ISSN 1607-2510

Linear Differential Polynomials Sharing Three Values With Weights *

Indrajit Lahiri[†]

Received 2 February 2002

Abstract

We prove some uniqueness theorems for meromorphic functions that share weighted values.

1 Introduction and Definitions

Let f and g be two nonconstant meromorphic functions defined in the open complex plane **C**. If for some $a \in \mathbf{C} \cup \{\infty\}$ the roots of f - a and g - a (if $a = \infty$, roots of f - a and g - a are the poles of f and g respectively) coincide in locations and multiplicities we say that f and g share the value a CM (counting multiplicities) and if coincide in locations only we say that f and g share a IM (ignoring multiplicities). We do not explain the standard notations of the value distribution theory because those are available in [3]. However, we explain some definitions which will be needed in the sequel. Also we denote by f, g two nonconstant meromorphic functions defined on \mathbf{C} unless otherwise stated.

DEFINITION 1 ([6]). If s is a positive integer, we denote by $N(r, a; f \models s)$ the counting function of those a-points of f whose multiplicity is s, where we count an a-point according to its multiplicity.

DEFINITION 2 ([6]). If s is a positive integer, we denote by $\overline{N}(r, a; f \geq s)$ the counting function of those a-points of f whose multiplicities are greater than or equal to s, where each a-point is counted only once.

DEFINITION 3 (cf. [1, 6]). If s is a positive integer, we denote by $N_s(r, a; f)$ the counting function of a-points of f where an a-point of multiplicity m is counted m times if $m \leq s$ and s times if m > s. We put $N_{\infty}(r, a; f) = N(r, a; f)$.

DEFINITION 4 ([6]). Let f, g share a value a IM. We denote by $\overline{N}_*(r, a; f, g)$ the counting function of those a-points of f whose multiplicities are not equal to multiplicities of the corresponding a-points of g, where each such a-point is counted only once.

Clearly $\overline{N}_*(r, a; f, g) \equiv \overline{N}_*(r, a; g, f).$

^{*}Mathematics Subject Classifications: 30D35

[†]Department of Mathematics, University of Kalyani, West Bengal 741235, India

DEFINITION 5 (cf. [2]). We put

$$T_0(r,f) = \int_1^r \frac{T(t,f)}{t} dt, \ N_0(r,a;f) = \int_1^r \frac{N(t,a;f)}{t} dt,$$
$$N_s^0(r,a;f) = \int_1^r \frac{N_s(t,a;f)}{t} dt, \ m_0(r,f) = \int_1^r \frac{m(t,f)}{t} dt,$$
$$m_0(r,a;f) = \int_1^r \frac{m(t,a;f)}{t} dt, \ S_0(r,f) = \int_1^r \frac{S(t,f)}{t} dt.$$

DEFINITION 6 (cf. [11]). We define $\delta_s(a; f)$ as $\delta_s(a; f) = 1 - \limsup_{r \to \infty} \frac{N_s(r, a; f)}{T(r, f)}$ where $a \in C \cup \{\infty\}$.

Clearly

$$0 \le \delta(a; f) \le \delta_s(a; f) \le \delta_{s-1}(a; f) \le \dots \le \delta_2(a; f) \le \delta_1(a; f) = \Theta(a; f) \le 1,$$

where $\Theta(a; f) = 1 - \limsup_{r \to \infty} \frac{\overline{N}(r, a; f)}{T(r, f)}$.

DEFINITION 7 (cf. [2, 5]). We put $\delta_0(a; f) = 1 - \limsup_{r \to \infty} \frac{N_0(r,a;f)}{T_0(r,f)}$, $\Theta_0(a; f) = 1 - \limsup_{r \to \infty} \frac{\overline{N}_0(r,a;f)}{T_0(r,f)}$, $\delta_s^0(a; f) = 1 - \limsup_{r \to \infty} \frac{N_s^0(r,a;f)}{T_0(r,f)}$ where $a \in C \cup \{\infty\}$.

Yang in [9] asked: what can be said about the relationship between two entire functions f and g if f, g share 0 CM and f', g' share 1 CM?

To answer this question, Yi [10] proved the following theorem.

THEOREM A. Let f and g be two nonconstant entire functions. Assume that f, g share 0 CM and $f^{(n)}, g^{(n)}$ share 1 CM and $2\delta(0; f) > 1$, where n is a nonnegative integer. Then either $f^{(n)} \cdot g^{(n)} \equiv 1$ or $f \equiv g$.

Inspired by this result, in [4], the following question was asked: what can be said about the relationship between two meromorphic functions f, g when two differential polynomials, generated by them, share certain values?

Let $\psi(D) = \sum_{i=1}^{p} \alpha_i D^i$ be a linear differential operator with constant coefficients where $D \equiv d/dz$ (cf. [4]). The following theorem was proved in [4].

THEOREM B ([4]). Let f, g be of finite order such that f, g share ∞ CM, $\psi(D)f, \psi(D)g$ are nonconstant and share 0, 1 CM, and $\frac{\sum_{a\neq\infty} \delta(a;f)}{1+p(1-\Theta(\infty;f))} - \frac{3(1-\Theta(\infty;f))}{2\sum_{a\neq\infty} \delta(a;f)} > \frac{1}{2}$, where $\sum_{a\neq\infty} \delta(a;f) > 0$. Then either (a) $[\psi(D)f][\psi(D)g] \equiv 1$ or (b) $f - g \equiv q$, where q = q(z) is a solution of the differential equation $\psi(D)w = 0$. Further, if f has at least one pole or $\psi(D)f$ has at least one zero, then the possibility (a) does not arise.

The purpose of the paper is to make a twofold improvement of *Theorem B:* firstly by weakening the condition on deficiencies and secondly by relaxing the nature of sharing of values. In order to relax the nature of sharing values we consider a gradation of sharing of values which measures how close a shared value is to being shared IM or to being shared CM and is called weight of the sharing.

DEFINITION 8 ([6, 7]). Let k be a nonnegative integer or infinity. For $a \in \mathbb{C} \cup \{\infty\}$ we denote by $E_k(a; f)$ the set of all a-points of f where an a-point of multiplicity m is counted m times if $m \leq k$ and k+1 times if m > k. If $E_k(a; f) = E_k(a; g)$, we say that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k then z_0 is a zero of f - a with multiplicity $m (\leq k)$ if and only if it is a zero of g - a with multiplicity $m (\leq k)$ and z_0 is a zero of f - a with multiplicity m (> k) if and only if it is a zero of g - a with multiplicity n (> k) where m is not necessarily equal to n.

We say that f, g share (a, k) if f, g share the value a with weight k. Clearly if f, g share (a, k), then f, g share (a, p) for any integer $p, 0 \le p < k$. Also we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a, ∞) respectively.

2 Lemmas

In this section we present some lemmas which are necessary in the sequel.

LEMMA 1. If f, g share (0, 0), (1, 0) and $(\infty, 0)$, then (i) $T(r, f) \leq 3T(r, g) + S(r, f)$, and (ii) $T(r, g) \leq 3T(r, f) + S(r, g)$.

PROOF. The lemma follows from the second fundamental theorem (see p.43 in [3]).

LEMMA 2. Let $c_1f + c_2g \equiv c_3$, where c_1, c_2 and c_3 are nonzero constants. Then (i) $\underline{T}(r, f) \leq \overline{N}(r, 0; f) + \overline{N}(r, 0; g) + \overline{N}(r, \infty; f) + S(r, f)$, and (ii) $T(r, g) \leq \overline{N}(r, 0; f) + \overline{N}(r, 0; g) + \overline{N}(r, \infty; g) + S(r, g)$.

PROOF. By the second fundamental theorem [3], we get

$$T(r,f) \leq \overline{N}(r,0;f) + \overline{N}(r,c_3/c_1;f) + \overline{N}(r,\infty;f) + S(r,f) = \overline{N}(r,0;f) + \overline{N}(r,0;g) + \overline{N}(r,\infty;f) + S(r,f),$$

which is (i). In a similar way we can prove (ii). This proves the lemma.

LEMMA 3. Let f, g share (1, 0) and h = f'/f - g'/g. If $\overline{N}(r, 1; f) \neq S(r, f)$ and $h \equiv 0$, then $f \equiv g$.

PROOF. Since $h \equiv 0$, it follows that $f \equiv cg$, where c is a constant. Since f, g share (1,0) and $\overline{N}(r,1;f) \neq S(r,f)$, there exists $z_0 \in \mathbb{C}$ such that $f(z_0) = g(z_0) = 1$ so that c = 1. Therefore $f \equiv g$. This completes the proof.

LEMMA 4. If f, g share (0,0), (1,1) and $(\infty,0)$ and $f \not\equiv g$, then (i) $\overline{N}(r,1;f \mid \geq 2) \leq \overline{N}_*(r,0;f,g) + \overline{N}_*(r,\infty;f,g) + S(r,f)$, and (ii) $\overline{N}(r,1;g \mid \geq 2) \leq \overline{N}_*(r,0;f,g) + \overline{N}_*(r,\infty;f,g) + S(r,f)$.

PROOF. Since $\overline{N}(r, 1; f) \equiv \overline{N}(r, 1; g)$, the lemma is obvious if $\overline{N}(r, 1; f) = S(r, f)$. So we suppose that $\overline{N}(r, 1; f) \neq S(r, f)$. Let h = f'/f - g'/g. Since $f \not\equiv g$, by Lemma 3 we get $h \not\equiv 0$. Also since f, g share (1, 1), a multiple 1-point of f is a multiple 1-point of g and vise-versa and so it is a zero of f' and g'. Hence

$$\overline{N}(r,1; f \geq 2) \le N(r,0;h) \le T(r,f) + O(1) = N(r,h) + m(r,h) + O(1),$$

i.e.,

$$\overline{N}(r,1;f|\ge 2) \le N(r,h) + S(r,f),\tag{1}$$

by Milloux theorem (see p.55 in [3]) and Lemma 1.

I. Lahiri

The possible poles of h occur at the zeros and poles of f, g. Clearly if z_0 is a zero or a pole of f and g with the same multiplicity then z_0 is not a pole of h. Since all the poles of h are simple, it follows that

$$N(r,h) = \overline{N}(r,h) \le \overline{N}_*(r,0;f,g) + \overline{N}_*(r,\infty;f,g).$$
⁽²⁾

Now (i) follows from (1) and (2). Also (ii) follows from (i) because f, g share (1, 1) so that $\overline{N}(r, 1; g \geq 2) \equiv \overline{N}(r, 1; f \geq 2)$. This completes our proof.

LEMMA 5. If f, g share (1, 1) and $H \not\equiv 0$, where $H = \frac{f''}{f'} - \frac{2f'}{f-1} - \frac{g''}{g'} + \frac{2g'}{g-1}$, then (i) $N(r, 1; f \mid = 1) \leq N(r, H) + S(r, f) + S(r, g)$, and (ii) $N(r, 1; g \mid = 1) \leq N(r, H) + S(r, f) + S(r, g)$.

PROOF. Since f, g share (1, 1), it follows that a simple 1-point of f is a simple 1-point of g and conversely. Let z_0 be a simple 1-point of f and g. Then in some neighbourhood of z_0 we get

$$f - 1 = (z - z_0)\alpha$$
 and $g - 1 = (z - z_0)\beta$

where α, β are analytic at z_0 and $\alpha(z_0) \neq 0$, $\beta(z_0) \neq 0$. This implies by a simple calculation that in some neighbourhood of z_0

$$H = (z - z_0) \left[\frac{\alpha \alpha'' - 2(\alpha')^2}{\alpha \{ \alpha + (z - z_0) \alpha' \}} - \frac{\beta \beta'' - 2(\beta')^2}{\beta \{ \beta + (z - z_0) \beta' \}} \right].$$

This shows that z_0 is a zero of H. Hence

$$\begin{array}{rcl} N(r,0;f|=1) & \leq & N(r,0;H) \leq T(r,H) + O(1) = N(r,H) + m(r,H) + O(1) \\ & = & N(r,H) + S(r,f) + S(r,g) \end{array}$$

by Milloux theorem (see p.55 in [3]).

Now (ii) follows from (i) because $N(r, 1; g \mid = 1) = N(r, 1; f \mid = 1)$. The proof is complete.

LEMMA 6. Let f, g share (0, 0), (1, 0) and $(\infty, 0)$ and $H \not\equiv 0$, where H is defined as in Lemma 5. Then

$$N(r,H) \leq \overline{N}_*(r,0;f,g) + \overline{N}_*(r,\infty;f,g) + \overline{N}_*(r,1;f,g) + N_{\otimes}(r,0;f') + N_{\otimes}(r,0;g'),$$

where $N_{\otimes}(r, 0; f')$ is the counting function of those zeros of f' which are not the zeros of f and f-1 and $N_{\otimes}(r, 0; g')$ is the analogous quantity.

PROOF. The possible poles of H occur at (i) multiple zeros of f, g; (ii) zeros of f - 1, g - 1; (iii) poles of f, g; and (iv) zeros of f', g' which are not the zeros of f, f - 1 and g, g - 1 respectively. Let z_0 be a zero of f - 1 and g - 1 with multiplicities m and n respectively. Then in some neighbourhood of z_0 , we get $f - 1 = (z - z_0)^m \alpha$ and $g - 1 = (z - z_0)^n \beta$, where α , β are analytic at z_0 and $\alpha(z_0) \neq 0$, $\beta(z_0) \neq 0$. Then in some neighbourhood of z_0 we get

$$H(z) = \frac{m-n}{z-z_0}\phi(z) + \psi(z),$$

where ϕ , ψ are analytic at z_0 and $\phi(z_0) \neq 0$. This shows that if m = n, then z_0 is not a pole of H and if $m \neq n$ then z_0 is a simple pole of H.

Similarly we can show that if z_1 is a zero or a pole of f, g with multiplicities m and n respectively, then z_1 is not a pole of H if m = n and z_1 is a simple pole of H if $m \neq n$.

Since all poles of H are simple, the lemma follows from the above discussion. The proof is complete.

LEMMA 7 ([2]) $\lim_{r\to\infty} \frac{S_0(r,f)}{T_0(r,f)} = 0$ for all values of r.

LEMMA 8 (cf. [5, 8]). For $a \in C \cup \{\infty\}$, $\delta(a; f) \leq \delta_0(a; f)$, $\Theta(a; f) \leq \Theta_0(a; f)$ and $\delta_s(a; f) \leq \delta_s^0(a; f)$.

LEMMA 9 ([5]) (i) $\limsup_{r \to \infty} \frac{T_0(r,\psi(D)f)}{T_0(r,f)} \ge \sum_{a \neq \infty} \delta_p^0(a;f)$, and (ii) $\delta_0(0;\psi(D)f) \ge \sum_{a \neq \infty} \frac{\delta_0(a;f)}{1+p(1-\Theta(\infty;f))}$.

LEMMA 10 ([5]). If $\sum_{a\neq\infty} \delta_p^0(a;f) > 0$ then $\Theta_0(\infty;\psi(D)f) \ge 1 - \frac{1-\Theta(\infty;f)}{\sum_{a\neq\infty} \delta_p^0(a;f)}$.

3 Theorems

In this section we present the main results of the paper.

THEOREM 1. Let $\psi(D)f$, $\psi(D)g$ be nonconstant such that (i) f, g share $(\infty, 0)$; (ii) $\psi(D)f$, $\psi(D)g$ share (0, 1), (1, 1); and (iii) $\frac{\sum_{a\neq\infty}\delta(a;f)}{1+p(1-\Theta(\infty;f))} > \frac{1}{2} + \frac{2(1-\Theta(\infty;f))}{\sum_{a\neq\infty}\delta_p(a;f)}$, where $\sum_{a\neq\infty}\delta_p(a;f) > 0$. Then either $[\psi(D)f][\psi(D)g] \equiv 1$ or $f - g \equiv q$, where q = q(z) is a solution of the differential equation $\psi(D)w = 0$.

THEOREM 2. Let $\psi(D)f$, $\psi(D)g$ be nonconstant such that (i) f, g share (∞, ∞) ; (ii) $\psi(D)f$, $\psi(D)g$ share (0,1), (1,1); and (iii) $\frac{\sum_{a\neq\infty}\delta(a;f)}{1+p(1-\Theta(\infty;f))} > \frac{1}{2} + \frac{1-\Theta(\infty;f)}{\sum_{a\neq\infty}\delta_p(a;f)}$, where $\sum_{a\neq\infty}\delta_p(a;f) > 0$. Then either $[\psi(D)f][\psi(D)g] \equiv 1$ or $f - g \equiv q$, where q = q(z) is a solution of the differential equation $\psi(D)w = 0$.

REMARK 1. If f has at least one pole or $\psi(D)f$ has at least one zero then the possibility $[\psi(D)f][\psi(D)g] \equiv 1$ does not arise in Theorems 1 and 2.

The following example shows that the theorems are sharp.

EXAMPLE 1. Let $f = \frac{-1}{4} \exp(z) + \frac{1}{6} \exp(2z)$, $g = \frac{1}{6} \exp(-z) - \frac{1}{14} \exp(-2z)$ and $\psi(D) = D^2 - 5D$. Then $\psi(D)f$, $\psi(D)g$ share $(0,\infty), (1,\infty)$ and f,g share (∞,∞) . Also $\sum_{a\neq\infty} \delta(a;f) = 1/2$ and $\Theta(\infty;f) = 1$ but neither $[\psi(D)f][\psi(D)g] \equiv 1$ nor $f - g \equiv c_1 + c_2 \exp(5z)$ for any constants c_1, c_2 .

We shall prove Theorem 1 only because Theorem 2 can be proved similarly noting that $\overline{N}_*(r,\infty; f,g) \equiv 0$ when f, g share (∞,∞) .

Proof of Theorem 1. Let $F = \psi(D)f$ and $G = \psi(D)g$. Then clearly F, G share $(0, 1), (1, 1), (\infty, 0)$ and in view of Lemma 8, Lemma 9 and Lemma 10, the given condition implies $2\delta_2^o(0; F) + 4\Theta_o(\infty; F) > 5$.

I. Lahiri

Let $F \not\models G$. We shall show that $F.G \equiv 1$. If possible, suppose that $H \not\models 0$, where $H = \frac{F''}{F'} - \frac{2F'}{F-1} - \frac{G''}{G'} + \frac{2G'}{G-1}$. Now by the second fundamental theorem (see p.43 in [3]) and Lemma 1 we get

$$T(r,f) + T(r,g) \leq \overline{N}(r,0;F) + \overline{N}(r,1;F) + \overline{N}(r,\infty;F) + \overline{N}(r,0;G) + \overline{N}(r,1;G) + \overline{N}(r,\infty;G) - N_{\otimes}(r,0;F') - N_{\otimes}(r,0;G') + S(r,F).$$

Since F, G share $(0, 1), (1, 1), (\infty, 0)$, we obtain

$$T(r,f) + T(r,g) \leq 2\overline{N}(r,0;F) + 2\overline{N}(r,1;G) + 2\overline{N}(r,\infty;F) -N_{\otimes}(r,0;F') - N_{\otimes}(r,0;G') + S(r,f).$$
(3)

Again since F, G share (1, 1), we get

$$\begin{aligned} 2\overline{N}(r,1;G) &\leq N(r,1;G \mid = 1) + N(r,1;G) \\ &\leq N(r,1;F \mid = 1) + T(r,G) + O(1). \end{aligned}$$

So from (3) we get

$$T(r,F) \leq 2\overline{N}(r,0;F) + N(r,1;F \mid = 1) + 2\overline{N}(r,\infty;F) -N_{\otimes}(r,0;F') - N_{\otimes}(r,0;G') + S(r,F).$$
(4)

Since F, G share (0, 1), (1, 1), it follows that $\overline{N}_*(r, 0; F, G) \leq \overline{N}(r, 0; F \mid \geq 2)$ and $\overline{N}_*(r, 1; F, G) \leq \overline{N}(r, 1; F \mid \geq 2)$ and so by Lemma 1, Lemma 4, Lemma 5 and Lemma 6, we get

$$\begin{array}{ll} N(r,1;F|=1) & \leq & N(r,H) + S(r,F) \\ & \leq & \overline{N}_*(r,0;F,G) + \overline{N}_*(r,1;F,G) + \overline{N}_*(r,\infty;F,G) \\ & & + N_{\otimes}(r,0;F') + N_{\otimes}(r,0;G') + S(r,F) \\ & \leq & \overline{N}(r,0;F \mid \geq 2) + \overline{N}(r,1;F \mid \geq 2) + \overline{N}(r,\infty;F) \\ & & + N_{\otimes}(r,0;F') + N_{\otimes}(r,0;G') + S(r,F) \\ & \leq & 2\overline{N}(r,0;F \mid \geq 2) + 2\overline{N}(r,\infty;F) \\ & & + N_{\otimes}(r,0;F') + N_{\otimes}(r,0;G') + S(r,F). \end{array}$$

So from (4) we obtain

$$T(r,F) \le 2\overline{N}(r,0;F) + 2\overline{N}(r,0;F| \ge 2) + 4\overline{N}(r,\infty;F) + S(r,F) + 2N_2(r,0;F) + 4\overline{N}(r,\infty:F) + S(r,F),$$

which gives on integration

$$T_0(r,F) \le 2N_2^0(r,0;F) + 4\overline{N}_0(r,\infty;F) + S_0(r,F).$$
(5)

Henceforth ϵ stands for a quantity satisfying

$$0 < 2\epsilon < 2\delta_2^0(0; F) + 4\Theta_0(\infty; F) - 5.$$

Now from (5) we get by Lemma 7

$$T_0(r,F) < \{6 - 2\delta_2^0(0;F) - 4\Theta_0(\infty;F) + \epsilon + o(1)\}T_0(r,F) < \{1 - \epsilon + o(1)\}T_0(r,F),$$

which is a contradiction. Therefore $H \equiv 0$ and so

$$\frac{1}{F-1} \equiv \frac{A}{G-1} + B,\tag{6}$$

where A and B are constants. Since F is nonconstant, $A \neq 0$. Let B = 0. Since $F \not\equiv G$, it follows that $A \neq 1$. Then we get from (6) $F + \frac{G}{A} \equiv 1 - \frac{1}{A}$. So by Lemma 2 and Lemma 7 we obtain on integration

$$\begin{split} T_0(r,F) &\leq \overline{N}_0(r,0;F) + \overline{N}_0(r,0;G) + \overline{N}_0(r,\infty;F) + S_0(r,F) \\ &\leq 2N_2^0(r,0;F) + 4\overline{N}_0(r,\infty;F) + S_0(r,F) \\ &< \{6 - 2\delta_2^0(0;F) - 4\Theta_0(\infty;F) + \epsilon + o(1)\}T_0(r,F) \\ &< \{1 - \epsilon + o(1)\}T_0(r,F), \end{split}$$

which is a contradiction. So $B \neq 0$. Let $A \neq B$. If B = -1, from (6) we get $\frac{A-B-1}{F} - BG \equiv A - B$. Since G is nonconstant, $A - B - 1 \neq 0$ and so by Lemma 2, Lemma 7 and the first fundamental theorem we get on integration

$$T_0(r,\frac{1}{F}) \le \overline{N}_0(r,0;\frac{1}{F}) + \overline{N}_0(r,0;G) + \overline{N}_0(r,\infty;\frac{1}{F}) + S_0(r,F)$$

i.e.

$$T_{0}(r,F) \leq 2N_{2}^{0}(r,0;F) + 4\overline{N}_{0}(r,\infty;F) + S_{0}(r,F) < \{6 - 2\delta_{2}^{0}(0;F) - 4\Theta_{0}(\infty;F) + \epsilon + o(1)\}T_{0}(r,F) < \{1 - \epsilon + o(1)\}T_{0}(r,F),$$

which is a contradiction. So $B \neq -1$ and hence from (6) we get

$$\frac{BF}{1+B} - \frac{\frac{A-B}{B} - \frac{A-B-1}{1+B}}{G + \frac{A-B}{B}} \equiv 1.$$

Clearly $\frac{A-B}{B} - \frac{A-B-1}{B+1} \neq 0$ and so by Lemma 2 and Lemma 7 we get on integration

$$\begin{aligned} T_0(r,F) &\leq \overline{N}_0(r,0;F) + \overline{N}_0(r,0;\frac{1}{G+\frac{A-B}{B}}) + \overline{N}_0(f,\infty;F) + S_0(r,F) \\ &\leq 2N_2^0(r,0:F) + 4\overline{N}_0(R,\infty;F) + S_0(r,F) \\ &< \{6-2\delta_2^0(0;F) - 4\Theta_0(\infty;F) + \epsilon + o(1)\}T_0(r,F) \\ &< \{1-\epsilon+o(1)\}T_0(r,F), \end{aligned}$$

which is a contradiction. So A = B and hence from (6) we get

$$F + \frac{1}{BG} = \frac{1+B}{B}.$$

If $B \neq -1$, we get by Lemma 2 and Lemma 7 on integration

$$\begin{aligned} T_0(r,F) &\leq \overline{N}_0(r,0;F) + \overline{N}_0(r,0;\frac{1}{G}) + \overline{N}_0(r,\infty;F) + S_0(r,F) \\ &\leq 2N_2^0(r,0;F) + 4\overline{N}_0(r,\infty;F) + S_0(r,F) \\ &< \{6 - 2\delta_2^0(0;F) - 4\Theta(\infty;F) + \epsilon + o(1)\}T_0(r,F) \\ &< \{1 - \epsilon + o(1)\}T_0(r,F), \end{aligned}$$

which is a contradiction. Hence A = B = -1 and so from (6) we get $F.G \equiv 1$. Therefore either $F.G \equiv 1$ or $F \equiv G$ and so either $[\psi(D)f][\psi(D)g] \equiv 1$ or $f-g \equiv q$, where q = q(z)is a solution of the differential equation $\psi(D)w = 0$. This proves our theorem.

As an application of Theorem 1 we get the following corollary.

COROLLARY 1. Suppose (i) $f^{(p)}$, $g^{(p)}$ are nonconstant and share (0, 1), (1, 1), $(\infty, 0)$; (ii) $\frac{\sum_{a \neq \infty} \delta(a; f)}{1 + p(1 - \Theta(\infty; f))} > \frac{1}{2} + \frac{2(1 - \Theta(\infty; f))}{\sum_{a \neq \infty} \delta_p(a; f)}$, where $\sum_{a \neq \infty} \delta_p(a; f) > 0$; and (iii) $\Theta(0; f) + \Theta(0; g) + \Theta(\infty; f) > 2$. Then either $f \equiv g$ or $f^{(p)} \cdot g^{(p)} \equiv 1$. Further, if $f^{(p)}$ has at least one zero or pole, the possibility $f^{(p)} \cdot g^{(p)} \equiv 1$ does not arise.

PROOF. By Theorem 1 we see that either $f^{(p)}.g^{(p)} \equiv 1$ or $f - g \equiv q$ where q is a polynomial. Since $\sum_{a \neq \infty} \delta_p(a; f) > 0$, it follows that f is transcendental. If $q \not\equiv 0$, by Nevanlinna's three small functions theorem [3], we get

$$\begin{aligned} T(r,f) &\leq \overline{N}(r,0;f) + \overline{N}(r,q;f) + \overline{N}(r,\infty;f) + S(r,f) \\ &= \overline{N}(r,0;f) + \overline{N}(r,0;g) + \overline{N}(r,\infty;f) + S(r,f), \end{aligned}$$

which implies $\Theta(0; f) + \Theta(0; g) + \Theta(\infty; f) \leq 2$ because $T(r, g) = \{1 + o(1)\}T(r, f)$. This contradiction shows that $q \equiv 0$ and so $f \equiv g$. This proves the corollary.

Let us conclude the paper with the following question: Is it possible to relax the sharing (0,1), (1,1) to the sharing (0,0), (1,0) in Theorems 1 and 2?

References

- C. T. Chuang, Unégnéralisation d'une inégalité de Nevanlinna (French), Sci. Sinica, 13(1964), 887–895.
- [2] M. Furuta and N. Toda, On exceptional values of meromorphic functions of divergence class, J. Math. Soc. Japan, 25(1973), 667–679.
- [3] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.
- [4] I. Lahiri, Uniqueness of meromorphic functions as governed by their differential polynomials, Yokohama Math. J., 44(1997), 147–156.
- [5] I. Lahiri, Uniqueness of meromorphic functions when two linear differential polynomials share the same 1-points, Ann. Polon. Math., LXXI(2)(1999), 113–128.
- [6] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J., 161(2001), 193–206.

- [7] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Variables, 46(3)(2001), 241–253.
- [8] N. Toda, On a modified deficiency of meromorphic functions, Tôhoku Math. J., 22(1970), 635–658.
- [9] C. C. Yang, On two entire functions which together with their first derivatives have the same zeros, J. Math. Anal. Appl., 56(1976), 1–6.
- [10] H. X. Yi, A question of C. C. Yang on the uniqueness of entire functions, Kodai Math. J., 13(1990), 39–46.
- H. X. Yi, On characteristic function of a meromorphic function and its derivative, Indian J. Math., 33(2)(1991), 119–133.