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Abstract

Kramers’ exit problem is concerned with noise activated escape from a poten-
tial well. In case the noise strength, , is small this becomes a singular pertur-
bation problem. The distribution of exit points on the separatrix (in the phase
plane) is shown to be spread away from the saddle point, where the energy is
minimal. The stochastic dynamics of the escaping trajectories, conditioned on
not returning to a given critical energy contour, are studied analytically and nu-
merically.

1 Introduction

Kramers’ model of activated escape [1] has become a cornerstone in statistical physics
with applications in many branches of science and mathematics [1]-[8]. It has important
applications in diverse areas such as communications theory [4], stochastic stability of
structures [6], and even in modern theory of finance [7]. Vast literature on exit problems
has been accumulated [5] and the problem is still an active area of physical, chemical,
biological, and mathematical research.
The purpose of this paper is to give a complete description of the exit distribution

in the Kramers problem. This is achieved by mapping the exit distribution on the
critical energy contour onto the separatrix, as found in [9], by means of the tails of
the escaping trajectories. The tails, which are the trajectories of the original dynamics
conditioned on reaching the separatrix before returning to the critical energy contour,
obey different dynamics than the original trajectories.
Kramers’ problem of activated escape [1] is concerned with the motion of a Brownian

particle in a field of force. The motion is described by the dimensionless Langevin
equation

ẍ+ βẋ+ U 3(x) = 2�β ẇ, (1)

where U(x) is a potential that forms a well with barrier height normalized to 1 (in the
simulations is given by U(x) = 2x4− 1.2x3− 2x2+1.45), β is the dissipation constant,
normalized by the frequency of vibration at the bottom of the well (in the simulations
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β = 2), � is dimensionless temperature (in the simulations � = 0.01), normalized by the
barrier height, and ẇ is standard Gaussian white noise [1]. If � is a small parameter
(e.g., if the barrier of the well is high), the stochastic trajectories of eq.(1) stay inside
the well for a long time, but ultimately escape [1]-[5]. To describe the escape process
the Langevin equation is converted to the phase plane system

ẋ = y
ẏ = −βy − U 3(x) +√2�β ẇ. (2)

The domain of attraction of the stable equilibrium point of the noiseless dynamics,

ẋ = y
ẏ = −βy − U 3(x), (3)

located at the bottom of the potential well, is denoted by D and is bounded by a
separatrix, Γ, which for small � is also the stochastic separatrix [8], that is, the locus
of points where the random trajectories of (2) are equally likely to escape or to return
to the well (see Figure 1.1 ). The specific exit problem for (2) is to determine the
probability density function (pdf) of the points where escaping trajectories hit Γ.
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Fig 1.1. The domain of attraction D is bounded by the separatrix Γ.

The domain D − {E ≤ EC} is bounded between Γ and by the critical energy contour ΓC .
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Fig. 1.2. A trajectory of the noiseless dynamics (3) and of the noisy dynamics (2)

that start at a point between ΓC and Γ.

Typically, when a trajectory of (2) crosses the critical energy contour ΓC , defined
by E = EC , where

E =
y2

2
+ U(x), EC = U(xC), (4)
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it is most likely to recross ΓC and return to the neighborhood of the stable equilibrium
point of the noiseless dynamics (3) (xA, 0) (see Figure 1.2). Occasionally, a trajectory
that crosses ΓC goes on to cross Γ and escape the domain of attraction D. The part
of an escaping trajectory from the last point where it hit ΓC to the first point where
it hits Γ is referred to as the tail of the escaping trajectory.

To investigate the problem of escape, we track the tails of the escaping trajectories.
The stochastic dynamics of the tails is very different than that of the original system
in the domain enclosed between Γ and ΓC (compare Figures 1.2(b) and 3.1(b) below
on page 4). Denoting by τΓ the first passage time to Γ from any point (x, y) in that
domain, and by τC that to ΓC , the dynamics of the tails is that of the original system
(2) conditioned on hitting Γ before ΓC , that is, on the event τΓ < τC . This conditioning
modifies the drift of the tails by the logarithmic derivative of the probability

P (x, y) ≡ Pr{τΓ < τC | (x(0), y(0)) = (x, y)}.
We study the modified dynamics in detail through the study of the function P (x, y).

2 Notations and Formulation

The drift vector and the noise matrix of the stochastic system (2), corresponding to
the Langevin equation (1) in the phase plane are denoted by

b(x, y) =
b1(x, y)
b2(x, y)

=
y

−βy − U 3(x) , σ(x, y) =
0 0
0
√
2�β

. (5)

The underlying deterministic dynamics of the system are governed by (3). Its phase
plane portrait is given in Figure 1.1, where the point (xA, 0) is an attractor, while
the point (xC , 0) is a saddle point. The domain of attraction of the attractor and its
boundary are denoted by D and Γ, respectively. The curve Γ is the separatrix of the
noiseless dynamics and in the limit � → 0 it becomes the stochastic separatrix. We
denote by ωA = U 33(xA) the frequency of oscillation at the bottom of the well, by

ωC = −U 33(xC) the imaginary frequency at the top of the barrier, and by EC =
U(xC) − U(xA) the critical energy measured from the bottom of the well, that is,
the height of the barrier. In dimensionless units EC = 1. We may assume that
U(xA) = 0. The contours of constant energy are given by (4). In particular, the
critical energy contour, denoted by ΓC , is given by E = EC , or explicitly, by y =
yC(x) = ± 2 [U(xC)− U(x)]. It is shown in Figures 1.1, 1.2, and 4.1.
The separatrix Γ is given by y = yΓ(x), where yΓ(x) is the solution of the initial

value problem [9]

y3Γ(x) = −β −
U 3(x)
yΓ(x)

, yΓ(xC) = 0. (6)

Of the two solutions of (6), yΓ(x) is the one with

y3Γ(xC) = −
β + β2 + 4ω2C

2
= −λ. (7)
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We denote by

ν(x, yΓ(x)) =
1

[βyΓ(x) + U 3(x)]
2
+ y2Γ(x)

βyΓ(x) + U
3(x)

yΓ(x)
(8)

the unit outer normal on Γ. At a point (x, y) near Γ, we denote by ν(x, y) the unit
outer normal to Γ at the orthogonal projection of (x, y) on Γ.
We denote by ρ = ρ(x, y) the (signed) distance from the point (x, y) to Γ, such that

ρ < 0 in D, then

∇ρ(x, y) = ν(x, y) +O(ρ). (9)

It follows from eqs.(5) and (8) that the vector b(x, yΓ(x)) is tangent to Γ, that is,

b(x, yΓ(x)) · ν(x, yΓ(x)) = 0 (10)

so that at points (x, y) near Γ the normal component of b(x, y) is given by

b(x, y) · ν(x, y) = b0(x)ρ(x, y) +O(ρ2), (11)

where the explicit form of b0(x) is given in [9] as

b0(x) =
yΓ(x)U

3(x)− U 33(x) (βyΓ(x) + U 3(x))
y2Γ(x) + [βyΓ(x) + U

3(x)]2
.

The pdf of the points where the stochastic trajectories of (2) hit the critical energy
contour ΓC for the first time, given that the trajectories started near the attractor, was
calculated in [9]. It is given by

pC(x) dx =
[yC(x) + o(1)] dx

IC
for � << 1, (12)

where IC = E=EC
yC(x) dx is the action of ΓC . This means that the graph of pC(x)

is that of ΓC , normalized by IC . It is shown below that the pdf on constant energy
contours close to ΓC is close to (12).
Trajectories that start near the attractor and hit Γ, must cross the critical energy

contour on their way to Γ. In particular, the part of an escaping trajectory between
the last time it hit the critical energy contour and the first time it hits Γ (the tail of
the trajectory) starts on the critical energy contour with the pdf pC(x). It follows that
the tails map the exit pdf pC(x) onto the exit pdf pΓ(x) on Γ. We construct these tails
approximately by first finding the pdf p�δ(x) on an energy contour Γ�δ close to ΓC and
then finding the dynamics of the tails that start on Γ�δ and reach Γ before ΓC . These
tails map p�δ(x) onto pΓ(x).

3 The Stochastic Dynamics of the Tails

The tails of the escaping trajectories form a new process, denoted by (x∗(t), y∗(t)), de-
fined in the domain D−{E ≤ EC}, enclosed between ΓC and Γ. The tails (x∗(t), y∗(t))
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are those trajectories of (2) for which τΓ < τC . The probability of the tails that start
at (x, y) ∈ D − {E ≤ EC} is

P (x, y) ≡ Pr{τΓ < τC | (x(0), y(0)) = (x, y)}.
The process (x∗(t), y∗(t)) is a new diffusion process of the form

ẋ∗(t) = y∗(t)
ẏ∗(t) = −βy∗(t)− U 3(x∗(t)) + 2�β ∂ logP (x∗(t), y∗(t))

∂y +
√
2�β ẇ .

(13)
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Fig. 3.1. Trajectories of the noiseless and noisy conditioned dynamics (13).

Note that the first component of b∗(x, y) is the same as that of b(x, y), but the
second component, b∗2(x, y), has the additional term 2�β∂ logP (x, y)/∂y. The function
P (x, y) is the solution of the backward Kolmogorov equation [2, 3]

�β
∂2P

∂y2
+ y

∂P

∂x
− [βy + U 3(x)] ∂P

∂y
= 0 (14)

in the domain D − {E ≤ EC}, with the boundary conditions
P (x, yΓ(x)) = 1, P (x, yC(x)) = 0. (15)

The boundary condition (15) is imposed on ΓC and Γ for x < xC . At x = xC no
boundary condition is assigned. This is a typical situation in boundary value problems
with discontinuous boundary conditions.
Following [8], we transform P (x, y) to the form

P (x, y) =
2

π

χ(x, y)/
√
�

−∞
e−z

2/2 dz,

where, according to eq.(14), the function χ(x, y) satisfies the equation

y
∂χ(x, y)

∂x
− [βy + U 3(x)] ∂χ(x, y)

∂y
= β χ(x, y)

∂χ(x, y)

∂y

2

− �
∂2χ(x, y)

∂y2
. (16)

The boundary conditions for χ(x, y) on Γ and ΓC are χ(x, yΓ(x)) = 0, χ(x, yC(x)) =
0, respectively. Obviously,

χ(x, y) < 0 (17)
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for (x, y) ∈ D − {E ≤ EC}, outside a boundary layer.
The function χ(x, y) can be expanded in a regular asymptotic power series away

from ΓC ,
χ(x, y) = χ0(x, y) + �χ1(x, y) + ...,

where χ0(x, y) satisfies the reduced equation (16), corresponding to � = 0 and (17).
According to [2, 8], for small �, the asymptotic approximation to P (x, y) outside a
boundary layer near ΓC is given by

P0(x, y) =
2

π

χ0(x, y)/
√
�

−∞
e−z

2/2 dz. (18)

To satisfy the second boundary condition (15), the approximation (18) has to be cor-
rected by an additional boundary layer near ΓC , as done below.
First, we describe the function χ0(x, y) near Γ. According to [9], inside the boundary

layer region the function χ0(x, y) can be expanded in powers of the distance to the
boundary. It can be written in the form

χ0(x, y) = γ(x)ρ(x, y) +O ρ2(x, y) , (19)

where the function γ(x) is defined in [9] as the solution of the Bernoulli equation

yΓ(x)γ
3(x) + b0(x)γ(x) = βρy(x, yΓ(x))γ

3(x)

where γ(xC) = b0(xC)/βρ2y(xC , 0). If |ρ| < �, we have (near Γ)

∂χ0(x, y)

∂y
≈ ∂χ0(x, y)

∂y Γ

= γ(x)
∂ρ(x, y)

∂y Γ

+O(ρ) for |ρ| ≤ �, (20)

where the point (x, y)Γ is the orthogonal projection of the point (x, y) on Γ, and

2

π

γ(x)ρ(x,y)/
√
�

−∞
e−z

2/2 dz ≈ 1 for |ρ| ≤ �.

Hence, inside the boundary layer,

∂ logP (x, y)

∂y
=

∂P (x, y)/∂y

P (x, y)
≈ 1√

�

∂χ0(x, y)

∂y
=

1

�
γ(x)

∂ρ(x, y)

∂y
+O

ρ√
�
. (21)

To construct the dynamics of the tails in the domain D− {E ≤ EC}, the behavior
of P (x, y) near ΓC has to be determined. The conditioning on reaching Γ before ΓC
from any point in D − {E ≤ EC} renders the drift infinite on ΓC . This can be seen
from eqs.(13) and (15). Trajectories cannot be simply started on ΓC and conditioned
on reaching Γ before returning to ΓC , because the drift of the tails is infinite on ΓC .
Rather, they can be started at any point with energy higher than EC and conditioned
on reaching Γ before ΓC .
The asymptotic expansion of ∂ logP (x, y)/∂y near ΓC is constructed next. We cor-

rect the expansion (18) by constructing a boundary layer expansion of ∂ logP (x, y)/∂y
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near ΓC . First, we change the variables (x, y) to (x, E), where E is the energy. The
backward Kolmogorov equation (14) takes the form

y
∂P

∂x
+ β �− y2 ∂P

∂E
+ �βy2

∂2P

∂E2
= 0.

Then, we introduce the stretched variable ζ = (E −EC)/� and expand P in powers of
� to obtain the leading-order boundary layer equation

−∂P
0

∂ζ
+

∂2P 0

∂ζ2
= 0.

From here, with the help of (15), we obtain near ΓC

P 0(x, y) = C�(x) e
ζ − 1 = C�(x) e

E−EC − 1 ,

where C�(x) is independent of ζ. This means that near ΓC

∂ logP

∂y
≈ y

�

eζ

eζ − 1 . (22)

The two expansions, (24) and (22), have to match near ΓC , outside the boundary
layer. Taking the limit ζ → ∞ in (22), we obtain that the form of χ0(x, y) near
y = yC(x) must be such that

yC(x) = −χ0(x, yC(x))∂χ0(x, yC(x))
∂y

.

Therefore the matched uniform expansion of ∂ logP/∂y is given by

∂ logP

∂y
=
1

P

∂P

∂y
≈ 1√

�

∂χ0
∂y

e−χ
2
0/2�

χ0/
√
�

−∞
e−z

2/2 dz

e
E−EC

e
E−EC − 1

.

4 Asymptotic Analysis

In this section, we investigate the geometrical properties of the the drift b∗(x, y). We
show that the effect of conditioning is to “reverse” the drift in the sense that instead
of drifting toward ΓC it “points toward Γ” everywhere in the domain D − {E ≤ EC}.
To this end, we construct the function χ0(x, y) first inside a boundary layer near Γ,
and then in D − {E ≤ EC}, outside the layer.
Using (21), we can write inside the boundary layer

b∗2(x, y) ≈ −βy − U 3(x) + 2
√
� βγ(x)

∂ρ(x, y)

∂y
. (23)

Outside the boundary layer, we have

χ0(x,y)/
√
�

−∞
e−z

2/2 dz ≈ −
√
�e−χ

2
0(x,y)/2�

χ0(x, y)
, for

−χ0(x, y)√
�

 1
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(recall that χ0 < 0 outside the boundary layer). Therefore, outside the layer,

∂ logP (x, y)

∂y
≈ −1

�
χ0(x, y)

∂χ0(x, y)

∂y
(24)

and

b∗2(x, y) ≈ −βy − U 3(x)− 2βχ0(x, y)
∂χ0(x, y)

∂y
. (25)

Using (9) and (10) we obtain

b∗(x, yΓ(x)) · ν(x, yΓ(x)) =
√
2� βγ(x)ν22(x, yΓ(x)) > 0. (26)

Inequality (26) shows that the vector b∗(x, yΓ(x)) forms an angle θ with the normal
ν(x, yΓ(x)) such that

cos θ =

√
2� βγ(x)ν22(x, yΓ(x))

|b∗(x, yΓ(x))| > 0. (27)

That is, the modified drift b∗(x, yΓ(x)) points away from D. It follows that the deter-
ministic trajectories ζ(t) = (ξ(t), η(t)) of the modified drift,

ζ̇ = b∗(ζ) (28)

that start in D−{E ≤ EC} reach Γ in finite time, unlike the trajectories of the original
drift

ζ̇ = b(ζ), (29)

which converge to the attractor as t→∞.
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Fig. 4.1. Trajectories of (28) that begin near the part of ΓC
where most of the exit pdf is located, both for y > 0 and y < 0.

Equations (23) and (25) determine the modified drift b∗2(x, y) inside and outside
the boundary layer near Γ. Near the critical energy contour ΓC a separate expansion
is needed, because the boundary condition (15) implies that P (x, yC(x)) = 0 so that
b∗2(x, y) becomes infinite, as described above.
As these trajectories reach the boundary layer near Γ, the drift becomes (23). A

trajectory of (28) begins to curve in the direction of Γ at a distance ρ =
√
�/γ(xC) from
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Γ. This is where we switch from the outer expansion of the modified dynamics (25) to
the boundary layer expansion of (28), given by (23). Figure 3.1 shows a trajectory of
the noiseless dynamics (28) and a typical trajectory of the noisy conditional dynamics
(13) that starts at the same point near ΓC . In Figure 4.1 trajectories of the noiseless
conditiones dynamics are shown. In Figure 4.2 the behavior of the trajectories of the
noiseless dynamics (13) that begin on ΓC near the saddle point is given.
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Fig. 4.2. A blow-up of the neighborhood of the saddle point.
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