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Abstract

In this paper, a survey of the most basic results on the oscillation of solutions
of first order linear differential equations with deviating arguments is presented.

1 Introduction

The qualitative properties of the solutions to the linear delay differential equations

x3(t) + p(t)x(τ(t)) = 0, t ≥ t0, (1)

and

x3(t) + p(t)x(t− τ) = 0, t ≥ t0, (2)

where and in the sequel p(t) ∈ C([t0,∞),R), τ ∈ (0,∞), τ(t) ∈ C([t0,∞),R+), and
limt→∞ τ(t) = ∞, have been the subject of many investigations. Since 1950 when
Myshkis [33] obtained the first oscillation criterion for (1), the oscillatory behavior of
(1) and (2) has been discussed extensively in the literature. We refer to the papers
[1-53] and the references cited therein.

By a solution of (1) (or (2)), we mean a function x(t) ∈ C([t−1,∞),R) for some
t ≥ t0, where t−1 = inf{τ(t) : t ≥ t}, which satisfies equation (1) (or (2)) for all
t ≥ t. As is customary, a solution x(t) of (1) (or (2)) is said to be oscillatory if it has
arbitrarily large zeros. Otherwise, x(t) is said to be nonoscillatory.

In this paper, our main purpose is to present the state of the art on the oscillation
of solutions of (1) and (2).
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172 Oscillation of Delay Equations

2 Oscillation Criteria with Nonnegative Coefficients

2.1 Oscillation Criteria of Inferior Limit

In this section, we always assume that p(t) ≥ 0 and τ(t) < t.
In 1950, Myshkis [33] first studied the oscillation of (1) and obtained the following

theorem.

THEOREM 2.1 [33]. Assume that

lim sup
t→∞

[t− τ(t)] <∞ and lim inf
t→∞ [t− τ(t)]lim inf

t→∞ p(t) >
1

e
. (3)

Then all solutions of (1) oscillate.

In 1979, Ladas [22] established integral conditions for the oscillation of (2). Tomaras
[45, 46, 47] extended this result to (1) with variable delay. For related results see Ladde
[27, 28, 29] and Koplatadze and Canturija [17]. The following most general result is
due to Koplatadze and Canturija.

THEOREM 2.2 [17]. If

lim inf
t→∞

] t

τ(t)

p(s)ds >
1

e
, (4)

then all solutions of (1) oscillate; if

lim sup
t→∞

] t

τ(t)

p(s)ds <
1

e
, (5)

then (1) has a nonoscillatory solution.

In 1998, Tang [44] proved the following result which further improves (4).

THEOREM 2.3 [44]. Assume that there exists a T ≥ t0 such that] t

τ(t)

p(s)ds ≥ 1
e
for t ≥ T, (6)

and ] ∞
T

p(t)

%
exp

#] t

τ(t)

p(s)ds− 1
e

$
− 1
&
dt =∞. (7)

Then all solutions of (1) oscillate.

When
U t
τ(t)

p(s)ds− 1/e oscillates, the aforementioned oscillation criteria fail to fit
(1) or (2). For this case, in 1986 Domshlak [2] established a sufficient condition for
oscillation of all solutions of (2).

THEOREM 2.4 [2]. Assume that

lim inf
t→∞

#] t+τ

t

p(s)ds exp

] t+τ

t

p(s)dsU s+τ
s

p(ξ)dξ

$
> 1. (8)
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Then all solutions of (2) oscillate.

In 1996, Li [31] presented an infinite integral condition for oscillation of (2) which

is very effective in the case when
U t+τ
t

p(s)ds− 1/e is oscillatory.
THEOREM 2.5 [31]. Assume that

U t+τ
t

p(s)ds > 0 for t ≥ T0 for some T0 ≥ t0 and] ∞
T0

p(t) ln

�
e

] t+τ

t

p(s)ds

�
dt =∞. (9)

Then all solutions of (2) oscillate.

In 1998, Tang and Shen [38] obtained a sufficient condition related to but indepen-
dent of (9).

THEOREM 2.6 [38]. Assume that there exist a T0 ≥ t0 + nτ and a positive integer
n such that

pn(t) ≥ 1

en
and pn(t) ≥

1

en
, t ≥ t0 (10)

and ] ∞
T0

p(t)

�
exp

�
en−1pn(t)− 1

e

�
− 1
�
dt =∞, (11)

where

p1(t) =

] t

t−τ
p(s)ds, pk+1(t) =

] t

t−τ
p(s)pk(s)ds, t ≥ t0 + (k + 1)τ,

and

p1(t) =

] t+τ

t

p(s)ds, pk+1(t) =

] t+τ

t

p(s)pk(s)ds, t ≥ t0, k = 1, 2, ... .

Then all solutions of (2) oscillate.

For (1) with variable delay, in 1998 Li [32] and Shen and Tang [37], and in 2000
Tang and Yu [41] established the following theorems respectively.

THEOREM 2.7 [32]. Assume that τ(t) is nondecreasing and there exists a positive
integer k such that

lim inf
t→∞

] t

τ(t)

p(s1)

] s1

τ(s1)

p(s2)...

] sk−1

τ(sk−1)
p(sk)dsk...ds1 >

1

ek
. (12)

Then all solutions of (1) oscillate.

THEOREM 2.8 [37]. Assume that τ(t) is strictly increasing on [t0,∞) and its inverse
is τ−1(t). Let τ−k(t) be defined on [t0,∞) by

τ−(k+1)(t) = τ−1(τ−k(t)), k = 1, 2, ... . (13)

Suppose that there exist a positive integer n and T0 ≥ τ−n(t0) such that

pn(t) ≥ 1

en
and pn(t) ≥

1

en
, t ≥ T0, (14)
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and ] ∞
T0

p(t)

�
exp

�
en−1pn(t)− 1

e

�
− 1
�
dt =∞, (15)

where

p1(t) =

] t

τ(t)

p(s)ds, pk+1(t) =

] t

τ(t)

p(s)pk(s)ds, t ≥ τ−k−1(t0)

and

p1(t) =

] τ−1(t)

t

p(s)ds, pk+1(t) =

] τ−1(t)

t

p(s)pk(s)ds, t ≥ t0, k = 1, 2, ... .

Then all solutions of (1) oscillate.

THEOREM 2.9 [41]. Assume that τ(t) is nondecreasing and] ∞
t0

p(t) ln

%
e

] τ−1(t)

t

p(s)ds+ 1− sign
#] τ−1(s)

t

p(s)ds

$&
dt =∞, (16)

where τ−1(t) = min{s ≥ t0 : τ(s) = t}. Then all solutions of (1) oscillate.
Note that Theorem 2.9 substantially improves Theorem 2.5 by removing the con-

dition
U t+τ
t

p(s)ds > 0 in the case when τ(t) ≡ t− τ .

EXAMPLE 2.1. Consider the delay differential equation

x3(t) + p(t)x(t− π/3) = 0, t ≥ 0, (17)

where p(t) = max{0, a sin t}, 1 > a > 2/(2 +√3)
√
3/2. Clearly,] t+π/3

t

p(s)ds = 0 for t ∈
∞̂

n=0

�
2nπ + π, 2nπ +

5

3
π

�
and

lim sup
n→∞

] t

t−π/3
p(s)ds = a < 1.

So conditions (4), (6), (9), (10) and (12) are not satisfied. By direct calculation, we
have ] 2π

0

p(t) ln

�
e

] t+π/3

t

p(s)ds+ 1− sign
�] t+π/3

t

p(s)ds

��
=

a

2
ln
(2 +

√
3)2
√
3a4

16
> 0.

It follows that] ∞
0

p(t) ln

�
e

] t+π/3

t

p(s)ds+ 1− sign
#] t+π/3

t

p(s)ds

$�
dt =∞.

Therefore, by Theorem 2.9, all solutions of (17) oscillate.
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2.2 Oscillations in Critical State

In this section, we discuss the oscillation of solutions of (1) or (2) in the critical case
when

lim inf
t→∞

] t

τ(t)

p(s)ds =
1

e
. (18)

In 1986, Domshlak [2] first observed the following special critical situation:
Among the equations of the form (2) with

lim
t→∞ p(t) =

1

τe
(19)

there exist equations such that their solutions are oscillatory in spite of the fact that
the corresponding “limiting” equation

x3(t) +
1

τe
x(t− τ) = 0, t ≥ t0 (20)

admits a non-oscillatory solution, namely x(t) = e−t/τ .
Later, Domshlak [3], Elbert and Stavroulakis [7], Kozakiewicz [19], Li [30,31], Tang

and Yu [39], Yu and Tang [48], Tang et al. [40] further investigated the oscillation of
(1) or (2) in the critical case.
In 1996, Domshlak and Stavroulakis [5] obtained the following results in the special

critical case lim inft→∞ p(t) = 1/τe.
THEOREM 2.10 [5]. (i) Assume that

lim inf
t→∞ p(t) =

1

τe
, lim inf

t→∞

��
p(t)− 1

τe

�
t2
�
=

τ

8e
, (21)

and

lim inf
t→∞

���
p(t)− 1

τe

�
t2 − τ

8e

�
ln2 t

�
>

τ

8e
. (22)

Then all solutions of (2) oscillate.
(ii) Assume that for sufficiently t

p(t) ≤ 1

τe
+

τ

8et2

�
1 +

1

ln2 t

�
. (23)

Then (2) has an eventually positive solution.

In 1998, Diblik [1] generalized this theorem as follows: Set ln1 t = ln t, lnk+1 t =
ln(lnk t) for k = 1, 2, ... .

THEOREM 2.11 [1]. (i) Assume that for an integer k ≥ 2 and a constant θ > 1

p(t) ≥ 1

τe
+

τ

8et2

%
1 + (ln1 t)

−2 + (ln1 t ln2 t)−2 + ...

+(ln1 t ln2 t... lnm−1 t)−2 + θ(ln1 t ln2 t... lnm t)
−2
&

(24)
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as t→∞. Then all solutions of (2) oscillate.
(ii) Assume that for a positive integer k

p(t) ≤ 1

τe
+

1

8et2
�
1 + (ln1 t)

−2 + (ln1 t ln2 t)−2 + ...+ (ln1 t ln2 t... lnm t)−2
�

(25)

as t→∞. Then there exists a positive solution x = x(t) of (2). Moreover as t→∞,

x(t) < e
−t
τ

s
t ln t ln2 t... lnk t.

In 1999, Tang et al. [40] established the following comparison theorem.

THEOREM 2.12 [40]. Assume that for sufficiently large t

p(t) ≥ 1

τe
. (26)

Then all solutions of (2) oscillate if and only if all solutions of the following second
order ordinary differential equation

y33(t) +
2e

τ

�
p(t)− 1

τe

�
y(t) = 0, t ≥ t0 (27)

oscillate.

Employing this comparison theorem and a wealth of results on oscillation of (27),
many interesting oscillation and nonoscillation criteria can be obtained. One of them
is the above Theorem 2.11.
In 2000 Tang and Yu [42] established the following more general comparison theorem

in the case when p(t)− 1/(τe) is oscillatory and lim inft→∞
U t
t−τ p(s)ds = 1/e.

THEOREM 2.13 [42]. Assume that r(t) ∈ C([t0,∞), [0,∞)) is a τ -periodic function
and satisfies the following hypothesis] t

t−τ
r(s)ds ≡ 1

e
. (28)

Suppose that
p(t)− r(t) ≥ 0 for sufficiently large t. (29)

Then all solutions of (2) oscillate if and only if the Riccati inequality

ω3(t) + r(t)ω2(t) + 2e2[p(t)− r(t)] ≤ 0, t ≥ t0 (30)

has no eventually positive solution.

As a application of Theorem 2.13, the following theorem is also given in [42].

THEOREM 2.14 [42]. Assume that there is a τ -periodic function r(t) ∈ C([t0,∞),
[0,∞)) such that (28) and (29) hold. Then the following statements are valid.
(i) If

lim inf
t→∞

�] t

t0

r(s)ds

] ∞
t

(p(s)− r(s))ds
�
>

1

8e2
, (31)
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then all solutions of (2) oscillate;
(ii) If there exist a T ≥ t0 such that for t ≥ T] t

T

r(s)ds

] ∞
t

(p(s)− r(s))ds ≤ 1

8e2
, (32)

then (2) has an eventually positive solution.

EXAMPLE 2.2. Applying Theorem 2.14 to the following delay equation

x3(t) +
�
1

πe
(1 + sin 2t) + Ct−β

�
x(t− π) = 0, t ≥ π

4
, (33)

where C > 0 and β ∈ R. We see that all solutions of (33) oscillate if and only if β < 2
or β = 2 and C > π/8e.

In 1998, Tang [44] proved Theorem 2.3 in the critical case where

lim inf
t→∞

] t

τ(t)

p(s)ds = 1/e,

which extends a special case obtained in 1995 by Li [30]. In the sequel, we always
assume that t0 < t1 < t2 < ... and tk−1 = τ(tk) for k = 1, 2, ... .

THEOREM 2.15 [30]. Assume that there exists a T0 ≥ t0 + τ such that] t

t−τ
p(s)ds ≥ 1

e
for t ≥ T0 (34)

and ] ∞
T0

p(t)

�
exp

�] t

t−τ
p(s)ds− 1

e

�
− 1
�
dt =∞. (35)

Then all solutions of (2) oscillate.

DEFINITION 2.1 [7]. The piecewise continuous function p : [t0,∞) → [0,∞)
belongs to Aλ if ] t

τ(t)

p(s)ds ≥ 1
e
for sufficiently large t (36)

and ] t

τ(t)

p(s)ds− 1
e
≥ λk

�] tk+1

tk

p(s)ds− 1
e

�
, tk < t ≤ tk+1, k = 1, 2, ..., (37)

for some λk ≥ 0, and lim infk→∞ λk = λ > 0.

In 1995, Elbert and Stavroulakis [7] proved the following theorem.

THEOREM 2.16 [7]. Assume that τ(t) is strictly increasing on [t0,∞) and that
p(t) ∈ Aλ for some λ ∈ (0, 1] and either

λ lim sup
k→∞

k
∞[
i=k

#] ti

ti−1
p(s)ds− 1

e

$
>
2

e
(38)
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or

λ lim inf
k→∞

k
∞[
i=k

#] ti

ti−1
p(s)ds− 1

e

$
>
1

2e
. (39)

Then all solutions of (1) oscillate.

In [7], Elbert and Stavroulakis put forth the following open problem.

OPEN PROBLEM 2.1 Can the bounds in conditions (38) and (39) of Theorem 2.16
be replaced by smaller ones?

In 2000 Tang and Yu [39] proved the following theorem.

THEOREM 2.17 [39]. Assume that τ(t) is strictly increasing on [t0,∞), (36) holds,
and that

lim sup
k→∞

k

] ∞
tk

p(t)

#] t

τ(t)

p(s)ds− 1
e

$
dt >

1

e2
. (40)

Then all solutions of (1) oscillate.

REMARK 2.1. If p(t) ∈ Aλ for some λ ∈ (0, 1], then (40) reduces to

λ lim sup
k→∞

k
∞[
i=k

#] ti

ti−1
p(s)ds− 1

e

$
>
1

e
, (41)

which shows that the right-hand side of (38) can be replaced by 1/e which is less than
the original 2/e.

In 2002 Yu and Tang [48] proved the following theorems.

THEOREM 2.18 [48]. (i) Assume that

lim inf
t→∞

%#] t

τ(t)

p(s)ds− 1
e

$�] t

t0

p(s)ds

�2&
>

1

8e3
. (42)

Then all solutions of (1) oscillate.
(ii) Assume that (36) holds and

lim sup
t→∞

%#] t

τ(t)

p(s)ds− 1
e

$�] t

t0

p(s)ds

�2&
<

1

8e3
. (43)

Then (1) has an eventually positive solution.

THEOREM 2.19 [48]. Assume that (34) holds and p(t) 9≡ 0 on any subinterval of
[t0,∞) and

lim inf
t→∞

%�] t

t0

p(s)ds

�2 ] ∞
t

p(s)

#] s

τ(s)

p(ξ)dξ − 1
e

$
ds

&
>

1

8e3
. (44)

Then all solutions of (1) oscillate.
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THEOREM 2.20 [48]. Assume that (44) holds and] t

τ(t)

p(s)ds >
1

e
for sufficiently large t. (45)

Then all solutions of (1) oscillate.

COROLLARY 2.1 [48]. Assume that (2.43) holds and τ(t) is strictly increasing on
[t0,∞). If

lim inf
k→∞

k

] ∞
tk

p(s)

#] s

τ(s)

p(ξ)dξ − 1
e

$
ds >

1

8e2
, (46)

then all solutions of (1) oscillate.

COROLLARY 2.2 [48]. Assume that τ(t) is strictly increasing on [t0,∞) and p(t) ∈
Aλ for some λ ∈ (0, 1], and that

λ lim inf
k→∞

k
∞[
i=k

#] ti

ti−1
p(s)ds− 1

e

$
>
1

8e
. (47)

Then all solutions of (1) oscillate.

REMARK 2.2. The following example shows that 1/8e in (47) is the best possible.
Thus, Theorems 2.17 and 2.20 or Corollary 2.1 or 2.2 answer the Open Problem 2.1.

EXAMPLE 2.3. Consider the delay differential equation

x3(t) +
1

e ln 2

�
1

t
+

C

t(ln t)1+α

�
x

�
t

2

�
= 0, t ≥ e, (48)

where C, α > 0. Here τ(t) = t/2,

p(t) =
1

e ln 2

�
1

t
+

C

t(ln t)1+α

�
,

and ] t

τ(t)

p(s)ds =
1

e
+

C

αe ln 2

�
1

(ln t− ln 2)α −
1

(ln t)α

�
. (49)

Note that #] t

τ(t)

p(s)ds− 1
e

$�] t

e

p(s)ds

�2
=

C

α(e ln 2)3

�
1

(ln t− ln 2)α −
1

(ln t)α

� �
ln t− 1 + C

α

�
1− 1

(ln t)α

��2
,

and

lim
t→∞

#] t

τ(t)

p(s)ds− 1
e

$�] t

e

p(s)ds

�2
=

 C/
�
e3(ln 2)2

�
, α = 1,

0, α > 1,
∞, α < 1.
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By Theorem 2.18, every solution of (48) oscillates when α < 1 or α = 1 and C >
(ln 2)2/8, but (48) has an eventually positive solution when α > 1 or α = 1 and
C < (ln 2)2/8.

REMARK 2.3. When α = 1, condition (49) implies that p(t) ∈ Aλ for λ = 1. Let
t1 = e, tn = 2tn−1 = 2ne, n = 1, 2, ... . Then

λ lim
k→∞

k
∞[
i=k

#] ti

ti−1
p(s)ds− 1

e

$
=

c

e
lim
k→∞

k
∞[
i=k

1

(i ln 2 + 1)(i ln 2 + 1− ln 2)

=
c

e(ln 2)2

�
> 1/8e, c > (ln 2)2/8,
< 1/8e, c < (ln 2)2/8.

This shows that 1/(8e) in condition (47) is the best possible.

2.3 Oscillation Criteria of Superior Limit

In this section, we always assume that τ(t) < t is nondecreasing on [t0,∞) and p(t) ≥ 0
for t ≥ t0 and define

α := lim inf
t→∞

] t

τ(t)

p(s)ds and A := lim sup
t→∞

] t

τ(t)

p(s)ds.

In 1972, Ladas et al. proved the following theorem which is a special case of the
results in [25].

THEOREM 2.21 [25]. If

A := lim sup
t→∞

] t

τ(t)

p(s)ds > 1, (50)

then all solutions of (1) oscillate.

Clearly, when the limit limt→∞
U t
τ(t)

p(s)ds does not exist, there is a gap between

conditions (5) and (50). How to fill this gap is an interesting open problem which has
been investigated by several authors.
In 1988, Erbe and Zhang [9] developed new oscillation criteria by employing the

upper bound of the ratio x(τ(t))/x(t) for possible nonoscillatory solutions x(t) of (1).
Their result, when formulated in terms of the numbers α and A says that all the
solutions of (1) are oscillatory, if 0 < α ≤ 1

e and

A > 1− α2

4
. (51)

Since then several authors tried to obtain better results by improving the upper bound
for x(τ(t))/x(t).
In 1991 Jian [15] derived the condition

A > 1− α2

2(1− α)
, (52)
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while in 1992 Yu and Wang [50] and Yu et al. [51] obtained the condition

A > 1− 1− α−√1− 2α− α2

2
. (53)

In 1990 Elbert and Stavroulakis [6] and in 1991 Kwong [21], using different tech-
niques, improved (51), in the case where 0 < α ≤ 1/e, to the conditions

A > 1− (1− 1√
λ1
)2 (54)

and

A >
lnλ1 + 1

λ1
, (55)

respectively, where λ1 is the smaller root of the equation λ = eαλ.
In 1994 Koplatadze and Kvinikadze [18] improved (53), while in 1998 Philos and

Sficas [35], in 1999 Zhou and Yu [53] and Jaroš and Stavroulakis [14] derived the
conditions

A > 1− α2

2(1− k) −
α2

2
λ, (56)

A > 1− 1− α−√1− 2α− α2

2
− (1− 1√

λ1
)2, (57)

and

A >
lnλ1 + 1

λ1
− 1− α−√1− 2α− α2

2
(58)

respectively, and in 2000 Tang and Yu [41] the conditions

lim sup
t→∞

] t

τ(t)

p(s) exp

#
λ1

] τ(t)

τ(s)

p(ξ)dξ

$
ds > 1− 1

2

�
1− α−

s
1− 2α− α2

�
,

lim sup
t→∞

] τ(t)

τ2(t)

p(s)ds+

U t
τ(t)

p(s)
U τ(t)
τ(s)

p(ξ)dξ

1− U t
τ(t)

p(s)ds

 > 1 + lnλ1
λ1

,

where λ1 is the smaller root of the equation λ = eαλ.
Consider (1) and assume that τ(t) is continuously differentiable and that there

exists θ > 0 such that
p(τ(t))τ 3(t) ≥ θp(t)

eventually for all t. Under this additional condition, in 2000 Kon et al. [16] and in 2001
Sficas and Stavroulakis [36] established the conditions

A >
lnλ1 + 1

λ1
− 1− α−s(1− α)2 − 4Θ

2
(59)

and

A >
lnλ1
λ1
− 1 +

√
1 + 2θ − 2θλ1M

θλ1
(60)
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respectively, where λ1 is the smaller root of the equation λ = eαλ, Θ is given by

Θ =
eλ1θα − λ1θα− 1

(λ1θ)2
,

and

M =
1− α−s(1− α)2 − 4Θ

2
.

REMARK 2.4. Observe that when θ = 1, then

Θ =
λ1 − λ1α− 1

λ12
,

and (59) reduces to

A > 2α+
2

λ1
− 1, (61)

while in this case it follows that

M = 1− α− 1

λ1
.

and (60) reduces to

A >
lnλ1 − 1 +

√
5− 2λ1 + 2kλ1
λ1

, (62)

In the case where α = 1/e, then λ1 = e and (62) leads to

A >

√
7− 2e
e

≈ 0.459987065.
It is to be noted that as α→ 0, then all the previous conditions (51)-(59) and (61)

reduce to the condition (50), i.e.,
A > 1.

However the condition (62) leads to

A >
√
3− 1 ≈ 0.732

which is an essential improvement. Moreover (62) improves all the above conditions
when 0 < α ≤ 1/e as well. Note that the value of the lower bound on A can not be
less than 1/e ≈ 0.367879441. Thus the aim is to establish a condition which leads to
a value as close as possible to 1/e. For illustrative purpose, we give the values of the
lower bound on A under these conditions when α = 1/e:

0.966166179 (51)
0.892951367 (52)
0.863457014 (53)
0.845181878 (54)
0.735758882 (55)
0.709011646 (56)
0.708638892 (57)
0.599215896 (58)
0.471517764 (61)
0.459987065 (62)
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We see that the condition (62) essentially improves all the known results in the
literature.

EXAMPLE 2.4 [36]. Consider the delay differential equation

x3(t) + px
�
t− q sin2√t− 1

pe

�
= 0,

where p > 0, q > 0 and pq = 0.46− 1
e . Then

α = lim inf
t→∞

] t

τ(t)

pds = lim inf
t→∞ p

�
q sin2

√
t+

1

pe

�
=
1

e

and

A = lim sup
t→∞

] t

τ(t)

pds = lim sup
t→∞

p

�
q sin2

√
t+

1

pe

�
= pq +

1

e
= 0.46.

Thus, according to Remark 2.4, all solutions of this equation oscillate. Observe that
none of the conditions (51)-(59) and (61) apply to this equation.

3 Oscillation of (1) and (2) with oscillating coeffi-
cients

In this section, the coefficient p(t) and the deviating argument τ(t) are allowed to be
oscillatory. Throughout this section, we will use the following notations:

τ0(t) = t, τ i(t) = τ(τ i−1(t)), i = 1, 2, ..., (63)

where τ i(t) is defined on the set

Ei = {t : τ i−1(t) ≥ t0}, i = 1, 2, ..., (64)

and
τ−1(t) = min{s ≥ t0 : τ(s) = t}. (65)

Clearly, limt→∞ τ i(t) =∞ for i = −1, 0, 1, 2, ..., and τ(τ−1(t)) = t, τ−1(τ(t)) ≤ t.
In 1982 Ladas et al. [23] first established the following theorems.

THEOREM 3.1 [23]. Assume that p(t) > 0 (at least) on a sequence of disjoint
intervals {(ξn, tn)}∞n=1 with tn − ξn = 2τ. If

lim sup
t→∞

] tn

tn−τ
p(s)ds ≥ 1

then all solutions of (2) oscillate.

THEOREM 3.2 [23]. Assume that p(t) > 0 (at least) on a sequence of disjoint
intervals {(ξn, tn)}∞n=1 with tn − ξn = 2τ and limn→∞(tn − ξn) =∞. If

lim inf
t→∞

] t

t− τ
2

p(s)ds > 0 for t ∈
∞̂

n=1

(ξn +
τ

2
, tn)
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and

lim inf
t→∞

] t

t−τ
p(s)ds >

1

e
for t ∈

∞̂

n=1

(ξn + τ, tn)

then all solutions of (2) oscillate.

EXAMPLE 3.1 [23]. Consider the differential equations

x3(t) + (sin t)x(t− π

2
) = 0,

x3(t) + p(t)x(t− 1) = 0,
x3(t) + (sin t)x(t− 2π) = 0, (see [12, p.197])

and

x3(t) +
sin t

2 + sin t
x(t− π

2
) = 0,

where

p(t) =

�
p > 1/e t ∈ [2nπ, 2n+1π], n odd
cos t t ∈ (2nπ, 2n+1π), n even .

From Theorems 3.1 and 3.2 it follows that all solutions of the first two equations
oscillate. However the last two equations admit the nonoscillatory solutions x1(t) =
ecos t and x2(t) = 2+ cos t respectively. As expected, the conditions of Theorems 3.1
and 3.2 are violated for the last two equations.
In 1984, Kulenovic and Grammatikopoulos [20] and Fukagai and Kusano [10] ob-

tained the following theorems respectively.

THEOREM 3.3 [20]. Let T > T0 ≥ t0 and µ > 0 such that

τ(t) ≥ t− µ for t ∈ A(T, τ), (66)

where
A(T, τ) = [T,∞)

_
{t : τ(t) < t, t ≥ T0}. (67)

Suppose that there exists a sequence of intervals {(an, bn)}∞n=1 such that
∞̂

n=1

(an, bn) ⊆ A(T, τ) and lim
n→∞(bn − an) =∞.

If

p(t) ≥ 0 for t ∈
∞̂

n=n0

(an, bn), n0 ≥ 1, (68)

and

lim inf
t→∞

] t

τ(t)

p(s)ds >
1

e
, t ∈

∞̂

n=n0

(an + µ, bn), (69)

then all solutions of (1) oscillate.

THEOREM 3.4 [10]. Assume that
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(i) τ(t) < t and τ 3(t) ≤ 0 for t ≥ t0;
(ii) there exists a sequence {tn}∞n=1 with tn →∞ such that

p(t) ≥ 0 for t ∈
∞̂

n=1

[τn(tn), tn] (70)

and ] t

τ(t)

p(s)ds ≥ c > 1

e
for t ∈

∞̂

n=1

[τn−1(tn), tn]. (71)

Then all solutions of (1) oscillate.

Ladas et al. in [23] also presented the following open problem.

OPEN PROBLEM 3.1. Extend Theorem 2.2 to (1) with oscillating coefficients.

In 1986 Domshlak [2] and in 1988 Erbe and Zhang [9] proved the following theorems
respectively, which answer this open problem.

THEOREM 3.5 [2]. Assume c > 1/e and ν > 0 is the root of the equation

ν

sin ν
exp

�
− ν

tan ν

�
= c.

Let (an, bn), n = 1, 2, ..., be intervals such that an →∞,

p(t) ≥ 0 for all t ∈ G :=
∞̂

n=1

(τ(an), bn),

and ] bn

an

p(t)dt ≥ πc

ν
for all n and lim

t∈G
t→∞

] t

τ(t)

p(s)ds = c.

Then any solution of (1) has at least one root on each interval (τ2(an), τ(bn)).

THEOREM 3.6 [9]. Assume that
(i) τ(t) < t, τ 3(t) ≥ 0 for t ≥ t0.
(ii) there exists a sequence tn →∞ such that

p(t) ≥ 0 for t ∈
∞̂

n=1

[τN+1(tn), tn] (72)

and ] t

τ(t)

p(s)ds ≥ c > 1

e
for t ∈

∞̂

n=1

[τN (tn), tn], (73)

where

N =

�
2(ln 2− ln c)
1 + ln c

�
+ 1, (74)

and [·] denotes greatest integer. Then all solutions of (1) oscillate.
In 1988 Domshlak and Aliev [4] derived the following
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THEOREM 3.7 [4]. Suppose that τ(t) ≤ t is increasing, limt→∞ τ(t) = ∞ and
for p(t) = p+(t) − p−(t), there exist p̃+(t) and p̃−(t) such that p+(t) ≥ p̃+(t) ≥ 0,
p̃−(t) ≥ p−(t) ≥ 0, and

A+ := lim
t→∞

] t

τ(t)

p̃+(s)ds, A− := lim
t→∞

] t

τ(t)

p̃−(s)ds,

with

A+ −A− > 1

e

Then all solutions of (1) are oscillatory.

EXAMPLE 3.2 [4]. Consider the delay equation

x3(t) + p(t)x(t− 1) = 0,
where

p(t) := 2a sin2 nπt− bt−α sin2 ωπt = p+(t)− p−(t), ω, a, b,α ∈ R+, n ∈N.
We have

p̃+ = p+, p̃− = p−, A+ = a, A− = 0

and from the above theorem it follows that if

a >
1

e

then all solutions of this equation are oscillatory. Note that p(t) will be necessarily
oscillating in case ω is irrational. Since n and ω may be arbitrary large, oscillation
rapidity of p(t) may be arbitrary high.

In 1992 Yu et al. [51] established a completely different sufficient condition for
oscillation.

THEOREM 3.8 [51]. Assume that τ(t) is nondecreasing, and that
(i) there exist a sequence {bn} and a positive integer k ≥ 3 such that

bn →∞ as n→∞, τk(bn) < bn for n = 0, 1, 2, ... (75)

and

p(t) ≥ 0, τ(t) < t for t ∈
∞̂

n=0

[τk(bn), bn]. (76)

(ii) there exists α ∈ [0, 1) such that] t

τ(t)

p(s)ds ≥ α, t ∈
∞̂

n=0

[τk−2(bn), bn]; (77)

(iii) for some i ∈ {0, 1, · · · , k − 3}] t

τ(t)

p(s)ds > 1−Ai for t ∈
∞̂

n=0

[τk−2(bn), τ i+1(bn)], (78)
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where
A0 = α2/2(1− α), Aj = A

2
j−1 + αAj−1 + α2/2, j = 1, 2, ... . (79)

Then all solutions of (1) oscillate.

In 1994 Domshlak [3] and in 2000 Tang and Yu [43] established the following results
for (2) respectively.

THEOREM 3.9 [3]. Let {bn}∞n=1 where limn→∞ bn =∞, be an arbitrary sequence,
µ ∈ (0,π/2) be a positive number, G := ∪∞n=1 (bn − τ, bn exp(π/µ)) and

lim inf
t∈G,t→∞

p(t) =
1

eτ
, (80)

and

lim inf
t∈G,t→∞

��
p(t)− 1

eτ

�
t2
�
= D >

τ

8e
(81)

Then all solutions of (2) oscillate.

THEOREM 3.10 [43]. Assume that
(i) there exists a sequence of intervals {[an, bn]}∞n=1 such that bn ≤ an+1 and bn −

an ≥ 2τ for n = 1, 2, · · ·, and that

p(t) ≥ 0 for t ∈
∞̂

n=1

[an, bn]; (82)

(ii) ] ∞
t0

p(t) ln

�
e

] t+τ

t

p(s)ds+ 1− sign
�] t+τ

t

p(s)ds

��
dt =∞, (83)

where

p(t) =

�
p(t), t ∈ ∪∞n=1[an + τ, bn);
0, t ∈ [t0, a1 + τ) ∪ ∪∞n=1[bn, an+1 + τ).

(84)

Then all solutions of (2) oscillate.

COROLLARY 3.1 [43]. Assume that there exists a sequence {tn}∞n=1 such that
tn →∞ as n→∞ and

p(t) ≥ 0 for t ∈
∞̂

n=1

[tn − (N + 1)τ, tn] (85)

and ] t

t−τ
p(s)ds ≥ c > 1

e
for t ∈

∞̂

n=1

[tn −Nτ, tn], (86)

where N is defined by N =
k

1
1+ln c

l
+1 and [x] denotes the greatest integer of x. Then

all solutions of (2) oscillate.

REMARK 3.1. The result in Theorem 3.5 is essentially stronger than the results
in Theorem 3.6 and Corollary 3.1. Indeed, in case

τ(t) := t− 1, p(t) := 1

e
(1 + α),
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where α << 1 on
V∞
n=1(an − 1, bn), we obtain (bn − an) ∼ 2(ln 2 + 1)/α in Theorem

3.6 and (bn− an) ∼ 1/α in Corollary 3.1, while from Theorem 3.5 we obtain ν ∼ √2α
which implies (bn − an) ∼ π/

√
2α which is an essential improvement.
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