ISSN 1607-2510

Existence of Positive Solutions for Singular Second Order Boundary Value Problems *[†]

Yan-ping Guo[‡], Ying Gao[§], Guang Zhang[¶]

Received 19 January 2002

Abstract

In this paper, using fixed point theorem in cones and a transformation $y(t) = \int_0^t \frac{1}{p(s)} z(s) \, ds$, we establish some existence results for singular second order boundary value problems of the form

 $(py')' + p(t)q(t)f(t, y, py') = 0, \ 0 < t < 1,$

where f(t, y, z) is allowed to be singular at y = 0 and z = 0.

1 Introduction

This paper is devoted to the study of the existence of positive solutions for singular second order boundary value problems of the form

$$\begin{cases} (py')' + p(t) q(t) f(t, y, py') = 0, & 0 < t < 1, \\ y(0) = \lim_{t \to 1^{-}} p(t) y'(t) = 0, \end{cases}$$
(1)

where $\lim_{y\to 0^+} f(t, y, z) = +\infty$ and $\lim_{z\to 0^+} f(t, y, z) = +\infty$ uniformly on compact subset of $[0, 1] \times (0, +\infty)$. That is, we will allow our nonlinear term f to be singular at y = 0 and z = 0.

In [1], Erbe and Wang study the existence of positive solutions of the equation u'' + a(t) f(u) = 0 by using the Krasnosel'skii fixed point theorem [2], where a(t) is continuous on [0, 1] and f(u) is continuous on $[0, \infty)$. Krasnosel'skii fixed point theorem has been widely used to discuss the existence of positive solutions for boundary value problems. In [3-5], O'Regan et al. showed the existence of positive solutions for singular second order differential equations of the form

$$(py')' + p(t)q(t)f(t, y, py') = 0, \ 0 < t < 1,$$

^{*}The project is supported by the National Natural Science Foundation (19871005), the Doctoral Program Foundation of Education Ministry of China (1999000722) and Natural Science Foundation of Shanxi Province (20001001).

[†]Mathematics Subject Classifications: 34B15

 $^{^{\}ddagger}$ Colleage of Science, Hebei University of Science and Technology, Shiji
azhang, Hebei 050018, P. R. China

[§]Department of Mathematics, Yanbei Normal Institute, Datong, Shanxi 037000, P. R. China

[¶]Department of Mathematics, Yanbei Normal Institute, Datong, Shanxi 037000, P. R. China

where f(t, y, z) is continuous on $[0, 1] \times \mathbb{R}^2$. In [6], its authors used the nonlinear alternative of Leray and Schauder to prove the existence results for singular second order boundary value problems of the form

$$(py')' + p(t)q(t)f(t,y) = 0,$$

here $\lim_{y\to 0^+} f(t,y) = +\infty$. In [7], by using an upper and lower solution approach, O'Regan and Agarwal presented the existence results for singular problems of the from

$$\begin{cases} (py')' + p(t) q(t) f(t, y, py') = 0, & 0 < t < 1, \\ y(1) = \lim_{t \to 0^+} p(t) y'(t) = 0, \end{cases}$$
(2)

where f is allowed to be singular at y = 0. When f is singular at y = 0 and z = 0, few people (e.g. [9]) studied the problem (2). In this paper, with the use of certain fixed point theorem in cones and a transformation

$$y(t) = \int_0^t \frac{1}{p(s)} z(s) ds,$$

we will show the existence of positive solutions for the problem (1). Our results are different from that in [9] and simpler than that in [7].

2 Main Results

Let py' = z(t). We can transform (1) into

$$\begin{cases} py' = z(t), \\ z'(t) + p(t)q(t)f(t, y, z) = 0, & 0 < t < 1, \\ y(0) = \lim_{t \to 1^{-}} z(t) = 0. \end{cases}$$
(3)

Consequently (3) is equivalent to the fixed point problem

$$(Tz)(t) = \int_{t}^{1} p(s)q(s)f(s, (Az)(s), z(s)) \, ds, \tag{4}$$

where

$$y(t) = \int_0^t \frac{1}{p(s)} z(s) ds = (Az)(t).$$
(5)

We will suppose that the following conditions are satisfied:

 $(H_1) f: [0,1] \times (0,+\infty) \times (0,+\infty) \to (0,+\infty)$ is continuous, $\lim_{u\to 0^+} f(t,y,z) =$ $+\infty$ and $\lim_{z\to 0^+} f(t, y, z) = +\infty$ uniformly on bounded subsets of $[0, 1] \times (0, +\infty)$;

 $(H_2) p(t) \in C[0,1] \cap C^1(0,1)$ with p > 0 on (0,1);

 $\begin{array}{l} (H_3) \ q(t) \in C(0,1) \text{ with } q > 0 \text{ on } (0,1); \\ (H_4) \ \int_0^1 \frac{1}{p(s)} ds < +\infty, \ \int_0^1 p(s)q(s)ds < +\infty, \text{ and } \lim_{t \to 1^-} p(t)q(t)f(t,y,z) = +\infty \end{array}$ uniformly on bounded subsets of $(0, +\infty) \times (0, +\infty)$;

 (H_5) $f(t, y, z) \leq h(y)g(z)$ for $(t, y, z) \in [0, 1] \times (0, +\infty) \times (0, +\infty)$, where $g, h \in [0, 1] \times (0, +\infty)$ $C((0, +\infty), (0, +\infty));$

Guo et al.

 $(H_6) p^2 q$ is bounded on [0, 1] and there exists R > 0 such that

$$\int_{0}^{(R+1)\int_{0}^{1}\frac{1}{p(s)}ds+1}h(u)du < +\infty$$

and

$$\int_0^R \frac{u}{g(u)} du > \sup_{t \in [0,1]} p^2(t) q(t) \int_0^{(R+1) \int_0^1 \frac{1}{p(s)} ds + 1} h(u) du;$$

 $(H_7) \int_0^1 p(t)q(t) \max g[1-t, R]dt < +\infty$ and

$$\int_{0}^{1} p(t)q(t) \max h\left[\int_{0}^{t} \frac{1-t_{0}}{P(s)} ds, R \int_{0}^{1} \frac{1}{p(s)} ds + 1\right] dt < +\infty$$

for each $t_0 \in [0, 1)$, where $\max g[a, b] = \max_{a \le x \le b} g(x), a \le b$.

We will need the following lemma, its proof can be seen in [8].

LEMMA 1. Let K be a cone of the Banach space $E, B_R(0) = \{x \in K : ||x|| \le R\}$, and $F : B_R(0) \to K$ is a completely continuous operator. In addition suppose

(i) $F(x) \neq \lambda x$ for $||x|| = R, \lambda > 1$,

(ii) there exists $r \in (0, R)$ such that $F(x) \neq \lambda x$ for $||x|| = r, 0 < \lambda < 1$, (iii) inf $\{||Fx|| : ||x|| = r\} > 0$.

Then F has at least one fixed point on $r \leq ||x|| \leq R$.

Consider the problem

$$\begin{cases} (py')' + p(t) q(t) f(t, y, py') = 0, & 0 < t < 1, \\ y(0) = \lim_{t \to 1^{-}} p(t) y'(t) = 1/m. \end{cases}$$
(6)

where $m \in N$, which is equivalent to the fixed point problem

$$T_m z(t) = \int_t^1 f\left(s, (Az)(s) + \frac{1}{m}, z(s)\right) p(s)q(s)ds + \frac{1}{m}.$$
(7)

Let

$$D[0,1] = \{z \in C ([0,1], [0,+\infty)) : z \text{ is nonincreasing on } [0,1]\},\$$

then D[0,1] is a cone of Banach space C[0,1]. For $z(t) \in D[0,1]$, we define

$$Iz(t) = \begin{cases} z(t), & z(1) \ge 1/m, \\ z(t) + \left(\frac{1}{m} - z(1)\right), & z(1) < 1/m. \end{cases}$$
(8)

LEMMA 2. Suppose (H_1) - (H_4) hold, then $T_m I$ is a completely continuous operator on D[0, 1].

PROOF. First we show $T_m I$ is a continuous operator on D[0, 1]. Let $z, z_n \in D[0, 1]$ such that $z_n \to z$. Since f is uniformly continuous on compact subsets of $[0, 1] \times [1/m, +\infty) \times [1/m, +\infty)$, then for each $\varepsilon > 0$, there is N such that

$$\left| f\left(s, (AIz)(s) + \frac{1}{m}, Iz(s)\right) - f\left(s, (AIz_n)(s) + \frac{1}{m}, Iz_n(s)\right) \right| < \varepsilon$$

when n > N, $s \in [0, 1]$. This together with (H_4) gives

$$\begin{aligned} |T_m Iz(t) - T_m Iz_n(t)| \\ &\leq \int_t^1 \left| f\left(s, (AIz)(s) + \frac{1}{m}, Iz(s)\right) - f\left(s, (AIz_n)(s) + \frac{1}{m}, Iz_n(s)\right) \right| p(s)q(s)ds \\ &\leq \int_0^1 \left| f\left(s, (AIz)(s) + \frac{1}{m}, Iz(s)\right) - f\left(s, (AIz_n)(s) + \frac{1}{m}, Iz_n(s)\right) \right| p(s)q(s)ds \\ &\leq \varepsilon \int_0^1 p(s)q(s)ds, \end{aligned}$$

for $n > N, t \in [0, 1]$. We obtain that $T_m I$ is a continuous operator on D[0, 1].

Next we show T_mI is a compact map. Let $\Omega \subseteq D[0,1]$ be bounded, that is that there exists a constant M with $||z|| \leq M$ for each $z \in \Omega$. By using (H_1) and (H_4) , there is M' > 0 such that $|f(s, (AIz)(t) + 1/m, Iz(t))| \leq M'$ for each $z \in \Omega, t \in [0, 1]$. Therefore, $|T_mIz| \leq M' \int_0^1 p(s)q(s)ds$ for each $z \in \Omega$, that is $T_mI\Omega$ is completely bounded.

For each $z \in \Omega, t_1, t_2 \in [0, 1]$ with $t_1 < t_2$, we have

$$\begin{aligned} |T_m Iz(t_1) - T_m Iz(t_2)| &= \int_{t_1}^{t_2} f\left(s, (AIz)(s) + \frac{1}{m}, Iz(s)\right) p(s)q(s)ds \\ &\leq M' \int_{t_1}^{t_2} p(s)q(s)ds. \end{aligned}$$

 (H_4) and the above inequality imply that $T_m I\Omega$ is equicontinuous. Consequently the Arzela-Ascoli theorem implies $T_m I\Omega$ is relatively compact. So $T_m I$ is a completely continuous. The proof is complete.

THEOREM 1. Suppose (H_1) - (H_7) hold, then (1) has a positive solution $y \in C^1[0,1] \cap C^2(0,1)$ with $py' \in C[0,1]$.

PROOF. Take R as in (H_6) . First we show that $T_m Iz \neq \mu z$ for each $||z|| = R, \mu > 1$. If this is not true, then there exist $\lambda \in (0, 1)$ and $z \in D[0, 1]$ with ||z|| = R such that $\lambda T_m Iz = z$, that is

$$\lambda \int_{t}^{1} f\left(s, (AIz)(s) + \frac{1}{m}, Iz(s)\right) p(s)q(s)ds + \frac{\lambda}{m} = z.$$

So z(0) = ||z|| = R, $z(1) = \lambda/m$,

$$\begin{aligned} -z'(t) &= \lambda f\left(t, (AIz)(t) + \frac{1}{m}, Iz(t)\right) p(t)q(t) \\ &\leq \lambda h\left((AIz)(t) + \frac{1}{m}\right) g\left(Iz(t)\right) p(t)q(t). \end{aligned}$$

Let y(t) = (AIz)(s) + 1/m, we have

$$-(py')'py' \le \lambda h(y(t))g(py')p(t)q(t)py', \ t \in (0,1),$$

Guo et al.

and integration from 0 to 1 yields

$$\begin{split} \int_{\frac{\lambda}{m}}^{R} \frac{u}{g(u)} du &\leq \lambda \sup_{t \in [0,1]} p^{2}(t)q(t) \int_{0}^{1} h(y(t))y'(t) dt \\ &\leq \lambda \sup_{t \in [0,1]} p^{2}(t)q(t) \int_{\frac{1}{m}}^{(R+1)\int_{0}^{1} \frac{ds}{p(s)} + \frac{1}{m}} h(u) du \\ &\leq \lambda \sup_{t \in [0,1]} p^{2}(t)q(t) \int_{0}^{(R+1)\int_{0}^{1} \frac{ds}{p(s)} + \frac{1}{m}} h(u) du \end{split}$$

If m is sufficiently large, (H_6) implies

$$\int_{\frac{\lambda}{m}}^{R} \frac{u}{g(u)} du > \sup_{t \in [0,1]} p^{2}(t)q(t) \int_{0}^{(R+1)\int_{0}^{1} \frac{ds}{p(s)} + \frac{1}{m}} h(u) du.$$

This is a contradiction. Thus $T_m Iz \neq \mu z$ for each $||z|| = R, \mu > 1$.

Next we show that there is $r \in (0, R)$ such that $T_m Iz \neq \lambda z$ for each $||z|| = r, \lambda \in (0, 1)$. Since $\lim_{z\to 0^+} f(t, y, z) = +\infty$ uniformly on bounded subsets of $[0, 1] \times (0, +\infty)$, then there is a sufficiently small r > 0 such that

$$||T_m Iz|| = \int_0^1 f(s, (AIz)(s), Iz(s)) p(s)q(s)ds + \frac{1}{m} > r.$$

If ||z|| = r and $m \to +\infty$, Then $T_m Iz \neq \lambda z$ for ||z|| = r and $\lambda \in (0, 1)$. By Lemma 1 and 2, there is M > 0 such that $T_m I$ has a fixed point z_m on D[0, 1] with $r \leq ||z_m|| \leq R$ when m > M, and $z_m(t) \geq 1/m$ for $t \in [0, 1]$. Therefore, z_m is a fixed point of T_m .

It is clear that $\{z_m\}$ is completely bounded. Next we show $\{z_m\}$ is equicontinuous. (H_4) implies that there is $t_0 \in [0,1)$ such that $p(t)q(t)f(t,y,z) \ge 1$ on $[t_0,1] \times (0, R \int_0^1 \frac{1}{p(s)} ds + 1] \times (0, R]$. Thus

$$z_m(t) = \int_t^1 f\left(s, (Az_m)(s) + \frac{1}{m}, z_m(s)\right) p(s)q(s)ds + \frac{1}{m} > 1 - t, \ t \in [t_0, 1],$$
(9)

$$z_m(t) = \int_t^1 f\left(s, (Az_m)(s) + \frac{1}{m}, z_m(s)\right) p(s)q(s)ds + \frac{1}{m} > 1 - t_0 \ t \in [0, t_0], \quad (10)$$

$$(Az_m)(t) + \frac{1}{m} = \int_0^t \frac{1}{p(s)} z_m(s) ds + \frac{1}{m} > \int_0^t \frac{1 - t_0}{p(s)} ds, \ t \in [0, t_0], \tag{11}$$

and

$$(Az_m)(t) + \frac{1}{m} = \int_0^t \frac{1}{p(s)} z_m(s) ds + \frac{1}{m} > \int_0^{t_0} \frac{1 - t_0}{p(s)} ds, \ t \in [t_0, 1].$$
(12)

Since

$$0 \leq -z'_{m}(t) = p(t)q(t)f(t, (Az_{m})(t) + \frac{1}{m}, z_{m}(t))$$

$$\leq p(t)q(t)h((Az_{m})(t) + \frac{1}{m})g(z_{m}(t)),$$

so we have

$$0 \le -z'_m(t) = p(t)q(t) \max h\left[\int_0^t \frac{1-t_0}{p(s)} ds, R\int_0^1 \frac{1}{p(s)} ds + 1\right] \max g[1-t_0, R]$$

for $t \in [0, t_0]$,

$$0 \le -z'_m(t) = p(t)q(t) \max h\left[\int_0^{t_0} \frac{1-t_0}{p(s)} ds, R \int_0^1 \frac{1}{p(s)} ds + 1\right] \max g[1-t, R]$$

for $t \in [t_0, 1]$. Thus the equicontinuity of $\{z_m\}$ follows from (H_7) and the above inequalities. Consequently the Arzela-Ascoli theorem guarantees the existence of a subset N_0 of $\{M + 1, M + 2, ...\}$ and a function $z \in D[0, 1]$ with z_m converging uniformly on [0, 1]to z as $m \to +\infty$ through N_0 . Also z(0) = 0, (9) and (10) imply z(t) > 0 for $t \in [0, 1)$. Thus $(Az_m)(t) \to \int_0^t (z(s)/p(s)) ds$ uniformly on [0, 1] as $m \to +\infty$ through N_0 . Now $z_m, m \in N_0$, satisfies the integral equation

$$z_m(t) = \int_t^1 f\left(s, (Az_m)(s) + \frac{1}{m}, z_m(s)\right) p(s)q(s)ds.$$

Fix $t \in (0, 1)$, we have $f(s, (Az_m)(s) + \frac{1}{m}, z_m(s)) \to f(s, (Az)(s), z(s))$ uniformly on compact subsets of [t, 1), so letting $m \to \infty$ through N_0 gives

$$z(t) = \int_{t}^{1} f(s, (Az)(s), z(s)) p(s)q(s)ds.$$

Let $y(t) = \int_0^t \frac{z(s)}{p(s)} ds$, then y(t) is a solution of (1) with $y \in C^1[0,1] \cap C^2(0,1)$, and $py' \in C[0,1]$. The proof is complete.

REMARK: Notice (H_6) can be replaced by

$$\exists r, 1 < r < +\infty, \int_0^{(R+1)\int_0^1 \frac{1}{p(s)}ds+1} h^r(u)du < +\infty, \ \int_0^1 \left[p^{\frac{r+1}{r}}(u)q(u) \right]^{\frac{r}{r-1}} du < +\infty,$$

and

$$\int_0^R \frac{u^{\frac{1}{r}}}{g(u)} du > \left(\int_0^{(R+1)\int_0^1 \frac{1}{p(s)} ds + 1} h^r(u) du \right)^{\frac{1}{r}} \left(\int_0^1 \left[p^{\frac{r+1}{r}}(u)q(u) \right]^{\frac{r}{r-1}} du \right)^{\frac{r-1}{r}},$$

then the result in Theorem 1 is again true. To see this, notice in this case we choose $\delta>0$ so that

$$\int_{\delta}^{R} \frac{u^{\frac{1}{r}}}{g(u)} du > \left(\int_{0}^{(R+1) \int_{0}^{1} \frac{1}{p(s)} ds + 1} h^{r}(u) du \right)^{\frac{1}{r}} \left(\int_{0}^{1} \left[p^{\frac{r+1}{r}}(u)q(u) \right]^{\frac{r}{r-1}} du \right)^{\frac{r-1}{r}}$$

hold . Essentially the same reasoning as in the proof of Theorem 1 establishes the proof.

EXAMPLE. Consider the boundary value problem

$$\begin{cases} \left(t^{\frac{1}{2}}(1-t)^{\frac{1}{2}}y'\right)' + t^{-\frac{1}{4}}(1-t)^{-\frac{1}{4}}y^{-\frac{1}{4}}(y')^{-\frac{1}{2}} = 0, \\ y(0) = \lim_{t \to 1^{-}} t^{\frac{1}{2}}(1-t)^{\frac{1}{2}}y'(t) = 0. \end{cases}$$
(13)

Let $p(t) = t^{\frac{1}{2}}(1-t)^{\frac{1}{2}}$, $q(t) = t^{-\frac{3}{4}}(1-t)^{-\frac{3}{4}}$, $f(t, y, z) = y^{-\frac{1}{4}}z^{-\frac{1}{2}}$, $h(y) = y^{-\frac{1}{4}}$, $g(z) = z^{-\frac{1}{2}}$. Clearly, all assumptions of Theorem 1 are fulfilled. Hence the problem (13) has at least one positive solution $y \in C^{1}[0, 1] \cap C^{2}(0, 1)$ with $py' \in C[0, 1]$.

References

- L. K. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc., 120(1994), 743-748.
- [2] M. A. Krasnosel'skii, Positive solutions of operator equations, Noordhoff, Groningen, 1964.
- [3] D. O'Regan, Theory of Singular Boundary Value Problems, World Scientific Publishing Co., 1994.
- [4] D. R. Dunninger and J. C. Kurtz, Existence of solutions for some nonlinear singular boundary problems, J. Math. Anal. Appl., 115(1986),396-405.
- [5] M. Frigon and D. O'Regan, Existence results for some initial and boundary value problems without growth restriction, Proc. Amer. Math. Soc., 123(1995), 207-216.
- [6] D. O'Regan, Some existence principles and some general results for singular nonlinear two point boundary problems, J. Math. Anal. Appl., 166(1992), 24-40.
- [7] D. O'Regan and R. P. Agarwal, Singular problems: an upper and lower solution approach, J. Math. Anal. Appl., 251(2000), 230-250.
- [8] K. Deimling, Nonlinear Functional Analysis, Springer, New York, 1985.
- [9] R. P. Agarwal and D. O'Regan, Second-order boundary value problems of singular type, J. Math. Anal. Appl., 226(1998),414-430.