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Abstract

In this work, a series solution is found for the integro-differential equation y"' (¢)
= —(w? + w}sin® wpt)y(t) + wy (sinwpt) 2/ (0) + wiwp sinwpt fot (coswps) y(s)ds,
which describes the charged particle motion for certain configurations of oscil-
lating magnetic fields. As an interesting feature, the terms of the solution are
related to distinct sequences of prime numbers.

The integro-differential equation

2 t

% = —a(t)y + b(¢) /0 (coswps) y(s)ds + g(t), (1)
where a(t), b(t) and g(t) are given periodic functions of time may be easily found in the
charged particle dynamics for some field configurations. Taking for instance the three
mutually orthogonal magnetic field components B, = B;sinw,t, B, = 0, B, = By,
the nonrelativistic equations of motion for a particle of mass m and charge ¢ in this
field configuration are

d’x dy

mﬁ = 4q (BOE> ) (2)
d?y . dz dx

mﬁ = (q <B1 Slnwpta — BOE) s (3)
d*z . d

Mmooy = 4 <—31 smwptd—?;) . (4)

By integration of (4) and (2) and replacement of the time first derivatives of z and z
in (3) one has (1) with
a(t) = wi+ wf: sin® wyt, b(t) = wj%wp sin wypt, (5)
g(t) = wy(sinwyt) 2/ (0) + w?y(0) + w2’ (0), (6)
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where w, = ¢By/m and wy = ¢B;/m. Making the additional simplification that
z’(0) = 0 and y(0) = 0, (1) is finally written as

d?y

= = —(w?+ wJ% sin® wyt)y + wy (sinwyt) 2'(0)

—|—wj2cwp (sinwpt) /0 (coswps) y(s)ds. (7)

In this work, a series solution y(t) = > "7, yx(t) will be constructed for (7) by the
Adomian’s method [1, 2]. According to this method, the highest-ordered differential
operator in (7) is L = d?/dt?, and therefore this equation may be written as

Ly(t) = h(t) — Ry(2), (8)

where R is the “remainder operator”

Ry(t) = a(t)y(t) — b(t)/o (coswps) y(s)ds (9)

and
h(t) = wy (sinwpyt) 2'(0). (10)

The application of the inverse operator L=! in both sides of (8) results in
LL 'y =y —y(0) —y'(0)t = L™'h — L™ Ry, (11)

and therefore
y(t) = y(0) + ¢/ (0)t + L~ h — L™ ' Ry(t). (12)

By explicit calculation of L=! in the right side of (12), one has
t s
y(t) = y(0)+y'(0)¢ +/ </ wy (sinwyu) z’(O)du) ds
o \Jo

- /ot (/OS(“’g + Wi sin® wpU)y(U)du> ds
+ /Ot /OS (w?% sinwyu (/Ou (cosw,v) y(v)dv) du) ds (13)

The series approximation y(t) = > r- , yx(t) may be replaced in both sides of (13), and
the first term g of this expansion is clearly identified with

o = y@)+ymﬁ+[f(éiq@m%mn%mm0ds—

y(0) + 9/ (0)t + = (wpt — sinw,t)2 (0), (14)
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otherwise the remaining terms in (13) will lead to the equation
yi(t) + y2(t) + ys(t)...

- ([ 12 s wya] () + 10(0) + (0) + . ) s

t s u
+/ / wjzcwp sin wpu/ cos wpv(yo(v) + y1(v) + y2(v) + ...)dvduds. (15)
0 Jo 0

Therefore, since yq is given in (14), a sequence of functions may be derived from (15):

- /Ot (/Osw2 +w sin® Wpu)yo(u)du) ds
—|—/Ot /08 (w?wp sinwpu (/Ou (coswpv) yo(v)dv) du) ds,
ya(t) = _/Ot (/Os(wf + w} sin® wpu)y1(u)du) ds
+/Ot /OS (wfc“’p sinwpu (/Ou (Coswpv)yl(v)dv) du) ds,
e
blt) = 7/0 (/0 (we + WJ% sin® Wpu)l/n—l(ﬂ)dﬂ) ds

N /0 t /0 ’ <w;wp sinwpu ( /0 ' (coswpv)yn_1(v)dv> du> ds.  (16)

Recalling the action of the remainder operator in (9), the same result would have been
obtained by expanding Ry in a power series

1 (t)

Ry: ZAIC (y()aylv"'vyk) (17)

k=0

where Ag = a(t)yo — b(t) fof (coswps) yo(s)ds, A1 = a(t)yr — b(t) f(f (coswps) y1(s)ds,
and so on. Tracking studies of the equations (2), (3) and (4) performed by the Runge-
Kutta method have demonstrated that a solution for (7) seems to be decomposed into
two components, an oscillation with frequency w. and a perturbation of very complex
structure, which depends on ¢,w.,w, and wy. These tracking simulations we have
executed also showed resonance phenomena for some particular choices of the cyclotron
frequencies w.,w; and wp.

In order to clarify this question and calculate the terms of >~ yx(t) according
to (16), an algebraic computation routine was prepared to run in the Mathematica
package environment [3]. The general solution y(¢) obtained for (7) by this routine
under the initial conditions 2’(0) = 0 and y(0) = 0 is

o0

y(t) = ' (0) {(sinwct) Jwe + Fi(we,wy, wp,t) + Z Aoy (we,wg, wp, t) cosw,(2n)t]

n=1
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oo o0
+ Z Bopt1(we, wy,wp) sinfw,(2n + 1)t] + Z Con(we, wr, wp, t) sinfwy, (2n)t]

n=0 n=1
oo
+ Z Doy (we, wy,wp) sin[wp(2n)t]}
n=1
+2'(0) {FQ(wc,wf,wp,t) + ) Pon(we,wy, wp, t) coslwy (2n)t]
n=1

+ Z Q2n+1(we,wy,wp) sinfwy(2n + 1)t] + Z Rop(we,wp, wp, t) sinfw,(2n)t]

n=0 n=1

o0
+ Z Son(We, W, wp) sin[wp(Qn)t}} , (18)
n=1

where the functions Fy, Fs, Ag,, Ban11, ete., are also given by power series with a very
characteristic structure. The aforementioned harmonic component with frequency w,
is clearly present in (18). Retaining for instance only the terms yg, 1, y2 and y3 in the
series for y(t), one has

30.}?' 5 - 7w;% 3w§w% 11- 7w§3
Fro= 955 T30 1 98 G
2wy 2% 3w 2wy, 2% -3 bwy
1163 - 7w2w;% 32w§w]2c
28336 2208

43 BwEwJQf B 53w2w;% wéw]% N
23-3w2  27-3%w)  3wi

Twiw?

+ { 20~3-5w§+ + (19)
it is clear that the coefficient of the odd powers in ¢ are constructed as follows: one
term for the power 2 of w, in denominators, two terms for power 4, 3 for power 6,
and so on. All integer coefficients in (19) are shown decomposed in prime factors,

whose magnitude increases as one adds more terms in the expansion. There are similar
structures for

F — ﬂ B 5&)3} wgwf 3- 7(4)? _ 167&)3&)? wgwf
> wp 223w wl 265wy 2233w wp
1113w} 577-1109w2wh  1663wiw?  wow
¥ 35w | B3 bw] | 23w W

32w, 2332w 2-3wd  27.32.5uw)

52 . 11(,«)2%0)? wgwf n
23 - 34w 2-3wy

+t3 { wgwf 1 1(4}3(4}?' wgwf 353&]2&]?




70 Integro-differential Equation

4 17wiw? 6
Wewy cf wewy
t° - 20
* {23~3-5wp 25-32~5wg+23-3-5wg+ }+ ’ (20)
w? 7w;% 20?2 w% 1 lw? 397w3w;% 3w§wj%
b= waa e TP as Bwe o G
P P P P P P
0 = YLy Swp | wiwy Twp  Bwlvj wiey
wZ ' 2wy wy 26w 22w8 w$
13-1lw}  7-1wiwf  13-3wiw}  whwy -
31 -3-5wS 2608 2Bwd Wl (22)
wiw? 5Tt wiw? wiw?
_ cf cf cf 3 crf
AQ_t{22w4_24-32w6 + 50 +..p 4t —23'3w4+... + oy (23)
P P P P
wfw? 23w§w5} 3w3w§2 3 wﬁw?
P=t 25 31 53.7 + 527 +..p+t ECERE +opt (24)
P P P P
wfc 7w;1c 3w3w12c 11w? 421wfw;% 5w3w?
Dy = T3 T 2B 305 Wb 20,7 T 95t | Wt (25)
P P P P P P
3 5 2,3 7 2,,2,,5 2, 4,3
g - W N wi o wowp 13- 1wy N S wewy B 3rwowy N (26)
27 2%wd T 25w 2w 210.32.548 | 23.3%8  28w8 T
2,2 2, 4 4,2 4,2
o Jwiwr  Bwiwp  Bwowy 4 Wews
Cy=t {2%; _26-3wg+ 2 +..p+t _26-3wg+"' + ... (27)
wiw? 3wl wiw? wiw?
Ro=t2y o f ety 2ol bt (28
2 {2%;} 2608 * 2208 M 26 . 3wl Fop e (28

etc. A more detailed structure for these coefficient functions, as well as for those
related to higher harmonics of w, will require more terms of the sequence (16). How-
ever, it is also clear that the relative magnitude of the frequencies w,,w; and wy (wp
much greater, for example) may allow that higher order terms in w, and higher har-
monics be neglected. The role played by the prime numbers to form all functions
Iy, Fy, Asgy, Boyt1, etc., becomes evident by adding more terms in the expansion. As
an example, by retaining the first seven terms of y(t) = >y yx(t), (21) becomes

B wj% 7w;% 2wfw}2c 11w? 397w3w§ Swéw]%
b w_2723-3w2+ w3 +26-5w;723~33w; Wl
13- 11w§c 29 - 1237wgw§3 5477w§w% 2%2@}
210.32. 709 2433 . 5307 22 35wy wp
13-17 - 19w} 13- 197 - 188999wzw? 3607 - 26627wiw
+214 .34.5. 7011 910.34.53. 73,11 25 .35 . 55,11
p p p

110939w§w}1 5w§wj2£

T T 92.97,,11 11
2 Swp Wy
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Further considerations about the solution (18), as well as application results, will
be reported soon.

References

[1] G. Adomian, A new approach to nonlinear partial differential equations, J. Math.
Anal. Appl., 102(1984), 420-434.

[2] E. Deeba, S. A. Khuri, S. S. Xie, An algorithm for solving a nonlinear integro-
differential equation, Appl. Math. Comput., 115(2000), 123-131.

[3] R. Gass, Mathematica for Scientists and Engineers, Prentice Hall, 1998.



