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Abstract

By means of the technique of separation of variables, the problem of the ex-
istence of positive and bounded solutions of two discrete reaction-diffusion equa-
tions are reduced to that of ordinary difference equations. Monotone and com-
parison methods are then employed to construct positive and bounded solutions
of the latter equations.

Discretization of the heat equation lead to several well known multilevel partial
difference schemes (such as the DuFort-Frankel scheme [1, p.302]). These schemes,
or equations, can also be obtained by first principles. Consider, for example, the
distribution of heat through a “long” rod. Assume that the rod is so long that it can

be labeled by the set of integers. Let u
(n)
m be the temperature at the integral positionm

and integral time n of the rod. At time n, if the temperature u
(n)
m−1 is higher than u

(n)
m ,

heat will flow from the point m−1 to m. The amount of increase is u(n+1)m −u(n)m , and it

is reasonable to postulate that the increase is proportional to the quantity u
(n)
m−1−u(n)m ,

say, r u
(n)
m−1 − u(n)m where r is a positive constant. By symmetry considerations, it is

then reasonable that the total effect is

u(n+1)m − u(n)m = r u
(n)
m−1 − u(n)m + r u

(n)
m+1 − u(n)m .

Such a postulate can be regarded as a discrete Newton law of cooling.
If this equation represents a real model, it will be reasonable to expect that it has

a positive bounded solution for appropriate initial temperature distributions. Indeed,

the double sequence u
(n)
m ≡ {1} is such a solution.

The question then arises as to whether a more general nonhomogeneous rod subject
to delayed feedback has a positive and bounded solution. In this note, we will consider
two such cases the first of which is modeled by an equation of the form

u(n+1)m − u(n)m = αu
(n)
m−1 + βu(n)m + γu

(n)
m+1 + qu

(n−σ)
m , (1)
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where n = 0, 1, 2, ... and m = 0,±1,±2, ... and σ is a nonnegative integer. We will
develop several techniques which will enable us to find sufficient conditions for the
existence of positive and bounded solutions. For related references, [2,3,4] can be
consulted.
First of all, for the sake of convenience, we will denote the set of nonnegative integers

byN and the set of integers by Z. Given an arbitrary set of initial values u
(n)
m , −σ ≤ n ≤

0,m ∈ Z, we can successively calculate u(1)0 ;u(1)−1, u(2)0 , u(1)1 ;u(1)−2, u(2)−1, u(3)0 , u
(2)
1 , u

(1)
2 ; ...

in a unique manner. Such a double sequence u = {u(n)m |m ∈ Z, n = −σ,−σ + 1, ...} is
called a solution of (1). Suppose there is some nonnegative integer T such that u

(n)
m > 0

for m ∈ Z and n ≥ T, then u is said to be eventually positive.
By designating the doubly infinite sequence ..., u

(n)
−1 , u

(n)
0 , u

(n)
1 , ... as the column

vector u(n), we see that a solution of (1) can also be regarded as a vector sequence
{u(n)}∞n=−σ. Furthermore, such a sequence satisfies the delay vector recurrence relation

u(n+1) − u(n) = Au(n) + qu(n−σ), n ∈ N, (2)

where A = (aij) is an infinite matrix with diagonal elements all equal to β, subdiagonal
elements all equal to α, and superdiagonal elements to γ, that is, aii = β, ai,i−1 = α
and ai,i+1 = γ for i ∈ Z, and zero elsewhere.
Let Ω be the linear space of all real doubly infinite sequences over the real field and

under the usual operations. If we call a vector v in Ω positive (denoted by v > 0) when
all its components are positive, then clearly a solution u of (1) is eventually positive
if, and only if the vector sequence {u(n)} is eventually positive. Therefore, (1) has an
eventually positive solution if, and only if, the relation (2) has an eventually positive
solution. Next, we observe that if there is a number λ and a corresponding vector v
such that

Av = λv, (3)

then for any solution {xn}∞n=−σ of the scalar difference equation
xn+1 − xn = λxn + qxn−σ, n ∈ N, (4)

we have
xn+1v − xnv = λxnv + qxn−σv = xnAv + qxn−σv, n ∈ N,

that is, {xnv} is a solution of (2).
In view of these, in order to find an eventually positive and bounded solution of

(2), it suffices to find a number λ and a corresponding positive and bounded vector v
such that (3) is satisfied, as well as an eventually positive and bounded solution of (4).
Clearly, when λ = α+ β + γ, (3) is satisfied by the positive and bounded constant

sequence v = {1}. Now, the corresponding scalar difference equation is
xn+1 − xn = (α+ β + γ)xn + qxn−σ, n ∈ Z. (5)

To find an eventually positive and bounded solution of (5), we may look for one that is
of the form {tn} and 0 < t ≤ 1. Substituting the unknown solution into (5), we obtain
the following characteristic equation

tσ+1 − (1 + α+ β + γ)tσ − q = 0.
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Therefore, it suffices to find a root of this equation in (0, 1]. This is a relatively easy
problem. Indeed, consider the polynomial

h(t) = tσ+1 + atσ + b, t ∈ R. (6)

When σ = 0, the unique root is t = −a− b. Hence it has a root in (0, 1] if, and only if,
−1 ≤ a+ b < 0. Suppose now σ > 0. Note that h(0) = b and limt→∞ h(t) =∞, we see
that (6) has a positive root when b < 0̇. In such a case, it has a root in (0, 1] if, and
only if, h(1) = 1 + a+ b ≥ 0. If b = 0, then (6) has the unique roots 0 and −a, hence
it has a root in (0, 1] if, and only if, −1 ≤ a < 0. If b > 0 and a ≥ 0, then h(t) > 0 for
t > 0, so that h(t) does not have any positive roots. Finally, when b > 0 and a < 0,
the function h(t) has a minimum at t∗ = −aσ/(σ + 1), and

h(t∗) = b− (−a)
σ+1σσ

(σ + 1)σ+1
.

Hence h(t) has a root in (0, 1] if, and only if,

b ≤ (−a)
σ+1σσ

(σ + 1)σ+1

and

0 < t∗ =
−aσ
σ + 1

≤ 1.
In particular, when σ = 0, (5) has a solution of the form {tn} where t ∈ (0, 1] if,

and only if,
0 ≥ α+ β + γ + q > −1;

and when σ ≥ 1, (5) has a solution of the form {tn} where t ∈ (0, 1] if, and only if,

0 < α+ β + γ ≤ 1

σ
and − (1 + α+ β + γ)σ+1σ

(σ + 1)σ+1
≤ q < 0, (7)

or,

−1 < α+ β + γ ≤ 0 and − (1 + α+ β + γ)σ+1σσ

(σ + 1)σ+1
≤ q ≤ −(α+ β + γ), (8)

or,
α+ β + γ ≤ −1 and 0 < q ≤ −(α+ β + γ). (9)

THEOREM 1. When σ = 0, if −1 < α+ β + γ + q ≤ 0, then (1) has an eventually
positive and bounded solution. When σ ≥ 1, if (7) or (8) or (9) holds, then (1) has an
eventually positive and bounded solution.

We remark that if an eventually positive and zero convergent solution {u(n)} of (2)
is desired, we need only to modify the conditions in the above Theorem so that (5) has
a solution of the form {tn} where t ∈ (0, 1) instead of (0, 1].
We now consider another case where the coefficients α,β, γ are dependent on the

variable m and the coefficient q is time dependent so that we are now dealing with the
equation

u(n+1)m − u(n)m = αmu
(n)
m−1 + βmu

(n)
m + γmu

(n)
m+1 + qnu

(n−σ)
m ,m ∈ Z, n ∈ N. (10)
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By modifying the above procedures, we may easily come up with the following result.

THEOREM 2. Suppose there is a real number λ such that the steady state equation

αmvm−1 + βmvm + γmvm+1 = λvm, m ∈ Z, (11)

has a positive bounded solution {vm}∞m=−∞, and suppose further that the scalar dif-
ference equation

xn+1 − xn = λxn + qnxn−σ, n ∈ N (12)

has an eventually positive and bounded solution, then (10) has an eventually positive
and bounded solution.

In view of Theorem 2, there are two things we need to take care. First, let us try
to find a positive constant solution {c} of (11). This leads to λ = αm + βm + γm. In
other words, when λ = αm+βm+γm for m ∈ Z, then (11) has a positive and bounded
solution.

THEOREM 3. Suppose λ = αm + βm + γm for all m ∈ Z. Then (11) has positive
and bounded solutions of the form {c} .
Next, we need to find conditions which are sufficient for the existence of an eventu-

ally positive and bounded solution of (12). First, note that when σ = 0, equation (12)
becomes

xn+1 = (1 + λ+ qn)xn, n ∈ N,
which clearly has an eventually positive and bounded solution when −1 < λ+ qn ≤ 0
for n ∈ N.
Next, assume that σ > 0. Note that if qn ≤ q for n ∈ N, and (4) has an eventually

positive and bounded solution {xn} such that xn−σ > 0 for n ≥ M, then letting {yn}
be the solution of (12) determined by the conditions yM−σ = xM−σ, ..., yM = xM , we
see that

xM+1 − yM+1 = (1 + λ)(xM − yM ) + qxM−σ − qnyM−σ ≥ 0.
By induction, it is easily seen that xn ≥ yn for n > M. Next, note that

yn+1 = (1 + λ)yn + qnyn−σ.

If we impose the conditions 1 + λ ≥ 0 and qn > 0 for n ∈ N, or, 1 + λ > 0 and qn ≥ 0
for n ∈ N, then clearly yn > 0 for n > M. We have thus shown the following.
THEOREM 4. Suppose σ > 0. Suppose either 1+λ ≥ 0 and 0 < qn ≤ q for n ∈ N,

or, 1 + λ > 0 and 0 ≤ qn ≤ q for n ∈ N. If (4) has an eventually positive and bounded
solution, then (12) has an eventually positive and bounded solution.

The set of sufficient conditions described above is not the only one possible. Indeed,
we assert that equation (12) will have an eventually positive and bounded solution
provided that λ ≤ 0, q ≤ qn < 0 for n ∈ N and (4) has an eventually positive and
bounded solution. To this end, let x = {xn} be an eventually positive and bounded
solution of (4). By summing (4), we see that

xn ≥ −
∞

i=n

λxi −
∞

i=n

qixi−σ ≥ 0
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for n larger than or equal to some positive integerM. Define the mapping T on the set
of all real sequences of the form y = {yn}∞n=−σ by

(Ty)n = −
∞

i=n

λyi −
∞

i=n

qiyi−σ, n ≥M,

and

(Ty)n = yM , −σ ≤ n < M
Consider the following sequence {y[t]} of successive approximations defined by

y[0]n =
xn n ≥M
xM −σ ≤ n < M , (13)

and

y[t+1] = Ty[t], t = 0, 1, 2, ... .

Clearly,

y[1]n = Ty[0]
n
= (Tx)n = −

∞

i=n

λxi −
∞

i=n

qixi−σ, n ≥M,

so that

0 ≤ y[1]n ≤ xn, n ≥M.
Thus,

0 ≤ y[2]n = Ty[1]
n
≤ (Tx)n = y[1]n , n ≥M.

By induction, we see that

0 ≤ ... ≤ y[t+1]n ≤ y[t]n ≤ ... ≤ y[0]n = xn, n ≥M.

Thus as t→∞, y[t] converges pointwise to some nonnegative sequence w which satisfies

wn = −
∞

i=n

λwi −
∞

i=n

qiwi−σ (14)

for n ≥M and wn = xM > 0 for −σ ≤ n < M. By taking differences on both sides of
the above equation, we see that w is an eventually nonnegative and bounded solution
of (12). Finally, we show that w is eventually positive. Indeed, suppose to the contrary
that there exists an integer n∗ > M ≥ 1 such that wn > 0 for −σ ≤ n < n∗ and
wn∗ = 0. Then in view of (14), we see that

0 = wn∗ = −
∞

i=n∗
λwi −

∞

i=n∗
qiwi−σ.

Since qn < 0 for n ≥ n∗, thus wn∗−σ = 0, which is a contradiction. We have thus
shown the following.
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THEOREM 5. If σ > 0,λ ≤ 0, q ≤ qn < 0 for n ∈ N and (4) has an eventu-
ally positive and bounded solution, then (12) has an eventually positive and bounded
solution.

We remark that in the above Theorem, the assumption that qn < 0 for n ∈ N can
be relaxed to qn ≤ 0 for n ∈ N and qi 9= 0 for all i ∈ [n− σ, n] where n ∈ N.
THEOREM 6. If σ > 0, 1 + λ < 0, 0 < 1/qn ≤ 1/q for n ∈ N and (4) has an

eventually positive and bounded solution, then (12) has an eventually positive and
bounded solution.

The proof is similar to that of Theorem 5, but there are some technically different
details. Let {xn} be an eventually positive solution of (4) so that

xn =
1

q
{xn+σ+1 − (1 + λ)xn+σ} ≥ 0

for n larger than or equal to some positive integer M. Let H be the mapping defined
on the set of all real sequences of the form y = {yn}∞n=−σ as follows:

(Hy)n =
1

qn+σ
{yn+σ+1 − (1 + λ)yn+σ} , n ≥M,

and
(Hy)n = yM , −σ ≤ n < M.

Consider the following sequence {y[t]} of successive approximations defined by

y[0]n =
xn n ≥M
xM −σ ≤ n < M ,

and
y[t+1] = Hy[t], t = 0, 1, 2, ....

Clearly,

Hy[0]
n
= (Hx)n =

1

qn+σ
{xn+σ+1 − (1 + λ)xn̄σ} , n ≥M,

thus
0 ≤ y[1]n ≤ xn, n ≥M.

By induction, we see that

0 ≤ ... ≤ y[t+1]n ≤ y[t]n ≤ ... ≤ y[0]n = xn, n ≥M.
Thus as t→∞, y[t] converges pointwise to some nonnegative sequence w which satisfies

wn =
1

qn+σ
{wn+σ+1 − (1 + λ)wn+σ} (15)

for n ≥M and wn = xM > 0 for −σ ≤ n < M. By taking differences on both sides of
the above equation, we see that w is an eventually nonnegative and bounded solution
of (12). Finally, we show that w is eventually positive. Indeed, suppose to the contrary
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that there exists an integer n∗ > M ≥ 1 such that wn > 0 for −σ ≤ n < n∗ and
wn∗ = 0. Then in view of (15), we see that

0 ≤ wn∗+σ+1 = (1 + λ)wn∗+σ ≤ 0,

so that wn∗+σ = wn∗+σ+1 = 0. But then the same reasoning leads to

wn∗+2σ = wn∗+2σ+1 = wn∗+2σ+2 = 0.

By induction, it is then not difficult to see that there is some integer Γ such that wn = 0
for n ≥ Γ. But then in view of

wn∗−1 =
1

qn∗+σ−1
{wn∗+σ − (1 + λ)wn∗+σ−1} ,

wn∗+σ =
1

qn∗+2σ
{wn∗+2σ+1 − (1 + λ)wn∗+2σ} ,

wn∗+σ+1 =
1

qn∗+2σ+1
{wn∗+2σ+2 − (1 + λ)wn∗+2σ+1} , ... ,

and the fact that there is some positive integer t such that n∗ + tσ ≥ Γ, we see that
wn∗−1 = 0. This is a contradiction.
By combining the above results in different ways, we may obtain several sets of

sufficient conditions for the existence of eventually positive and bounded solutions of
(10). For instance, suppose the following conditions hold:
(1) αm + βm + γm = α0 + β0 + γ0 for m ∈ Z,
(2) σ > 0,
(3) −1 < α0 + β0 + γ0 ≤ 0, and
(4) 0 ≤ qn ≤ −(α0 + β0 + γ0) for n ∈ N.

Then (10) has an eventually positive and bounded solution.
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