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Abstract

In this paper, using fixed point theorem in cones and a transformation y (t) =U t
0

1
p(s)

z (s) ds, we establish some existence results for singular second order bound-
ary value problems of the form�

py�
��
+ p (t) q (t) f

�
t, y, py�

�
= 0, 0 < t < 1,

where f (t, y, z) is allowed to be singular at y = 0 and z = 0.

1 Introduction

This paper is devoted to the study of the existence of positive solutions for singular
second order boundary value problems of the form�

(py3)3 + p (t) q (t) f (t, y, py3) = 0, 0 < t < 1,
y (0) = limt→1− p (t) y3 (t) = 0,

(1)

where limy→0+ f(t, y, z) = +∞ and limz→0+ f(t, y, z) = +∞ uniformly on compact
subset of [0, 1]× (0,+∞). That is, we will allow our nonlinear term f to be singular at
y = 0 and z = 0.
In [1], Erbe and Wang study the existence of positive solutions of the equation

u33 + a (t) f (u) = 0 by using the Krasnosel’skii fixed point theorem [2], where a (t) is
continuous on [0, 1] and f (u) is continuous on [0,∞). Krasnosel’skii fixed point theorem
has been widely used to discuss the existence of positive solutions for boundary value
problems. In [3-5], O’Regan et al. showed the existence of positive solutions for singular
second order differential equations of the form

(py3)3 + p (t) q (t) f (t, y, py3) = 0, 0 < t < 1,
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126 Singular Boundary Problem

where f(t, y, z) is continuous on [0, 1] × R2. In [6], its authors used the nonlinear
alternative of Leray and Schauder to prove the existence results for singular second
order boundary value problems of the form

(py3)3 + p (t) q (t) f (t, y) = 0,

here limy→0+ f(t, y) = +∞. In [7], by using an upper and lower solution approach,
O’Regan and Agarwal presented the existence results for singular problems of the from�

(py3)3 + p (t) q (t) f (t, y, py3) = 0, 0 < t < 1,
y (1) = limt→0+ p (t) y3 (t) = 0,

(2)

where f is allowed to be singular at y = 0. When f is singular at y = 0 and z = 0, few
people (e.g. [9]) studied the problem (2). In this paper, with the use of certain fixed
point theorem in cones and a transformation

y(t) =

] t

0

1

p(s)
z(s)ds,

we will show the existence of positive solutions for the problem (1). Our results are
different from that in [9] and simpler than that in [7].

2 Main Results

Let py3 = z(t). We can transform (1) into py3 = z(t),
z3(t) + p(t)q(t)f(t, y, z) = 0, 0 < t < 1,
y(0) = limt→1− z(t) = 0.

(3)

Consequently (3) is equivalent to the fixed point problem

(Tz) (t) =

] 1

t

p(s)q(s)f (s, (Az)(s), z(s)) ds, (4)

where

y(t) =

] t

0

1

p(s)
z(s)ds = (Az)(t). (5)

We will suppose that the following conditions are satisfied:
(H1) f : [0, 1] × (0,+∞) × (0,+∞) → (0,+∞) is continuous, limy→0+ f(t, y, z) =

+∞ and limz→0+ f(t, y, z) = +∞ uniformly on bounded subsets of [0, 1]× (0,+∞);
(H2) p(t) ∈ C[0, 1] ∩ C1(0, 1) with p > 0 on (0, 1);
(H3) q(t) ∈ C(0, 1) with q > 0 on (0, 1);
(H4)

U 1
0

1
p(s)ds < +∞, U 1

0
p(s)q(s)ds < +∞, and limt→1− p(t)q(t)f(t, y, z) = +∞

uniformly on bounded subsets of (0,+∞)× (0,+∞);
(H5) f(t, y, z) ≤ h(y)g(z) for (t, y, z) ∈ [0, 1] × (0,+∞) × (0,+∞), where g, h ∈

C((0,+∞), (0,+∞));
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(H6) p
2q is bounded on [0, 1] and there exists R > 0 such that] (R+1)

U 1

0

1
p(s)

ds+1

0

h(u)du < +∞

and ] R

0

u

g(u)
du > sup

t∈[0,1]
p2(t)q(t)

] (R+1)
U 1

0

1
p(s)

ds+1

0

h(u)du;

(H7)
U 1
0
p(t)q(t)max g[1− t, R]dt < +∞ and] 1

0

p(t)q(t)maxh

�] t

0

1− t0
P (s)

ds,R

] 1

0

1

p(s)
ds+ 1

�
dt < +∞

for each t0 ∈ [0, 1), where max g[a, b] = maxa≤x≤b g(x), a ≤ b.
We will need the following lemma, its proof can be seen in [8].

LEMMA 1. Let K be a cone of the Banach space E, BR(0) = {x ∈ K : ||x|| ≤ R} ,
and F : BR(0)→ K is a completely continuous operator. In addition suppose
(i) F (x) 9= λx for ||x|| = R, λ > 1,
(ii) there exists r ∈ (0, R) such that F (x) 9= λx for ||x|| = r, 0 < λ < 1,
(iii) inf {||Fx|| : ||x|| = r} > 0.

Then F has at least one fixed point on r ≤ ||x|| ≤ R.
Consider the problem�

(py3)3 + p (t) q (t) f (t, y, py3) = 0, 0 < t < 1,
y (0) = limt→1− p (t) y3 (t) = 1/m.

(6)

where m ∈ N, which is equivalent to the fixed point problem

Tmz(t) =

] 1

t

f

�
s, (Az)(s) +

1

m
, z(s)

�
p(s)q(s)ds+

1

m
. (7)

Let
D[0, 1] = {z ∈ C ([0, 1], [0,+∞)) : z is nonincreasing on [0, 1]} ,

then D[0, 1] is a cone of Banach space C[0, 1]. For z(t) ∈ D[0, 1] , we define

Iz(t) =

�
z(t), z(1) ≥ 1/m,
z(t) +

�
1
m − z(1)

�
, z(1) < 1/m.

(8)

LEMMA 2. Suppose (H1)-(H4) hold, then TmI is a completely continuous operator
on D[0, 1].

PROOF. First we show TmI is a continuous operator on D[0, 1]. Let z, zn ∈ D[0, 1]
such that zn → z. Since f is uniformly continuous on compact subsets of [0, 1] ×
[1/m,+∞)× [1/m,+∞), then for each ε > 0, there is N such that����f �s, (AIz)(s) + 1

m
, Iz(s)

�
− f

�
s, (AIzn)(s) +

1

m
, Izn(s)

����� < ε
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when n > N , s ∈ [0, 1]. This together with (H4) gives
|TmIz(t)− TmIzn(t)|

≤
] 1

t

����f �s, (AIz)(s) + 1

m
, Iz(s)

�
− f

�
s, (AIzn)(s) +

1

m
, Izn(s)

����� p(s)q(s)ds
≤

] 1

0

����f �s, (AIz)(s) + 1

m
, Iz(s)

�
− f

�
s, (AIzn)(s) +

1

m
, Izn(s)

����� p(s)q(s)ds
≤ ε

] 1

0

p(s)q(s)ds,

for n > N , t ∈ [0, 1]. We obtain that TmI is a continuous operator on D[0, 1].
Next we show TmI is a compact map. Let Ω ⊆ D[0, 1] be bounded, that is that

there exists a constant M with ||z|| ≤ M for each z ∈ Ω. By using (H1) and (H4),
there is M 3 > 0 such that |f (s, (AIz)(t) + 1/m, Iz(t))| ≤M 3 for each z ∈ Ω, t ∈ [0, 1].
Therefore, |TmIz| ≤ M 3

U 1
0
p(s)q(s)ds for each z ∈ Ω, that is TmIΩ is completely

bounded.
For each z ∈ Ω, t1, t2 ∈ [0, 1] with t1 < t2 , we have

|TmIz(t1)− TmIz(t2)| =

] t2

t1

f

�
s, (AIz)(s) +

1

m
, Iz(s)

�
p(s)q(s)ds

≤ M 3
] t2

t1

p(s)q(s)ds.

(H4) and the above inequality imply that TmIΩ is equicontinuous. Consequently the
Arzela-Ascoli theorem implies TmIΩ is relatively compact. So TmI is a completely
continuous. The proof is complete.

THEOREM 1. Suppose (H1)-(H7) hold, then (1) has a positive solution y ∈
C1[0, 1] ∩ C2(0, 1) with py3 ∈ C[0, 1].
PROOF. Take R as in (H6). First we show that TmIz 9= µz for each ||z|| = R,µ > 1.

If this is not true, then there exist λ ∈ (0, 1) and z ∈ D[0, 1] with ||z|| = R such that
λTmIz = z, that is

λ

] 1

t

f

�
s, (AIz)(s) +

1

m
, Iz(s)

�
p(s)q(s)ds+

λ

m
= z.

So z(0) = ||z|| = R, z(1) = λ/m,

−z3(t) = λf

�
t, (AIz)(t) +

1

m
, Iz(t)

�
p(t)q(t)

≤ λh

�
(AIz)(t) +

1

m

�
g (Iz(t)) p(t)q(t).

Let y(t) = (AIz)(s) + 1/m, we have

−(py3)3py3 ≤ λh(y(t))g(py3)p(t)q(t)py3, t ∈ (0, 1),
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and integration from 0 to 1 yields] R

λ
m

u

g(u)
du ≤ λ sup

t∈[0,1]
p2(t)q(t)

] 1

0

h(y(t))y3(t)dt

≤ λ sup
t∈[0,1]

p2(t)q(t)

] (R+1)
U 1

0

ds
p(s)

+ 1
m

1
m

h(u)du

≤ λ sup
t∈[0,1]

p2(t)q(t)

] (R+1)
U 1

0

ds
p(s)

+ 1
m

0

h(u)du

If m is sufficiently large, (H6) implies] R

λ
m

u

g(u)
du > sup

t∈[0,1]
p2(t)q(t)

] (R+1)
U 1

0

ds
p(s)

+ 1
m

0

h(u)du.

This is a contradiction. Thus TmIz 9= µz for each ||z|| = R,µ > 1.
Next we show that there is r ∈ (0, R) such that TmIz 9= λz for each ||z|| = r,λ ∈

(0, 1). Since limz→0+ f(t, y, z) = +∞ uniformly on bounded subsets of [0, 1]× (0,+∞),
then there is a sufficiently small r > 0 such that

||TmIz|| =
] 1

0

f (s, (AIz)(s), Iz(s)) p(s)q(s)ds+
1

m
> r.

If ||z|| = r and m → +∞, Then TmIz 9= λz for ||z|| = r and λ ∈ (0, 1). By Lemma 1
and 2, there isM > 0 such that TmI has a fixed point zm on D[0, 1] with r ≤ ||zm|| ≤ R
when m > M , and zm(t) ≥ 1/m for t ∈ [0, 1]. Therefore, zm is a fixed point of Tm.
It is clear that {zm} is completely bounded. Next we show {zm} is equicon-

tinuous. (H4) implies that there is t0 ∈ [0, 1) such that p(t)q(t)f(t, y, z) ≥ 1 on

[t0, 1]× (0, R
U 1
0

1
p(s)ds+ 1]× (0, R]. Thus

zm(t) =

] 1

t

f

�
s, (Azm)(s) +

1

m
, zm(s)

�
p(s)q(s)ds+

1

m
> 1− t, t ∈ [t0, 1], (9)

zm(t) =

] 1

t

f

�
s, (Azm)(s) +

1

m
, zm(s)

�
p(s)q(s)ds+

1

m
> 1− t0 t ∈ [0, t0], (10)

(Azm)(t) +
1

m
=

] t

0

1

p(s)
zm(s)ds+

1

m
>

] t

0

1− t0
p(s)

ds, t ∈ [0, t0], (11)

and

(Azm)(t) +
1

m
=

] t

0

1

p(s)
zm(s)ds+

1

m
>

] t0

0

1− t0
p(s)

ds, t ∈ [t0, 1]. (12)

Since

0 ≤ −z3m(t) = p(t)q(t)f(t, (Azm)(t) +
1

m
, zm(t))

≤ p(t)q(t)h((Azm)(t) +
1

m
)g(zm(t)),
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so we have

0 ≤ −z3m(t) = p(t)q(t)maxh
�] t

0

1− t0
p(s)

ds,R

] 1

0

1

p(s)
ds+ 1

�
max g[1− t0, R]

for t ∈ [0, t0],

0 ≤ −z3m(t) = p(t)q(t)maxh
�] t0

0

1− t0
p(s)

ds,R

] 1

0

1

p(s)
ds+ 1

�
max g[1− t, R]

for t ∈ [t0, 1]. Thus the equicontinuity of {zm} follows from (H7) and the above inequal-
ities. Consequently the Arzela-Ascoli theorem guarantees the existence of a subset N0
of {M + 1,M + 2, ...} and a function z ∈ D[0, 1] with zm converging uniformly on [0, 1]
to z as m→ +∞ through N0. Also z(0) = 0, (9) and (10) imply z(t) > 0 for t ∈ [0, 1).
Thus (Azm)(t) →

U t
0
(z(s)/p(s))ds uniformly on [0, 1] as m → +∞ through N0. Now

zm,m ∈ N0, satisfies the integral equation

zm(t) =

] 1

t

f

�
s, (Azm)(s) +

1

m
, zm(s)

�
p(s)q(s)ds.

Fix t ∈ (0, 1), we have f �s, (Azm)(s) + 1
m , zm(s)

� → f (s, (Az)(s), z(s)) uniformly on
compact subsets of [t, 1), so letting m→∞ through N0 gives

z(t) =

] 1

t

f (s, (Az)(s), z(s)) p(s)q(s)ds.

Let y(t) =
U t
0
z(s)
p(s)ds, then y(t) is a solution of (1) with y ∈ C1[0, 1] ∩ C2(0, 1) , and

py3 ∈ C[0, 1]. The proof is complete.
REMARK: Notice (H6) can be replaced by

∃r, 1 < r < +∞,
] (R+1)

U 1

0

1
p(s)

ds+1

0

hr(u)du < +∞,
] 1

0

k
p
r+1
r (u)q(u)

l r
r−1

du < +∞,

and

] R

0

u
1
r

g(u)
du >

] (R+1)
U 1

0

1
p(s)

ds+1

0

hr(u)du

 1
r �] 1

0

k
p
r+1
r (u)q(u)

l r
r−1

du

� r−1
r

,

then the result in Theorem 1 is again true. To see this, notice in this case we choose
δ > 0 so that

] R

δ

u
1
r

g(u)
du >

] (R+1)
U 1

0

1
p(s)

ds+1

0

hr(u)du

 1
r �] 1

0

k
p
r+1
r (u)q(u)

l r
r−1

du

� r−1
r

hold . Essentially the same reasoning as in the proof of Theorem 1 establishes the
proof.
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EXAMPLE. Consider the boundary value problem+ �
t
1
2 (1− t) 12 y3

�3
+ t−

1
4 (1− t)− 1

4 y−
1
4 (y3)−

1
2 = 0,

y(0) = limt→1− t
1
2 (1− t) 12 y3(t) = 0.

(13)

Let p(t) = t
1
2 (1 − t) 12 , q(t) = t− 3

4 (1 − t)− 3
4 , f(t, y, z) = y−

1
4 z−

1
2 , h(y) = y−

1
4 , g(z) =

z−
1
2 . Clearly, all assumptions of Theorem 1 are fulfilled . Hence the problem (13) has

at least one positive solution y ∈ C1[0, 1] ∩C2(0, 1) with py3 ∈ C[0, 1].
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