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Abstract

In this work, a series solution is found for the integro-differential equation y��(t)
= −(ω2c + ω2f sin

2 ωpt)y(t) + ωf (sinωpt) z
�(0) + ω2fωp sinωpt

t

0
(cosωps) y(s)ds,

which describes the charged particle motion for certain configurations of oscil-
lating magnetic fields. As an interesting feature, the terms of the solution are
related to distinct sequences of prime numbers.

The integro-differential equation

d2y

dt2
= −a(t)y + b(t)

t

0

(cosωps) y(s)ds+ g(t), (1)

where a(t), b(t) and g(t) are given periodic functions of time may be easily found in the
charged particle dynamics for some field configurations. Taking for instance the three
mutually orthogonal magnetic field components Bx = B1 sinωpt, By = 0, Bz = B0,
the nonrelativistic equations of motion for a particle of mass m and charge q in this
field configuration are

m
d2x

dt2
= q B0

dy

dt
, (2)

m
d2y

dt2
= q B1 sinωpt

dz

dt
−B0 dx

dt
, (3)

m
d2z

dt2
= q −B1 sinωptdy

dt
. (4)

By integration of (4) and (2) and replacement of the time first derivatives of z and x
in (3) one has (1) with

a(t) = ω2c + ω2f sin
2 ωpt, b(t) = ω2fωp sinωpt, (5)

g(t) = ωf (sinωpt) z
3(0) + ω2cy(0) + ωcx

3(0), (6)
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where ωc = qB0/m and ωf = qB1/m. Making the additional simplification that
x3(0) = 0 and y(0) = 0, (1) is finally written as

d2y

dt2
= −(ω2c + ω2f sin

2 ωpt)y + ωf (sinωpt) z
3(0)

+ω2fωp (sinωpt)
t

0

(cosωps) y(s)ds. (7)

In this work, a series solution y(t) = ∞
k=0 yk(t) will be constructed for (7) by the

Adomian’s method [1, 2]. According to this method, the highest-ordered differential
operator in (7) is L = d2/dt2, and therefore this equation may be written as

Ly(t) = h(t)−Ry(t), (8)

where R is the “remainder operator”

Ry(t) = a(t)y(t)− b(t)
t

0

(cosωps) y(s)ds (9)

and

h(t) = ωf (sinωpt) z
3(0). (10)

The application of the inverse operator L−1 in both sides of (8) results in

LL−1y = y − y(0)− y3(0)t = L−1h− L−1Ry, (11)

and therefore

y(t) = y(0) + y3(0)t+ L−1h− L−1Ry(t). (12)

By explicit calculation of L−1 in the right side of (12), one has

y(t) = y(0) + y3(0)t+
t

0

s

0

ωf (sinωpu) z
3(0)du ds

−
t

0

s

0

(ω2c + ω2f sin
2 ωpu)y(u)du ds

+
t

0

s

0

ω2fωp sinωpu
u

0

(cosωpv) y(v)dv du ds (13)

The series approximation y(t) =
∞
k=0 yk(t) may be replaced in both sides of (13), and

the first term y0 of this expansion is clearly identified with

y0 = y(0) + y3(0)t+
t

0

s

0

ωf (sinωpu) z
3(0)du ds =

y(0) + y3(0)t+
ωf
ω2p
(ωpt− sinωpt)z3(0), (14)
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otherwise the remaining terms in (13) will lead to the equation

y1(t) + y2(t) + y3(t)...

= −
t

0

s

0

ω2c + ω2f sin
2 ωpu (y0(u) + y1(u) + y2(u) + ...) du ds

+
t

0

s

0

ω2fωp sinωpu
u

0

cosωpv(y0(v) + y1(v) + y2(v) + ...)dvduds. (15)

Therefore, since y0 is given in (14), a sequence of functions may be derived from (15):

y1(t) = −
t

0

s

0

(ω2c + ω2f sin
2 ωpu)y0(u)du ds

+
t

0

s

0

ω2fωp sinωpu
u

0

(cosωpv) y0(v)dv du ds,

y2(t) = −
t

0

s

0

(ω2c + ω2f sin
2 ωpu)y1(u)du ds

+
t

0

s

0

ω2fωp sinωpu
u

0

(cosωpv) y1(v)dv du ds,

... = ...

yn(t) = −
t

0

s

0

(ω2c + ω2f sin
2 ωpu)yn−1(u)du ds

+
t

0

s

0

ω2fωp sinωpu
u

0

(cosωpv) yn−1(v)dv du ds. (16)

Recalling the action of the remainder operator in (9), the same result would have been
obtained by expanding Ry in a power series

Ry =
∞

k=0

Ak (y0, y1, ..., yk) (17)

where A0 = a(t)y0 − b(t) t

0
(cosωps) y0(s)ds, A1 = a(t)y1 − b(t) t

0
(cosωps) y1(s)ds,

and so on. Tracking studies of the equations (2), (3) and (4) performed by the Runge-
Kutta method have demonstrated that a solution for (7) seems to be decomposed into
two components, an oscillation with frequency ωc and a perturbation of very complex
structure, which depends on t,ωc,ωp and ωf . These tracking simulations we have
executed also showed resonance phenomena for some particular choices of the cyclotron
frequencies ωc,ωf and ωp.
In order to clarify this question and calculate the terms of ∞

k=0 yk(t) according
to (16), an algebraic computation routine was prepared to run in the Mathematica
package environment [3]. The general solution y(t) obtained for (7) by this routine
under the initial conditions x3(0) = 0 and y(0) = 0 is

y(t) = y3(0) (sinωct) /ωc + F1(ωc,ωf ,ωp, t) +
∞

n=1

A2n(ωc,ωf ,ωp, t) cos[ωp(2n)t]



J. M. Machado and M. Tsuchida 69

+
∞

n=0

B2n+1(ωc,ωf ,ωp) sin[ωp(2n+ 1)t] +
∞

n=1

C2n(ωc,ωf ,ωp, t) sin[ωp(2n)t]

+
∞

n=1

D2n(ωc,ωf ,ωp) sin[ωp(2n)t]

+z3(0) F2(ωc,ωf ,ωp, t) +
∞

n=1

P2n(ωc,ωf ,ωp, t) cos[ωp(2n)t]

+
∞

n=0

Q2n+1(ωc,ωf ,ωp) sin[ωp(2n+ 1)t] +
∞

n=1

R2n(ωc,ωf ,ωp, t) sin[ωp(2n)t]

+
∞

n=1

S2n(ωc,ωf ,ωp) sin[ωp(2n)t] , (18)

where the functions F1, F2, A2n, B2n+1, etc., are also given by power series with a very
characteristic structure. The aforementioned harmonic component with frequency ωc
is clearly present in (18). Retaining for instance only the terms y0, y1, y2 and y3 in the
series for y(t), one has

F1 = t − 3ω
2
f

22ω2p
+
5 · 7ω4f
26 · 3ω4p

− 3ω
2
cω

2
f

2ω4p
− 11 · 7ω6f
28 · 3 · 5ω6p

+
1163 · 7ω2cω4f
28 · 33ω6p

− 3
2ω4cω

2
f

22ω6p
+ ...

+t3
5ω2cω

2
f

23 · 3ω2p
− 53ω2cω

4
f

27 · 32ω4p
+

ω4cω
2
f

3ω4p
+ ...

+t5 − 7ω4cω
2
f

25 · 3 · 5ω2p
+ ... + ... (19)

it is clear that the coefficient of the odd powers in t are constructed as follows: one
term for the power 2 of ωp in denominators, two terms for power 4, 3 for power 6,
and so on. All integer coefficients in (19) are shown decomposed in prime factors,
whose magnitude increases as one adds more terms in the expansion. There are similar
structures for

F2 = t
ωf
ωp
− 5ω3f
22 · 3ω3p

+
ω2cωf
ω3p

+
3 · 7ω5f
26 · 5ω5p

− 167ω
2
cω

3
f

22 · 33ω5p
+

ω4cωf
ω5p

− 11 · 13ω7f
28 · 3 · 5 · 7ω7p

+
577 · 1109ω2cω5f
28 · 33 · 53ω7p

− 1663ω
4
cω

3
f

2 · 35ω7p
+

ω6cωf
ω7p

+ ...

+t3 − ω2cωf
3 · 2ωp +

11ω2cω
3
f

23 · 32ω3p
− ω4cωf
2 · 3ω3p

− 353ω2cω
5
f

27 · 32 · 5ω5p

+
52 · 11ω4cω3f
23 · 34ω5p

− ω6cωf
2 · 3ω5p

+ ...
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+t5
ω4cωf

23 · 3 · 5ωp −
17ω4cω

3
f

25 · 32 · 5ω3p
+

ω6cωf
23 · 3 · 5ω3p

+ ... + ..., (20)

B1 =
ω2f
ω3p
− 7ω4f
23 · 3ω5p

+
2ω2cω

2
f

ω5p
+

11ω6f
26 · 5ω7p

− 397ω
2
cω

4
f

23 · 33ω7p
+
3ω4cω

2
f

ω7p
+ ..., (21)

Q1 = −ωf
ω2p
+
5ω3f
23ω4p

− ω2cωf
ω4p

− 7ω5f
26ω6p

+
32ω2cω

3
f

22ω6p
− ω4cωf

ω6p

+
13 · 11ω7f
210 · 3 · 5ω8p

− 7 · 11ω
2
cω

5
f

26ω8p
+
13 · 3ω4cω3f
23ω8p

− ω6cωf
ω8p

+ ... (22)

A2 = t
ω2cω

2
f

22ω4p
− 5 · 7ω

2
cω

4
f

24 · 32ω6p
+

ω4cω
2
f

2ω6p
+ ... + t3 − ω4cω

2
f

23 · 3ω4p
+ ... + ..., (23)

P2 = t
ω2cω

3
f

22ω5p
− 23ω2cω

5
f

24 · 32ω7p
+
3ω4cω

3
f

22ω7p
+ ... + t3 − ω4cω

3
f

23 · 3ω5p
+ ... + ..., (24)

D2 = −
ω2f
23ω3p

+
7ω4f

25 · 3ω5p
− 3ω

2
cω

2
f

23ω5p
− 11ω6f
210ω7p

+
421ω2cω

4
f

25 · 33ω7p
− 5ω

4
cω

2
f

23ω7p
+ ..., (25)

S2 = −
ω3f
23ω4p

+
ω5f
25ω6p

− ω2cω
3
f

2ω6p
− 13 · 11ω7f
210 · 32 · 5ω8p

+
52ω2cω

5
f

23 · 32ω8p
− 3

2ω4cω
3
f

23ω8p
+ ... (26)

C2 = t
2

ω2cω
2
f

24ω3p
− 13ω

2
cω

4
f

26 · 3ω5p
+
3ω4cω

2
f

24ω5p
+ ... + t4 − ω4cω

2
f

26 · 3ω3p
+ ... + ... (27)

R2 = t
2

ω2cω
3
f

24ω4p
− 3ω

2
cω

5
f

26ω6p
+

ω4cω
3
f

22ω6p
+ ... + t4 − ω4cω

3
f

26 · 3ω4p
+ ... + ..., (28)

etc. A more detailed structure for these coefficient functions, as well as for those
related to higher harmonics of ωp will require more terms of the sequence (16). How-
ever, it is also clear that the relative magnitude of the frequencies ωc,ωf and ωp (ωp
much greater, for example) may allow that higher order terms in ωp and higher har-
monics be neglected. The role played by the prime numbers to form all functions
F1, F2, A2n, B2n+1, etc., becomes evident by adding more terms in the expansion. As
an example, by retaining the first seven terms of y(t) =

∞
k=0 yk(t), (21) becomes

B1 =
ω2f
ω3p
− 7ω4f
23 · 3ω5p

+
2ω2cω

2
f

ω5p
+

11ω6f
26 · 5ω7p

− 397ω
2
cω

4
f

23 · 33ω7p
+
3ω4cω

2
f

ω7p

− 13 · 11ω8f
210 · 32 · 7ω9p

+
29 · 1237ω2cω6f
24 · 33 · 53ω9p

− 5477ω
4
cω

4
f

22 · 35ω9p
+
22ω6cω

2
f

ω9p

+
13 · 17 · 19ω10f
214 · 34 · 5 · 7ω11p

− 13 · 197 · 188999ω
2
cω

8
f

210 · 34 · 53 · 73ω11p
+
3607 · 26627ω4cω6f
25 · 35 · 55ω11p

−110939ω
6
cω

4
f

22 · 37ω11p
+
5ω8cω

2
f

ω11p
+ ... .
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Further considerations about the solution (18), as well as application results, will
be reported soon.
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