,00; F) + So(r, F)
< 2N2(r,0; F) +4Ng(r, 00; F) + So(r, F)
< {6 —289(0; F) — 40¢(0c0; F) + ¢ + 0o(1)} Ty (r, F)
< {l—e+o)}Ty(r, F),
which is a contradiction. So B # 0. Let A # B. If B = —1, from (6) we get

—Afljffl — BG = A — B. Since @ is nonconstant , A — B — 1 # 0 and so by Lemma 2,
Lemma 7 and the first fundamental theorem we get on integration

1 — 1
T()(’l‘, —) S N()(’I“, 0

_ — 1
Ia ;f)+N0(r70;G)+NO(T700;F)+SO(T7F)

ie.
To(r,F) < 2NJ(r,0; F) +4No(r,00; F) + So(r, F)
< {6 —269(0; F) — 40¢(00; F) + € + 0(1)} Ty (r, F)
< {l—=e+o(1)}To(r, F),
which is a contradiction. So B # —1 and hence from (6) we get

A-B  A-B-—1
BF B ~ 1+B

o A—B
1+ B G-i—T

Il
-

A-B A-B-1

Clearly <52 Ve # 0 and so by Lemma 2 and Lemma 7 we get on integration

L)+ Nolf.50: F) + Solr, F)

To(r,F) < No(r,0;F) 4+ No(r,0;
o(r, F) o(r,0; F) + No(r e

B
< 2NJ(r,0: F) +4No(R,00; F) + So(r, F)
< {6 —269(0; F) — 40¢(00; F) + € + o(1)}To(r, F)
< {l—=e+o(1)}To(r, F),

which is a contradiction. So A = B and hence from (6) we get

1 1+B
Fp 5
tB5GT B
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If B # —1, we get by Lemma 2 and Lemma 7 on integration

— — 1 —
NO(raO;F)+N0(T,O;E)+N0(T700;F)+SU(TaF)

TO (T, F) <
< 2NJ(r,0; F) + 4No(r, 00; F) + So(r, F)

< {6 —269(0; F) — 40(c0; F) + ¢ + o(1)}To(r, F)

< {l1—e+o)}Ty(r,F),

which is a contradiction. Hence A = B = —1land so from (6) we get F.G = 1. Therefore

either F.G =1 or F' = G and so either [¢(D) f][¥(D)g] =1 or f—g = q, where g = ¢(2)

is a solution of the differential equation 1(D)w = 0. This proves our theorem.

As an application of Theorem 1 we get the following corollary.
COROLLARY 1. Suppose (i) ), gP)are nonconstant and share (0, 1), (1, 1), (00, 0);

. woo 0@ 1) —O(o0;
(i) Tty > 4+ SO where 0 8p(0; f) > 0; and (ifi) ©(0; f) +
a#too PN

0(0; g) + ©(c0; f) > 2. Then either f =g or f®) ¢ = 1. Further, if f®) has at least
one zero or pole, the possibility f®) - ¢®) =1 does not arise.

PROOF. By Theorem 1 we see that either f(?).¢®®) =1 or f — g = ¢ where ¢ is a
polynomial. Since >_, 6p(a; f) > 0, it follows that f is transcendental. If ¢ Z0, by
Nevanlinna’s three small functions theorem [3], we get

T(r,f) < N(r,0;f)+ N(r,q f) + N(r,00; f) + S(r, f)
= N(r,0; f) + N(r,0; g) + N(r,00; f) + S(r, f),

which implies ©(0; f) + ©(0; g) + O(o0; f) < 2 because T(r,g) = {1 + o(1)}T(r, f).
This contradiction shows that ¢ = 0 and so f = g. This proves the corollary.

a#oo

Let us conclude the paper with the following question: Is it possible to relax the
sharing (0, 1), (1,1) to the sharing (0,0), (1,0) in Theorems 1 and 27?
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