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Abstract

We show that subtle modifcations of the arguments in [1] can lead us to
an oscillation criterion for a higher order superlinear nonhomogeneous differential
equation which depends only on the behavior of the forcing function on a sequence
of intervals.

In [1], Agarwal and Grace derive an oscillation theorem for the n-th order nonho-
mogeneous superlinear differential equation

y(n)(t) + q(t)|y(t)|β−1y(t) = f(t), β > 1, t ≥ t0, (1)

where n ≥ 1 and q, f ∈ C([t0,∞);R). Besides the assumption q(t) < 0 for t ≥ t0, their
result also requires the global behavior of the function f on [t0,∞). By means of the
following subtle modifications, we will obtain an oscillation result that only requires
behaviors of q and f on a sequence of intervals.
Recall first that a solution of (1) is a function y : [Ty,∞) → R for some Ty ≥ t0,

which has the property y ∈ C(n)[Ty,∞) and satisfies (1). We restrict our attention
only to the nontrivial solution y(t) of (1), i.e., to the solution y(t) such that sup{|y(t)| :
t ≥ T} > 0 for all T ≥ Ty. A nontrivial solution of (1) is called oscillatory if it has
arbitrary large zeros.
Let D(a, b) be the set of all functions H in C(n)[a, b] such that H(t) > 0 for t ∈ (a, b)

and H(j)(a) = H(j)(b) = 0 for 0 ≤ j ≤ n− 1.
THEOREM 1. Suppose that for any T ≥ t0, there exist T ≤ s < τ such that

q(t) < 0 on [s, τ ] and f(t) ≥ 0 for t ∈ [s, τ ]. If there exists H ∈ D(s, τ) such that

τ

s

H(t)f(t)dt > (β − 1)ββ/(1−β)
τ

s

H(n)(t)
β

H(t)

1/(β−1)

|q(t)|1/(1−β) dt, (2)

then Eq.(1) cannot have an eventually positive solution.

PROOF. We will need the well known fact that if A and B are nonnegative and
β > 1, then Aβ + (β − 1)Bβ ≥ βABβ−1 and equality holds if and only if A = B. Now
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suppose that y(t) is an eventually positive solution which is positive, say y(t) > 0 when
t ≥ T0 ≥ t0 for some T0 depending on the solution y(t). By assumption, we can choose
s, τ ≥ T0 so that f(t) ≥ 0 on the interval I = [s, τ ] with s < τ . On the interval I, we
multiply Eq.(1) by H(t) for t ≥ t0 and integrate from s to τ , we obtain

τ

s

H(t)f(t)dt =
τ

s

H(t)y(n)(t)dt+
τ

s

H(t)q(t) |y(t)|β−1 y(t)dt

=
τ

s

H(t)y(n)(t)dt−
τ

s

H(t) |q(t)| yβ(t)dt. (3)

Now, since

τ

s

H(t)y(n)(t)dt = −
τ

s

H 3(t)y(n−1)(t)dt = ... = (−1)n
τ

s

H(n)(t)y(t)dt,

thus
τ

s
H(t)y(n)(t)dt is equal to

τ

s
H(n)(t)y(t)dt if n is even and when n is odd, it is

equal to − τ

s
H(n)(t)y(t)dt. Hence

τ

s

H(t)f(t)dt =
τ

s

H(n)(t)y(t)dt−
τ

s

H(t) |q(t)| yβ(t)dt, if n is even,

and

τ

s

H(t)f(t)dt = −
τ

s

H(n)(t)y(t)dt−
τ

s

H(t) |q(t)| yβ(t)dt, if n is odd.

But then

τ

s

H(t)f(t)dt ≤
τ

s

H(n)(t) y(t)dt−
τ

s

H(t) |q(t)| yβ(t)dt.

Set

A = [H(t) |q(t)|]1/β y(t),
and

B =
1

β
H(n)(t) (H(t) |q(t)|)−1/β

1/(β−1)
,

then in view of the inequality mentioned above, we see that

τ

s

H(t)f(t)dt ≤ (β − 1)ββ/(1−β)
τ

s

H(n)(t)
β

H(t)

1/(β−1)

|q(t)|1/(1−β) dt,

which contradicts our assumption (2). The proof is complete.

EXAMPLE 1. Consider the differential equation

y3(t) + q |y(t)|2 y(t) = sin t, (4)
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where q is a negative constant to be determined. The forcing function sin t is positive
on [2kπ, 2kπ + π] for k = 0, 1, 2, ... . Let H(t) = sin t. Set s = 2kπ and τ = (2k + 1)π
where k is a sufficiently large integer. Then

τ

s

H(t)f(t)dt =
π

0

sin2 tdt =
π

2
> 0,

and

(β − 1)ββ/(1−β)
τ

s

|H 3(t)|β
H(t)

1/(β−1)
|q|1/(1−β) dt

= 2× 3−3/2 |q|−1/2
π

0

|cos t|3
sin t

1/2

dt

= 2× 3−3/2 |q|−1/2 × 3.7081...,

where we have used the fact that the singular integral

π/2

0

|cos t|3
sin t

1/2

dt

exists in view of

lim
x→0+

x1/2(cosx)3/2

(sinx)1/2
= 1,

and its numerical value is 1.8541...
In order that

π

2
> 2× 3−3/2 |q|−1/2 × 3.7081...,

it is sufficient that

|q|1/2 > 4× 3−3/2 × 3.7081...
π

≈ 0.90861...

Thus, when q < −(0.90861...)2, Eq. (4) cannot have an eventually positive solution.
Similarly, the differential equation

x3(t) + r |x(t)|2 x(t) = − sin t (5)

cannot have an eventually positive solution by taking H(t) = − sin t and s = (2k+1)π
and τ = (2k + 2)π, and r < −(0.90861...)2.
Since an eventaully positive solution of (4) is an eventually positive solution of (5),

thus when q < −(0.90861...)2, every solution of (4) oscillates.
We remark that in eqaution (4), we may replace the constant q with a function q(t)

such that q(t) < 0 on each [2kiπ, 2(k+1)πi], where {ki} is an unbounded subsequence
of {1, 2, 3, ...} .
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We remark further that the results of Agarwal and Grace [1] cannot be applied to
Eq.(4), since

lim sup
t→∞

1

tm

t

t0

(t− s)m sin tdt = lim sup
t→∞

−1
tm
(t− t0)m cos t0 9= +∞,

and

lim inf
t→∞

1

tm

t

t0

(t− s)m sin tdt = lim inf
t→∞

−1
tm
(t− t0)m cos t0 9= −∞.

Finally, we remark that the same arguments in the proof of Theorem 1 will enable
us to derive the following integral type condition: Let q ∈ C[a, b] such that q(t) < 0
for a < t < b and let y ∈ C(n)[a, b] such that y(t) > 0

(Ly)(t) ≡ y(n)(t) + q(t)yβ(t) ≥ 0, β > 1,

for a ≤ t ≤ b. Then for any H ∈ D(a, b), we have

b

a

H(t)(Ly)(t)dt ≤ (β − 1)ββ/(1−β)
b

a

H(n)(t)
β

H(t)

1/(β−1)

|q(t)|1/(1−β) dt,

where equality holds only if

H(n)(t) = (−1)n+1βq(t)yβ−1(t)H(t), a < t < b.
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