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Abstract

With the aid of Mathematica, new explicit and exact travelling wave and
solitary solutions for compound KdV-Burgers equations are obtained by using an
improved sine-cosine method and the Wu elimination method.

1 Introduction

In the present paper we consider the compound KdV-Burgers equation

ut + puux + qu
2ux + ruxx − suxxx = 0, (1)

where p, q, r, s are constants. This equation can be thought of as a generalization of
the KdV, mKdV and Burgers equations, involving nonlinear dispersion and dissipation
effects. As particular cases, (i) when r = 0 and pqs 9= 0, (1) becomes the compound
KdV equation

ut + puux + qu
2ux − suxxx = 0, (2)

(ii) when p = 0 and qrs 9= 0, (1) becomes the KdV-Burgers equation
ut + qu

2ux + ruxx − suxxx = 0, (3)

and (iii), when r = 0 in (3), then we get the mKdV equation

ut + qu
2ux − suxxx = 0. (4)

In a recent paper, Wang [1] has found some exact solutions of (1) by using the
homogenous balance method. In this paper we obtain new travelling wave solutions of
(1) by using an improved sine-cosine method [2,3] and Wu’s elimination method [4].
The main idea of the algorithm is as follows. Given a partial differential equation of
the form

P (u, ux, ut, uxx, uxt, utt, ...) = 0, (5)
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46 KDV-Burgers Equations

where P is a polynomial. By assuming travelling wave solutions of the fom

u(x, t) = ϕ(ξ), ξ = λ(x− kt+ c0), (6)

where k,λ are constants to be determined, and c0 is an arbitrary constant, we are led
to the ordinary differential equation

P (ϕ,ϕ3,ϕ33, ...) = 0, (7)

where ϕ3 denotes dϕ/dξ. According to the sine-cosine method (see [1-6] for details),
we suppose that (7) has the following formal travelling wave solution

ϕ(ξ) =
n

i=1

sini−1 ω(Bi sinω +Ai cosω) +A0, (8)

and
dω

dξ
= sinω, or

dω

dξ
= cosω, (9)

where A0, ..., An and B1, ..., Bn are constants to be determined. Then we proceed as
follows:
Step 1. Equating the highest order nonlinear term and highest order linear partial

derivative in (5), yield the value of n.
Step 2. Substituting (8), (9) into (7), we obatin a polynomial equation involving

cosω sini ω, sini ω for i = 0, 1, 2, ...n. This step can be carried out the help of Mathe-
matica.
Step 3. Setting the constant term and coefficients of sinω, cosω, sinω cosω, sin2 ω,

· · · , in the equation obtained in step 2 to zero, we obtain a system of algebraic equations
about the unknown numbers k,λ, B0, Ai, Bi for i = 1, 2, ..., n.
Step 4. Using Wu’s elimination methods, the algebraic equations in step 3 are

solved with the aid of a computer.
These then yield the solitary wave solutions for the system (5).
We remark that the above method yield solutions that include terms sechξ or tanhξ,

as well as their combinations. They are different from those that are obtained by other
methods, such as the homogenous balance method [5,6].

2 New Explicit Solutions

We assume formal solutions of the form

u(x, t) = ϕ(ξ), ξ = λ(x− kt+ c), (10)

where λ, k are constants to be determined later and c0 is an arbitrary constants. Sub-
stituting (10) into (1), we obtain an ordinary differential

kϕ3 − pϕϕ3 − qϕ2ϕ3 − λrϕ33 + sλ2ϕ333 = 0. (11)
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According to the algorithm described in the previous section, we suppose that (11)
has the following formal solutions

ϕ(ξ) = A0 +A1 sinω +A2 cosω, (12)

and target equation
dω

dξ
= sinω. (13)

With the aid of Mathematica or Maple, from (12) and (13), we can get

kϕ3 − pϕϕ3 − qϕ2ϕ3 − λrϕ33 + sλ2ϕ333

= [6A2sλ
2 − q(A32 − 3A21A2)] sin4 ω − (6A1sλ2 + qA31 − qA1A22) sin3 ω cosω

+(2pA1A2 + 4qA0A1A2 + 2λrA1) sin
3 ω

+[2rλA2 − P (A21 −A22)− q(2A0A21 − 2A0A22)] sin2 ω cosω
+[pA0A1 − 4A2sλ2 − kA2 + q(A2A20 +A32 − 2A21A2)] sin2 ω
+(sλ2A1 + kA1 − pA0A1 − qA1A20) cosω sinω
+[−pA1A2 − rλA1 − 2qA0A1A2] sinω

= 0.

Setting the coefficients of sinj ω cosi ω for i = 0, 1 and j = 1, 2, 3, 4 to zero, we have the
following set of overdetermined equations in the unknowns A0, A1, A2,λ, k :

6A2sλ
2 − q(A32 − 3A21A2) = 0,

6A1sλ
2 + q(A31 − 3A21A2) = 0,

2pA1A2 + 4qA0A1A2 + 2λrA1 = 0

2rλA2 − p(A21 −A22)− q(2A0A21 − 2A0A22) = 0
pA0A1 − 4A2sλ2 − kA2 + q(A2A20 +A32 − 2A21A2) = 0,

sλ2A1 + kA1 − pA0A1 − qA1A20 = 0,
pA1A2 + rλA1 + 2qA0A1A2 = 0.

We now solve the above set of equations by using the Wu elimination method [4], and
obtain the following solution:

Case 1. A1 = 0, A2 = ± 6s
q λ, A0 = ± k−2sλ2

q

k = 12sλ+ r2 ± 1
2
rp

6s

q
+
sp2

4q
, sq > 0, q(k − 2sλ2) > 0.

If we now take the target equation as

dω

dξ
= cosω, (14)

then proceeding in similar fashions, we get
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Case 2. A0 = ± r√
6qs
− p

2q , A1 = ± 6s
q , A2 = 0,

k = ± 2pr√
6qs

+
r2 + 36s2

6s
− 4sλ2, qs > 0.

Case 3. A0 = ± r√
6qs
, A1 = ± 3s

2qλ, A2 = i
3s
2qλ, qs > 0,

k =
r2

6s
± pr√

6qs
− 4sλ2.

Next, integrating dω/dξ = sinω and taking the integration constant zero, we obtain

sinω = sechξ, (15)

and

cosω = ± tanh ξ. (16)

Similarly, from (14), we get

cosω = −sechξ, (17)

sinω = ± tanh ξ. (18)

According to (12), (15)-(18) and the solutions in Cases 1-3, we obtain the following
solitary wave solutions of equation (1):
(I) qs > 0, q(k − 2sλ2) > 0,

u1(x, t) = ± k − 2sλ
q

± 6s

q
tanhλ(x− kt+ c0),

where k = 12sλ2 + r2 ± 1
12rp

6s
q +

sp2

4q .

(II) qs > 0,

u2(x, t) = ± pr√
6qs
− p

2q
± 6s

q
λ tanhλ(x− kt+ c0),

where k = ± 2pr√
6qs

+ r2+36s2

6s − 4sλ2.
(III) qs > 0,

u3(x, t) = ± r√
6qs

+
3s

2q
λ(±i tanh ξ − sechξ)

where ξ = λ(x− kt+ c0), k = r2

6s +
pr√
6qs
− 4sλ2.

Note that as |ξ|→ +∞, u3(x, t)→ ±[ r√
6qs

+ 3s
2qλ].

These solutions of (1) are solitary wave solutions. They are linear combinations of
kink solitary and bell solitary wave solutions. They are not available in Wang [1] nor
in Xia [5].
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3 Travelling Wave Solutions

By measn of the same procedures described above, we may obtain solutions of (2), (3)
and (4):
1. For the compound KdV equation (2), we have the following formal solitary wave

solutions.

u4(x, t) = − p
2q
± 6s

q
tanhλ[x− (2sλ2 + p2

4q
)t+ c0], qs > 0,

u5(x, t) = − p
2q
± 3s

2q
λ[sechξ ± i tanh ξ],

where ξ = λ[x− (12sλ2 − p2

4q )t+ c0] and qs > 0.

2. For the KdV-Burgers equation (3), we have the following formal solitary wave
solutions

u6(x, t) = ± r√
6qs

± 6s

q
λ tanh[λ(x− 12s

2λ2 + r2

6s
t+ c0)], qs > 0,

u7(x, t) = ±[ r√
6qs

± 3s

2q
λ[sechξ ± tanh ξ], qs > 0,

where ξ = λ(x− kt+ c0) = λ[x− r2+3s2λ2

6s t+ c0].
3. For the mKdV equation (4), we have the the following formal solitary solutions

u8(x, t) = ± 6s

q
λ tanh[λ(x− 2sλ2t+ c0)], qs > 0.

u9(x, t) = ± 3s

2q
[tanhλ(x− sλ2t+ c0)− isechλ(x− sλ2t+ c0)], qs > 0.
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