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Abstract

We prove some uniqueness theorems for meromorphic functions that share
weighted values.

1 Introduction and Definitions

Let f and g be two nonconstant meromorphic functions defined in the open complex
plane C. If for some a ∈ C ∪ {∞} the roots of f − a and g − a (if a = ∞, roots
of f − a and g − a are the poles of f and g respectively) coincide in locations and
multiplicities we say that f and g share the value a CM (counting multiplicities) and if
coincide in locations only we say that f and g share a IM (ignoring multiplicities). We
do not explain the standard notations of the value distribution theory because those
are available in [3]. However, we explain some definitions which will be needed in the
sequel. Also we denote by f , g two nonconstant meromorphic functions defined on C
unless otherwise stated.

DEFINITION 1 ([6]). If s is a positive integer, we denote by N(r, a; f |= s) the
counting function of those a-points of f whose multiplicity is s, where we count an
a-point according to its multiplicity.

DEFINITION 2 ([6]). If s is a positive integer, we denote by N(r, a; f |≥ s) the
counting function of those a-points of f whose multiplicities are greater than or equal
to s, where each a-point is counted only once.

DEFINITION 3 (cf. [1, 6]). If s is a positive integer, we denote by Ns(r, a; f) the
counting function of a-points of f where an a-point of multiplicity m is counted m
times if m ≤ s and s times if m > s. We put N∞(r, a; f) = N(r, a; f).

DEFINITION 4 ([6]). Let f , g share a value a IM. We denote by N∗(r, a; f, g) the
counting function of those a-points of f whose multiplicities are not equal to multi-
plicities of the corresponding a-points of g, where each such a-point is counted only
once.

Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f).
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DEFINITION 5 (cf. [2]). We put

T0(r, f) =
r

1

T (t, f)

t
dt, N0(r, a; f) =

r

1

N(t, a; f)

t
dt,

N0
s (r, a; f) =

r

1

Ns(t, a; f)

t
dt, m0(r, f) =

r

1

m(t, f)

t
dt,

m0(r, a; f) =
r

1

m(t, a; f)

t
dt, S0(r, f) =

r

1

S(t, f)

t
dt.

DEFINITION 6 (cf. [11]). We define δs(a; f) as δs(a; f) = 1 − lim sup
r→∞

Ns(r,a;f)
T (r,f)

where a ∈ C ∪ {∞}.
Clearly

0 ≤ δ(a; f) ≤ δs(a; f) ≤ δs−1(a; f) ≤ · · · ≤ δ2(a; f) ≤ δ1(a; f) = Θ(a; f) ≤ 1,

where Θ(a; f) = 1− lim sup
r→∞

N(r,a;f)
T (r,f) .

DEFINITION 7 (cf. [2, 5]). We put δ0(a; f) = 1 − lim sup
r→∞

N0(r,a;f)
T0(r,f)

, Θ0(a; f) =

1− lim sup
r→∞

N0(r,a;f)
T0(r,f)

, δ0s(a; f) = 1− lim sup
r→∞

N0
s (r,a;f)
T0(r,f)

where a ∈ C ∪ {∞}.
Yang in [9] asked: what can be said about the relationship between two entire

functions f and g if f, g share 0 CM and f 3, g3 share 1 CM?
To answer this question, Yi [10] proved the following theorem.

THEOREM A. Let f and g be two nonconstant entire functions. Assume that f, g
share 0 CM and f (n), g(n) share 1 CM and 2δ(0; f) > 1, where n is a nonnegative
integer. Then either f (n) · g(n) ≡ 1 or f ≡ g.
Inspired by this result, in [4], the following question was asked: what can be said

about the relationship between two meromorphic functions f, g when two differential
polynomials, generated by them, share certain values?
Let ψ(D) = p

i=1 αiD
i be a linear differential operator with constant coefficients

where D ≡ d/dz (cf. [4]). The following theorem was proved in [4].

THEOREM B ([4]). Let f , g be of finite order such that f, g share ∞ CM,

ψ(D)f,ψ(D)g are nonconstant and share 0, 1 CM, and a 9=∞ δ(a;f)

1+p(1−Θ(∞;f))− 3(1−Θ(∞;f))
2

a 9=∞ δ(a;f)
>

1
2 , where a9=∞ δ(a; f) > 0. Then either (a) [ψ(D)f ][ψ(D)g] ≡ 1 or (b) f − g ≡ q,
where q = q(z) is a solution of the differential equation ψ(D)w = 0. Further, if f has
at least one pole or ψ(D)f has at least one zero, then the possibility (a) does not arise.

The purpose of the paper is to make a twofold improvement of Theorem B: firstly by
weakening the condition on deficiencies and secondly by relaxing the nature of sharing
of values. In order to relax the nature of sharing values we consider a gradation of
sharing of values which measures how close a shared value is to being shared IM or to
being shared CM and is called weight of the sharing.

DEFINITION 8 ([6, 7]). Let k be a nonnegative integer or infinity. For a ∈ C∪{∞}
we denote by Ek(a; f) the set of all a-points of f where an a-point of multiplicity m
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is counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say
that f , g share the value a with weight k.

The definition implies that if f , g share a value a with weight k then z0 is a zero of
f − a with multiplicity m (≤ k) if and only if it is a zero of g − a with multiplicity m
(≤ k) and z0 is a zero of f − a with multiplicity m (> k) if and only if it is a zero of
g − a with multiplicity n (> k) where m is not necessarily equal to n.
We say that f, g share (a, k) if f, g share the value a with weight k. Clearly if f, g

share (a, k), then f, g share (a, p) for any integer p, 0 ≤ p < k. Also we note that f, g
share a value a IM or CM if and only if f, g share (a, 0) or (a,∞) respectively.

2 Lemmas

In this section we present some lemmas which are necessary in the sequel.

LEMMA 1. If f, g share (0, 0), (1, 0) and (∞, 0), then (i) T (r, f) ≤ 3T (r, g)+S(r, f),
and (ii) T (r, g) ≤ 3T (r, f) + S(r, g).
PROOF. The lemma follows from the second fundamental theorem (see p.43 in [3]).

LEMMA 2. Let c1f + c2g ≡ c3, where c1, c2 and c3 are nonzero constants. Then (i)
T (r, f) ≤ N(r, 0; f) +N(r, 0; g) +N(r,∞; f) + S(r, f), and (ii) T (r, g) ≤ N(r, 0; f) +
N(r, 0; g) +N(r,∞; g) + S(r, g).
PROOF. By the second fundamental theorem [3], we get

T (r, f) ≤ N(r, 0; f) +N(r, c3/c1; f) +N(r,∞; f) + S(r, f)
= N(r, 0; f) +N(r, 0; g) +N(r,∞; f) + S(r, f),

which is (i). In a similar way we can prove (ii). This proves the lemma.

LEMMA 3. Let f, g share (1, 0) and h = f 3/f − g3/g. If N(r, 1; f) 9= S(r, f) and
h ≡ 0, then f ≡ g.
PROOF. Since h ≡ 0, it follows that f ≡ cg, where c is a constant. Since f, g share

(1, 0) and N(r, 1; f) 9= S(r, f), there exists z0 ∈ C such that f(z0) = g(z0) = 1 so that
c = 1. Therefore f ≡ g. This completes the proof.
LEMMA 4. If f, g share (0, 0), (1, 1) and (∞, 0) and f 9 ≡g, then (i) N(r, 1; f |≥

2) ≤ N∗(r, 0; f, g) +N∗(r,∞; f, g) + S(r, f), and (ii) N(r, 1; g |≥ 2) ≤ N∗(r, 0; f, g) +
N∗(r,∞; f, g) + S(r, f).
PROOF. Since N(r, 1; f) ≡ N(r, 1; g), the lemma is obvious if N(r, 1; f) = S(r, f).

So we suppose that N(r, 1; f) 9= S(r, f). Let h = f 3/f − g3/g. Since f 9 ≡g, by Lemma
3 we get h 9 ≡0. Also since f, g share (1, 1), a multiple 1-point of f is a multiple 1-point
of g and vise-versa and so it is a zero of f 3 and g3. Hence

N(r, 1; f |≥ 2) ≤ N(r, 0;h) ≤ T (r, f) +O(1) = N(r, h) +m(r, h) +O(1),

i.e.,
N(r, 1; f |≥ 2) ≤ N(r, h) + S(r, f), (1)

by Milloux theorem (see p.55 in [3]) and Lemma 1.
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The possible poles of h occur at the zeros and poles of f , g. Clearly if z0 is a zero
or a pole of f and g with the same multiplicity then z0 is not a pole of h. Since all the
poles of h are simple, it follows that

N(r, h) = N(r, h) ≤ N∗(r, 0; f, g) +N∗(r,∞; f, g). (2)

Now (i) follows from (1) and (2). Also (ii) follows from (i) because f, g share (1, 1) so
that N(r, 1; g |≥ 2) ≡ N(r, 1; f |≥ 2). This completes our proof.
LEMMA 5. If f, g share (1, 1) and H 9 ≡0, where H = f 33

f 3 − 2f 3

f−1 − g33

g3 +
2g3

g−1 , then
(i) N(r, 1; f |= 1) ≤ N(r,H) + S(r, f) + S(r, g), and (ii) N(r, 1; g |= 1) ≤ N(r,H) +
S(r, f) + S(r, g).

PROOF. Since f, g share (1, 1), it follows that a simple 1-point of f is a simple
1-point of g and conversely. Let z0 be a simple 1-point of f and g. Then in some
neighbourhood of z0 we get

f − 1 = (z − z0)α and g − 1 = (z − z0)β
where α,β are analytic at z0 and α(z0) 9= 0, β(z0) 9= 0. This implies by a simple
calculation that in some neighbourhood of z0

H = (z − z0) αα33 − 2(α3)2
α{α+ (z − z0)α3} −

ββ33 − 2(β3)2
β{β + (z − z0)β3} .

This shows that z0 is a zero of H. Hence

N(r, 0; f |=1) ≤ N(r, 0;H) ≤ T (r,H) +O(1) = N(r,H) +m(r,H) +O(1)
= N(r,H) + S(r, f) + S(r, g)

by Milloux theorem (see p.55 in [3]).
Now (ii) follows from (i) because N(r, 1; g |= 1) = N(r, 1; f |= 1). The proof is

complete.

LEMMA 6. Let f, g share (0, 0), (1, 0) and (∞, 0) and H 9 ≡0, where H is defined
as in Lemma 5. Then

N(r,H) ≤ N∗(r, 0; f, g) +N∗(r,∞; f, g) +N∗(r, 1; f, g)
+N⊗(r, 0; f 3) +N⊗(r, 0; g3),

where N⊗(r, 0; f 3) is the counting function of those zeros of f 3 which are not the zeros
of f and f − 1 and N⊗(r, 0; g3) is the analogous quantity.
PROOF. The possible poles of H occur at (i) multiple zeros of f , g; (ii) zeros of

f − 1, g − 1; (iii) poles of f , g; and (iv) zeros of f 3, g3 which are not the zeros of f ,
f − 1 and g, g − 1 respectively. Let z0 be a zero of f − 1 and g − 1 with multiplicities
m and n respectively. Then in some neighbourhood of z0, we get f − 1 = (z − z0)mα
and g − 1 = (z − z0)nβ, where α, β are analytic at z0 and α(z0) 9= 0, β(z0) 9= 0. Then
in some neighbourhood of z0 we get

H(z) =
m− n
z − z0 φ(z) + ψ(z),
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where φ, ψ are analytic at z0 and φ(z0) 9= 0. This shows that if m = n, then z0is not
a pole of H and if m 9= n then z0 is a simple pole of H.
Similarly we can show that if z1 is a zero or a pole of f , g with multiplicities m

and n respectively, then z1 is not a pole of H if m = n and z1 is a simple pole of H if
m 9= n.
Since all poles of H are simple, the lemma follows from the above discussion. The

proof is complete.

LEMMA 7 ([2]) limr→∞
S0(r,f)
T0(r,f)

= 0 for all values of r.

LEMMA 8 (cf. [5, 8]). For a ∈ C ∪ {∞}, δ(a; f) ≤ δ0(a; f), Θ(a; f) ≤ Θ0(a; f) and
δs(a; f) ≤ δ0s(a; f).

LEMMA 9 ([5]) (i) lim supr→∞
T0(r,ψ(D)f)
T0(r,f)

≥ a9=∞ δ0p(a; f), and (ii) δ0(0;ψ(D)f) ≥
a 9=∞ δ0(a;f)

1+p(1−Θ(∞;f)) .

LEMMA 10 ([5]). If a9=∞ δ0p(a; f) > 0 then Θ0(∞;ψ(D)f) ≥ 1− 1−Θ(∞;f)
a9=∞ δ0p(a;f)

.

3 Theorems

In this section we present the main results of the paper.

THEOREM 1. Let ψ(D)f, ψ(D)g be nonconstant such that (i) f, g share (∞, 0);
(ii) ψ(D)f , ψ(D)g share (0, 1), (1, 1); and (iii) a 9=∞ δ(a;f)

1+p(1−Θ(∞;f)) >
1
2+

2(1−Θ(∞;f))
a9=∞ δp(a;f)

, where

a9=∞ δp(a; f) > 0. Then either [ψ(D)f ][ψ(D)g] ≡ 1 or f − g ≡ q, where q = q(z) is a
solution of the differential equation ψ(D)w = 0.

THEOREM 2. Let ψ(D)f , ψ(D)g be nonconstant such that (i) f, g share (∞,∞);
(ii) ψ(D)f , ψ(D)g share (0, 1), (1, 1); and (iii) a9=∞ δ(a;f)

1+p(1−Θ(∞;f)) >
1
2+

1−Θ(∞;f)
a 9=∞ δp(a;f)

, where

a9=∞ δp(a; f) > 0. Then either [ψ(D)f ][ψ(D)g] ≡ 1 or f − g ≡ q, where q = q(z) is a
solution of the differential equation ψ(D)w = 0.

REMARK 1. If f has at least one pole or ψ(D)f has at least one zero then the
possibility [ψ(D)f ][ψ(D)g] ≡ 1 does not arise in Theorems 1 and 2.
The following example shows that the theorems are sharp.

EXAMPLE 1. Let f = −1
4 exp(z) +

1
6 exp(2z), g =

1
6 exp(−z) − 1

14 exp(−2z) and
ψ(D) = D2 − 5D. Then ψ(D)f, ψ(D)g share (0,∞), (1,∞) and f, g share (∞,∞).
Also a9=∞ δ(a; f) = 1/2 and Θ(∞; f) = 1 but neither [ψ(D)f ][ψ(D)g] ≡ 1 nor
f − g ≡ c1 + c2 exp(5z) for any constants c1, c2.
We shall prove Theorem 1 only because Theorem 2 can be proved similarly noting

that N∗(r,∞; f, g) ≡ 0 when f , g share (∞,∞).
Proof of Theorem 1. Let F = ψ(D)f and G = ψ(D)g. Then clearly F,G share

(0, 1), (1, 1), (∞, 0) and in view of Lemma 8 , Lemma 9 and Lemma 10, the given
condition implies 2δo2(0;F ) + 4Θo(∞;F ) > 5.
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Let F 9 ≡G. We shall show that F.G ≡ 1. If possible, suppose that H 9 ≡0, where
H = F 33

F 3 − 2F 3
F−1 − G33

G3 +
2G3
G−1 . Now by the second fundamental theorem (see p.43 in [3])

and Lemma 1 we get

T (r, f) + T (r, g) ≤ N(r, 0;F ) +N(r, 1;F ) +N(r,∞;F )
+N(r, 0;G) +N(r, 1;G) +N(r,∞;G)
−N⊗(r, 0;F 3)−N⊗(r, 0;G3) + S(r, F ).

Since F,G share (0, 1), (1, 1), (∞, 0), we obtain
T (r, f) + T (r, g) ≤ 2N(r, 0;F ) + 2N(r, 1;G) + 2N(r,∞;F )

−N⊗(r, 0;F 3)−N⊗(r, 0;G3) + S(r, f). (3)

Again since F,G share (1, 1), we get

2N(r, 1;G) ≤ N(r, 1;G |= 1) +N(r, 1;G)
≤ N(r, 1;F |= 1) + T (r,G) +O(1).

So from (3) we get

T (r, F ) ≤ 2N(r, 0;F ) +N(r, 1;F |= 1) + 2N(r,∞;F )
−N⊗(r, 0;F 3)−N⊗(r, 0;G3) + S(r, F ). (4)

Since F,G share (0, 1), (1, 1), it follows that N∗(r, 0;F,G) ≤ N(r, 0;F |≥ 2) and
N∗(r, 1;F,G) ≤ N(r, 1;F |≥ 2) and so by Lemma 1, Lemma 4, Lemma 5 and Lemma
6, we get

N(r, 1;F |=1) ≤ N(r,H) + S(r, F )

≤ N∗(r, 0;F,G) +N∗(r, 1;F,G) +N∗(r,∞;F,G)
+N⊗(r, 0;F 3) +N⊗(r, 0;G3) + S(r, F )

≤ N(r, 0;F |≥ 2) +N(r, 1;F |≥ 2) +N(r,∞;F )
+N⊗(r, 0;F 3) +N⊗(r, 0;G3) + S(r, F )

≤ 2N(r, 0;F |≥ 2) + 2N(r,∞;F )
+N⊗(r, 0;F 3) +N⊗(r, 0;G3) + S(r, F ).

So from (4) we obtain

T (r, F ) ≤ 2N(r, 0;F ) + 2N(r, 0;F | ≥ 2) + 4N(r,∞;F ) + S(r, F )
+2N2(r, 0;F ) + 4N(r,∞ : F ) + S(r, F ),

which gives on integration

T0(r, F ) ≤ 2N0
2 (r, 0;F ) + 4N0(r,∞;F ) + S0(r, F ). (5)

Henceforth � stands for a quantity satisfying

0 < 2� < 2δ02(0;F ) + 4Θ0(∞;F )− 5.
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Now from (5) we get by Lemma 7

T0(r, F ) < {6− 2δ02(0;F )− 4Θ0(∞;F ) + �+ o(1)}T0(r, F )
< {1− �+ o(1)}T0(r, F ),

which is a contradiction. Therefore H ≡ 0 and so
1

F − 1 ≡
A

G− 1 +B, (6)

where A and B are constants. Since F is nonconstant, A 9= 0. Let B = 0. Since
F 9 ≡G, it follows that A 9= 1. Then we get from (6) F + G

A ≡ 1− 1
A . So by Lemma 2

and Lemma 7 we obtain on integration

T0(r, F ) ≤ N0(r, 0;F ) +N0(r, 0;G) +N0(r,∞;F ) + S0(r, F )
≤ 2N0

2 (r, 0;F ) + 4N0(r,∞;F ) + S0(r, F )
< {6− 2δ02(0;F )− 4Θ0(∞;F ) + �+ o(1)}T0(r, F )
< {1− �+ o(1)}T0(r, F ),

which is a contradiction. So B 9= 0. Let A 9= B. If B = −1, from (6) we get
A−B−1

F −BG ≡ A−B. Since G is nonconstant , A−B − 1 9= 0 and so by Lemma 2,
Lemma 7 and the first fundamental theorem we get on integration

T0(r,
1

F
) ≤ N0(r, 0;

1

F
) +N0(r, 0;G) +N0(r,∞; 1

F
) + S0(r, F )

i.e.

T0(r, F ) ≤ 2N0
2 (r, 0;F ) + 4N0(r,∞;F ) + S0(r, F )

< {6− 2δ02(0;F )− 4Θ0(∞;F ) + �+ o(1)}T0(r, F )
< {1− �+ o(1)}T0(r, F ),

which is a contradiction. So B 9= −1 and hence from (6) we get

BF

1 +B
−

A−B
B − A−B−1

1+B

G+ A−B
B

≡ 1.

Clearly A−B
B − A−B−1

B+1 9= 0 and so by Lemma 2 and Lemma 7 we get on integration

T0(r, F ) ≤ N0(r, 0;F ) +N0(r, 0;
1

G+ A−B
B

) +N0(f,∞;F ) + S0(r, F )

≤ 2N0
2 (r, 0 : F ) + 4N0(R,∞;F ) + S0(r, F )

< {6− 2δ02(0;F )− 4Θ0(∞;F ) + �+ o(1)}T0(r, F )
< {1− �+ o(1)}T0(r, F ),

which is a contradiction. So A = B and hence from (6) we get

F +
1

BG
=
1 +B

B
.
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If B 9= −1, we get by Lemma 2 and Lemma 7 on integration

T0(r, F ) ≤ N0(r, 0;F ) +N0(r, 0;
1

G
) +N0(r,∞;F ) + S0(r, F )

≤ 2N0
2 (r, 0;F ) + 4N0(r,∞;F ) + S0(r, F )

< {6− 2δ02(0;F )− 4Θ(∞;F ) + �+ o(1)}T0(r, F )
< {1− �+ o(1)}T0(r, F ),

which is a contradiction. Hence A = B = −1and so from (6) we get F.G ≡ 1. Therefore
either F.G ≡ 1 or F ≡ G and so either [ψ(D)f ][ψ(D)g] ≡ 1 or f−g ≡ q, where q = q(z)
is a solution of the differential equation ψ(D)w = 0. This proves our theorem.

As an application of Theorem 1 we get the following corollary.

COROLLARY 1. Suppose (i) f (p), g(p)are nonconstant and share (0, 1), (1, 1), (∞, 0);
(ii) a9=∞ δ(a;f)

1+p(1−Θ(∞;f)) >
1
2 +

2(1−Θ(∞;f))
a9=∞ δp(a;f)

, where a9=∞ δp(a; f) > 0; and (iii) Θ(0; f) +

Θ(0; g) +Θ(∞; f) > 2. Then either f ≡ g or f (p).g(p) ≡ 1. Further, if f (p) has at least
one zero or pole, the possibility f (p) · g(p) ≡ 1 does not arise.
PROOF. By Theorem 1 we see that either f (p).g(p) ≡ 1 or f − g ≡ q where q is a

polynomial. Since a9=∞ δp(a; f) > 0, it follows that f is transcendental. If q 9 ≡0, by
Nevanlinna’s three small functions theorem [3], we get

T (r, f) ≤ N(r, 0; f) +N(r, q; f) +N(r,∞; f) + S(r, f)
= N(r, 0; f) +N(r, 0; g) +N(r,∞; f) + S(r, f),

which implies Θ(0; f) + Θ(0; g) + Θ(∞; f) ≤ 2 because T (r, g) = {1 + o(1)}T (r, f).
This contradiction shows that q ≡ 0 and so f ≡ g. This proves the corollary.
Let us conclude the paper with the following question: Is it possible to relax the

sharing (0, 1), (1, 1) to the sharing (0, 0), (1, 0) in Theorems 1 and 2?
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