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Abstract

We review optimization problems involving set functions, which are defined
on a family S ⊂ Γ of measurable subsets in a nonatomic finite measure space
(X,Γ, µ), and their related convexity, differentiability and subdifferentiability.
In particular, sufficient optimality theorems and dual models for fractional pro-
gramming involving set functions are presented in the framework of generalized
convexity.

1 Introduction

Various types of functions appear in optimization problems. The common function
f : A→ B maps an element or a point of A to an element or a point in B. But there
are also functions that map a point to a set, a set to a point, and a set to a set as well.
Since 1970 there are at least two directions of concern in optimization theory. One is

to generalize the classical nonlinear programming problem. The involved functions take
their values in ordered topological vector spaces, and are defined in some topological
vector spaces (see for example Zowe [32]). The other one is to study scalar valued set
functions defined on a family of measurable subsets of a measurable space (see, e.g.
[1-12], [15-17], [19-24]). Clearly, it is of importance to study optimization problems
involving set functions taking values in ordered topological vector space and defined
on measurable subsets of a measure space (see Lai et al. [13, 14]).
In this review we will confine ourselves to set functions defined on a σ-algebra

of measurable subsets to points of real numbers or to points in an ordered topological
vector spaces. Optimization problems with set functions arise in many situation dealing
with optimal selection for measurable subsets. These problems have been encountered
in fluid flow, electrical insulator design, optimal plasma confinement and regional design
problems (see e.g. [1,5,22,23]).
The analysis of optimization problems involving set functions has been developed

by many researchers, for example, Chou et al. [2-4], Corley et al. [5,7], Jo et al. [8],
Lai et al. [9-16], Lin [20-21], Morris [22], Preda [23-24], Rosenmuller et al. [25-30],
Tanaka et al. [27], Zalmai [28-27], etc.
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Morris [22] was the first to develop the general theory for optimizing set func-
tions. Corley [7] and Lin [20-24] developed an optimization theory for programming
problems with n-set functions. Recently, Lai et al. [15] considered set functions with
generalized convexity, and developed fractional programming with generalized convex
set functions (cf. [16,17] and [23,24]). Although a σ-algebra is not a linear space, the
convexity and differentiability can be defined in similar ways as those in linear spaces,
and optimization theory with set functions are developed in various situations.
The convexity, differentiability and basic theory for set functions are discussed in

Section 2. Section 3 is concerning for optimality conditions in ordered topological vec-
tor spaces. The optimality criteria for programming problem involving n-set functions
and n-fold set functions are presented in Section 4 under certain generalized convexity
conditions. In general, the main tasks in optimization problem are to find the necessary
and/or sufficient conditions for a feasible solution to be an optimal solution. Usually,
the sufficient conditions are more difficult to establish. Indeed, extra assumptions have
to be imposed. Thus many researchers try to replace the usual convexity conditions
with generalized convexity conditions, see for example [20,23,30,31]. Recently, Lai and
Liu [15] defined the (F , ρ, θ)-convexity and established several sufficient optimality con-
ditions. The authors also investigated fractional programming involving set functions.
Under the framework of generalized convexity, three kinds of dual models can be con-
structed, and duality theorems can be established in weak, strong and strictly converse
forms. These results are reviewed in Sections 5 and 6.

2 Convexity, Differentiability and Optimality

Throughout the paper, let (X,Γ, µ) be a finite atomless measure space with L1(X,Γ, µ)
separable. We write L1(X,Γ, µ) = L1 and L∞ (X,Γ, µ) = L∞ for brevity. Since
µ (X) < +∞, for each Ω ∈ Γ, the characteristic function χΩ ∈ L∞ ⊂ L1. If f ∈ L1,
Ω ∈ Γ and χΩ ∈ L∞, then the integral Ω fdµ will be denoted by the dual pair kf,χΩl.
By separability of L1, for any (Ω,Λ,λ) ∈ Γ× Γ× [0, 1], and any sequences {Ωn} in Ω
and {Λn} in Λ such that
χΩn

w∗−→ λχΩ−Λ and χΛn
w∗−→ (1−λ)χΛ−Ω ⇒ χΩn∪Λn∪(Ω∩Λ)

w∗−→ λχΩ+(1− λ)χΛ (1)

as n→∞, where w∗ stands for weak∗-topology in L∞.
We remark that in [22], Morris considers all sequences {Ωn} and {Λn} in Γ such that

(1) holds. Actually the proof of Proposition 3.2 in [22] leads us to consider Ωn ⊂ Ω\Λ
and Λn ⊂ Λ\Ω for every n such that (1) holds. This practice will be followed throughout
the rest of our discussions.
We call the sequence {Ωn ∪ Λn ∪ (Ω ∩ Λ)} ≡ {Mn} a Morris’ sequence. Although

a σ-algebra Γ is not a linear space, the convexity of a subfamily S for measurable
subsets in Γ can be defined as follows: S is convex if for any (Ω, Λ, λ) ∈ S × S × [0, 1]
associated with a Morris sequence {Mn} in Γ such that Mn = Ωn ∪ Λn ∪ (Ω ∩ Λ) ∈ S.
The convexity of a set function can then be defined as follows.

DEFINITION 1. Let S be a convex family of measurable subsets in X. A set
function F : S ⊂ Γ → R is convex if for any (Ω, Λ, λ) ∈ S × S × [0, 1], there exists a
Morris sequence {Mn} such that limF (Mn) ≤ λF (Ω) + (1− λ)F (Λ).
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We remark that in Rosenmuller et al. [25,26], set functions defined on a family of
subsets of a finite set appear in a different fashion in probability theory as well as in
discrete game theory, and their convexity are defined in different manners.

DEFINITION 2. We say that a set function F : Γ→ R is differentiable at Ω0 ∈ Γ
if there exists fΩ0 ∈ L1(X,Γ, µ), namely the derivative of F at Ω0, such that

F (Ω) = F (Ω0) + kfΩ0 ,χΩ − χΩ0l+ o(ρ(Ω,Ω0))
where ρ is a pseudometric on Γ which is defined by ρ(Ω1,Ω2) = µ(Ω17Ω2), Ω1,Ω2 ∈ Γ
and ∆ denotes the symmetric difference of sets.

We remark that each Ω ∈ Γ is regarded as χΩ ∈ L∞ ⊂ L1 throughout the paper,
where all topologies induced in Γ is topology induced by w∗-topology on {χΩ,Ω ∈ Γ} ⊂
L∞. In particular if a set function F is countably additive and is absolutely continuous
with respect to µ, then the Radon-Nikodym derivative dF/dµ is simply identified by

fΩ. Furthermore, if F : L1 → R is Fréchet differentiable with F : Γ → R defined
by F (Ω) = F (χΩ) for Ω ∈ Γ, then F is a differentiable set function in the sense of

Definition 2 and the differential DF (Ω) coincides with the Fréchet differential F 3(χΩ)
defined on L1. That is (cf. [9] and [10]),

F
3
(χΩ) = DF (Ω) =

dF

dµ
(Ω) = fΩ ∈ L∗1 = L∞ ⊂ L1.

In the same manner, a subgradient of a set function F can be defined as follows.

DEFINITION 3. An element f ∈ L1 is a subgradient of a convex set function F at
Ω0 ∈ Γ if it satisfies the inequality

F (Ω) ≥ F (Ω0) + kf,χΩ − χΩ0l , Ω ∈ Γ.
The set of all subgradients of a set function F at Ω0 is called the subdifferential of F
at Ω0, and is denoted by

∂F (Ω0) = {f ∈ L1 | F (Ω) ≥ F (Ω0) + kf,χΩ − χΩ0l , Ω ∈ Γ} .
If F is convex and differentiable at Ω0, then ∂F (Ω0) = {fΩ0} = {DF (Ω0)} is a

singleton. It can be shown (cf. [11, Theorem 3.5]) that if a set function F is properly
convex and w∗-lower semicontinuous on its convex domain S ⊂ Γ, then ∂F (Ω) 9= ∅ and
DomF ∗ 9= ∅. Here F ∗ stands for the conjugate function of F , and is defined by

F ∗(f) = sup
Ω∈Γ

[kf,χΩl − F (Ω)] , f ∈ L1.

The conjugate set Γ∗ is defined as a subset of L1 by

Γ∗ = f ∈ L1 | sup
Ω∈Γ

[kf,χΩl − F (Ω)] <∞ .

THEOREM 1 (Fenchel-Moreau, [11, Theorem 3.6]). Let F be a proper convex set
function which is w∗-lower semicontinuous on a convex domain S ⊂ Γ. Then F (Ω) =
F ∗∗(Ω) for all Ω ∈ S. Here F ∗∗ is the conjugate function of F ∗, and is defined by

F ∗∗(Ω) =
supf∈L1 [kf,χΩl − F ∗(f)] if Ω ∈ DomF
+∞ if Ω /∈ DomF .
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Accordingly, we have the following consequence.

COROLLARY 1. Let f0 ∈ DomF ∗ = Γ∗ ⊂ L1 and Ω0 ∈ S. Then,
f0 ∈ ∂F (Ω0)⇐⇒ Ω0 ∈ ∂F ∗(f0).

PROOF. Indeed, for f0 ∈ ∂F (Ω0), we have F (Ω) ≥ F (Ω0) + kf0,χΩ − χΩ0l and
kf0,χΩ0l − F (Ω0) ≥ kf0,χΩl − F (Ω) for all Ω ∈ S. Then

F (Ω0) + F
∗(f0) = kf0,χΩ0l . (2)

By Theorem 1, we have F ∗∗(Ω0) + F ∗(f0) = kf0,χΩ0l . Hence, Ω0 ∈ ∂F ∗(f0) if, and
only if, f0 ∈ ∂F (Ω0) . The proof is complete.

Note that if the set function F is convex on Γ, and Ω0 ∈ Γ minimizes F (Ω), then
by (2),

F (Ω0) = min
Ω∈Γ

F (Ω) = kf0,χΩ0l − F ∗(f0) = sup
f∈Γ∗

[kf,χΩ0l − F ∗(f)] .

If we define a Lagrangian functional L : Γ × Γ∗ → R by L(Ω, f) = kf,χΩl − F ∗(f),
then it can be shown that L(Ω, f) has a saddle point (Ω0, f0) ∈ Γ× Γ∗ (cf. [9]). That
is, L(Ω0, f) ≤ L(Ω0, f0) ≤ L(Ω, f0) for all f ∈ Γ∗ and Ω ∈ Γ. Consequently,

sup
f∈Γ∗

[kf,χΩ0l − F ∗(f)] = L(Ω0, f0) = F (Ω0) = min
Ω∈Γ

F (Ω) .

Let F : S ⊂ Γ→ R be a convex set function, and let G : @ ⊂ Γ→ R be a concave
set function on @ with S ∩ @ having nonempty interior. Consider the minimization
problem:

(Pr) : Minimize [F (Ω)−G(Ω)] subject to Ω ∈ S ∩ @.
The Fenchel duality theorem (cf. [10]) is valid.

THEOREM 2 (Fenchel duality theorem). If µ = infΩ [F (Ω)−G(Ω)] is finite such
that the epigraphs [F, S] or [G,@) have nonempty interiors, then

inf
Ω∈S∩@

[F (Ω)−G(Ω)] = max
f∈S∗∩@∗

[G∗(f)− F ∗(f)] = µ. (3)

An example explaining the result (3) of problem (Pr) can be found in [10]. We give
another example as follows.

EXAMPLE. Let X = (x, y) | x2 + y2 ≤ 52 ⊂ R2, Γ = {Ω | Ω ⊂ X} a σ-algebra
and µ = m is the Lebesgue measure. Then (X,Γ,m) is a finite atomless measure space.
Define

F (Ω) =
Ω

f1 (x, y) dm, f1(x, y) ∈ L1.

Then, for any f ∈ L1, the conjugate functional of F is given by

F ∗(f) = sup
Ω∈Γ

[kf,χΩl − F (Ω)] = sup
Ω∈Γ Ω

[f(x, y)− f1(x, y)] dm

=
X1

[f(x, y)− f1(x, y)] dm,
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whereX1 = {(x, y) ∈ X | f(x, y) > f1(x, y)} ⊂ X. The conjugate set is Γ∗ = L1(X,Γ,m).
Now if we take f1(x, y) = x

2 − y2 + 6, and define

F (Ω) =
Ω

(x2 − y2 + 6)dm,

and

G(Ω) = 6m(Ω) = 6
Ω

dm, Ω ∈ Γ,

then F (Ω) is convex (linear), and G(Ω) is concave (linear) and

F ∗(f) =
X1

f(x, y)− x2 + y2 − 6 dm,

G∗(f) = inf
Ω∈Γ

[kf,χΩl −G(Ω)] =
X2

[f(x, y)− 6] dm,

where X2 = {(x, y) ∈ X | f(x, y) ≤ 6}. Consequently,
max
f∈L1

[G∗(f)− F ∗(f)]

= max
f∈L1 X2

[f(x, y)− 6] dm−
X1

f(x, y)− x2 + y2 − 6 dm
= max

f∈L1
v(f)

where v(f) is a functional on L1. The maximum of v(f) can be solved from v3(f) = 0,
where v3(f) stands for the Fréchet derivative of v(f), that is,

v3(f) = lim
h→0

|v(f + h)− v(f)|
nhn = lim

h→0
1

nhn X2

h(x, y)dm−
X1

h(x, y)dm = 0.

This implies that

X1 ∩X2 = (x, y) ∈ X | x2 − y2 + 6 ≤ f(x, y) ≤ 6 = Ω0.

Consequently, we have

max
f∈L1

v(f) =
Ω0

x2 − y2 dm = −625
2

for x2 − y2 ≤ 0.

On the other hand

min
Ω∈Γ

[F (Ω)−G(Ω)] = min
Ω Ω

x2 − y2 + 6− 6 dm

=
Ω0

x2 − y2 dm = −625
2
.

with Ω0 = (x, y) ∈ X | x2 − y2 ≤ 0 . This shows that

min
Ω∈Γ

[F (Ω)−G(Ω)] = max
f∈L1

[G∗(f)− F ∗(f)] = −625
2
.
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3 Optimization in Ordered Vector Spaces

The alternative theorems for saddle-point results of convex programming problems for
set functions with values in ordered vector spaces was recently investigated by Lai and
Szilagyi in [14]. Here we define the order relations in (Y,C) by

y1 <C y2 ⇐⇒ y2 − y1 ∈ C − {0},
y1 ≤C y2 ⇐⇒ y2 − y1 ∈ C,
y1 �C y2 ⇐⇒ y2 − y1 ∈ intC.

Consider a programming problem in ordered vector space as follows

(P0) Minimize F (Ω) subject to Ω ∈ S ⊂ Γ and G(Ω) ≤D θ,

where θ stands for the zero vector, F : S →Y and G : S →Z are C-convex and D-
convex set mappings, respectively. Here C and D are normal cones in the locally
convex Hausdorff vector spaces Y and Z over real field R respectively, so that (Y,C)
and (Z,D) are ordered vector lattices with intC 9= φ and intD 9= φ.
A Farkas type theorem follows from Gordan and Fan in finite dimensional space

was generalized to convex set function as follows (see [14]).

THEOREM 3. Let F : S →Y be a C-convex set function. Then the inequality
system

F (Ω)�C θ (4)

has no solution in S if, and only if, there exists y∗ 9= θ in C∗, the conjugate cone of C
in Y ∗ (the topological dual space of Y ) such that

ky∗, F (Ω)l ≥ 0 for all Ω ∈ S. (5)

PROOF. The sufficiency part is trivial. Indeed, if there is a nonzero vector y∗ ∈
C∗ such that ky∗, F (Ω)l ≥ 0 for all Ω ∈ S, then F (Ω) /∈ int (−C). That is (4)
has no solution. As for the necessity part, if (4) has no solution, then the set A =
{y ∈ Y | F (Ω)�

C
y for Ω ∈ S} does not contain the origin θ. It is not hard to prove

that A is convex in Y when F is a convex set function. Further, intA 9= ∅ since
intC 9= ∅. In view of θ /∈ A, the separation theorem is applicable so that there exists
a nonzero y∗ ∈ Y ∗ such that ky∗, yl ≥ 0 for all y ∈ A. Putting y = F (Ω) + c for any
c ∈ intC, we then have

ky∗, F (Ω)l+ ky∗, cl ≥ 0. (6)

We assert that y∗ ∈ C∗. Indeed, if the contrary holds, there would be a c̄ ∈ C such
that ky∗, c̄l < 0. Since C is a cone, if we choose c0 ∈ intC then nc0 ∈ intC for any
positive integer n. Thus (6) implies 0 ≤ ky∗, F (Ω)l+n ky∗, c0l < 0 for sufficiently large
n. This is a contradiction. Hence y∗ ∈ C∗. Again from (6), as y∗ is a continuous linear
functional, letting c→ θ we obtain (5).

COROLLARY 3. Let F : S →Y and G : S →Z be C-convex and D-convex set
functions, respectively. If the inequality system

F (Ω)�C θ
G(Ω) <D θ

(7)
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has no solution in S, then there exists a nonzero vector (y∗, z∗) ∈ C∗ ×D∗ such that
ky∗, F (Ω)l+ kz∗, G(Ω)l ≥ 0, Ω ∈ S.

In general, the convex version of the Farkas theorem for convex set functions can
be stated as follows.

THEOREM 4 [14]. Let F and G be the convex set functions in Corollary 3. More-
over suppose the constraint qualification (or Slater’s type condition) of (P0) holds, that
is, there exists Ω̃ ∈ S satisfying G(Ω̃)�D θ. Then the system of inequalities

F (Ω)�C θ
G(Ω) ≤D θ

(8)

has no solution in S if, and only if, there exists
W0 ∈ B+ (Z, Y ) ≡ {W ∈ B (Z, Y ) |W (D) ⊂ C} ,

the positive continuous linear operators from Z into Y , such that there is no Ω ∈ S
satisfying

F (Ω) +W0 (G(Ω))�C θ.

PROOF. The sufficiency part is trivial. As for the necessity part, if (8) has no
solution, then the system (7) has no solution. By Corollary 3, there exists (y∗, z∗) /∈
(θ, θ) in C∗ ×D∗ such that

ky∗, F (Ω)l+ kz∗, G(Ω)l ≥ 0 for all Ω ∈ S.
It is easy to show that y∗ 9= θ, and so ky∗, yl > 0 for any y ∈ intC( 9= ∅). Thus we can
choose y0 ∈ intC such that ky∗, yl = 1. Define W0 : Z → Y by W0(z) = kz∗, zl y0.
Then W0 ∈ B+(Z, Y ) and, for any Ω ∈ S,

ky∗, F (Ω) +W0 (G(Ω))l = ky∗, F (Ω)l+ kz∗,G(Ω)l ≥ 0.
It follows that F (Ω) +W0 (G(Ω)) /∈ int (−C) since ky∗, yl > 0 for all y ∈ intC. This
shows that there does not exist Ω ∈ S satisfying F (Ω) +W0 (G(Ω)) �C

θ. The proof
is complete.

Applying the above theorems, we obtain the saddle point optimality conditions for
problem (P0).

THEOREM 5 [14]. Let F and G be C-convex and D-convex set functions, respec-
tively. Assume that (P0) satisfies the constraint qualification, and Ω0 is a weak minimal
point of (P0). Then there exists W0 ∈ B+ (Z, Y ) such that (Ω0,W0) is a weak saddle
point of the Lagrangian

L(Ω,W ) ≡ F (Ω) +W (G(Ω)) . (9)

COROLLARY 5. Under the assumptions of Theorem 5 and Y = R, Ω0 is a minimal
point of (P0) if, and only if, there exists z

∗
0 ∈ D∗ such that (Ω0, z∗0) is a (usual) saddle

point of the above Lagrangian L(Ω, z∗) ≡ F (Ω) + kz∗, G(Ω)l.
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A generalized Lagrangian (or Fritz John Lagrangian) is defined as

L(Ω, y∗, z∗) = ky∗, G(Ω)l+ kz∗, G(Ω)l , for all Ω ∈ S, y∗ ∈ Y ∗, z∗ ∈ Z∗.

We say that a point (Ω0, y
∗
0 , z
∗
0) ∈ S×C∗×D∗ is a weak saddle point of L(Ω, y∗, z∗)

if it satisfies the inequalities L(Ω0, y
∗
0 , z
∗) ≤ L(Ω0, y∗0 , z∗0) ≤ L(Ω, y∗0 , z∗0) for all Ω ∈ S

and z∗ ∈ D∗.
We have the following theorem.

THEOREM 6 [14]. Let F and G be C-convex and D-convex on a convex family
S ⊂ Γ respectively. Suppose that Ω0 is a weak minimal point of (P0). Then there
exists a nonzero vector (y∗0 , z∗0) ∈ C∗ ×D∗ such that kz∗0 ,G(Ω0)l = 0 and (Ω0, y∗0 , z∗0)
is a weak saddle point of the generalized Lagrangian L(Ω, y∗, z∗).

Some special cases for Y = Z = R can be deduced from Theorems 5 and 6.

4 Multiobjective Set Function and n-Fold Set Func-
tion

Let F = (F1, ..., Fn) : S → Rn and G = (G1, ..., Gm) : S → Rm be multi convex set
functions defined on a convex family S of a σ-filed Γ in a nonatomic finite measure
space (X,Γ, µ). Consider a multiobjective programming problem:

(Pv) Minimize F (Ω) = (F1(Ω), ..., Fn(Ω)) subject to Ω ∈ S and Gj(Ω) ≤ 0 for j =
1, ...,m.

Then the Moreau-Rockafellar type theorem for point functions can be extended to
set functions as follows.

THEOREM 7 (cf. [12]). Let F1, F2, ..., Fn : Γ → R ∪ {∞} be proper convex set
functions on S = DomFi, i = 1, 2, · · ·, n. Then

∂F1(Ω) + ...+ ∂Fn(Ω) ⊂ ∂(F1 + ...+ Fn)(Ω) for all Ω ∈ Γ. (10)

If S contains a relative interior point and all functions Fi, i = 1, ..., n, except possibly
one, are w∗-continuous on S, then (10) becomes

∂F1(Ω) + ...+ ∂Fn(Ω) = ∂(F1 + ...+ Fn)(Ω) for all Ω ∈ Γ. (11)

By this theorem, a necessary optimality theorem (Fritz John type theorem) for (Pv)
can be stated as follows.

THEOREM 8 [12, Theorem 12]. Suppose Ω0 is a Pareto optimal solution of problem
(Pv). Suppose that for each i ∈ {1, 2, ..., n}, there is a Ωi ∈ S such that

Gk(Ωi)<0, k = 1, ...,m

Fj(Ωi) < Fj(Ω0) for j = 1, ..., , n, j 9= i
(12)



86 Optimization Analysis

and that all F1, ..., Fn and G1, ..., Gm, except possibly one, are w
∗-continuous on S. If

S contains a relative interior point, then there exist α ∈ Rn with αi ≥ 1, i = 1, ..., n
and λ ∈ Rm+ such that

0 ∈ kα, ∂F (Ω0)ln + kλ, ∂G (Ω0)lm +NS (Ω0)
kλ, G (Ω0)lm = 0

(13)

where NS(Ω0) = {f ∈ L1 | kf,χΩ − χΩ0l ≤ 0 for all Ω ∈ S} is the normal cone for F
at Ω0 ∈ S and k·, ·ln , k·, ·lm denote the inner products of Rn and Rm respectively.

We remark that Theorem 8 furnishes a Kuhn-Tucker type necessary optimality
condition for an optimal solution of (Pv).

COROLLARY 8. Let the assumptions of Theorem 8 hold, where (12) is replaced
by

Gk(Ωi) < 0, k = 1, ...,m, for some Ωi ∈ S
that is, the Slater’s condition holds for problem (Pv). Then (13) is reduced to

0 ∈ ∂F (Ω0) + kλ, G (Ω0)lm +NS(Ω0),
kλ, G (Ω0)lm = 0.

(14)

Next we consider the n-fold product Γn of a σ-algebra Γ of subsets in the set X. A
pseudometric d on Γn is defined by

d (Ω,Λ) =
n

k=1

[µ (Ωk∆Λk)]
2

1
2

, Ω = (Ω1, ...,Ωn) , Λ = (Λ1, ...,Λn) ∈ Γn.

One can consider the nonlinear programming problem for n-set functions as the
following

(Qv) MinimizeF (Ω1, ...,Ωn) subject toΩ = (Ω1, ...,Ωn) ∈ Γn andGj (Ω1, ...,Ωn) ≤ 0
for j = 1, ...,m.

Then the differentiability and convexity of n-set functions can be developed (cf.
Corley [7], Lin [20], Preda [24], Zalmai [30 - 31]). An n-set function F : Γn → R is said
to have a partial derivative at Ω = (Ω1, ...Ωn) ∈ Γn with respect to its k-th argument
if the set function :

ϕ(Ωk) = F (Ω1,...,Ωk−1,Ωk,Ωk+1, ...,Ωn)

has derivative Dϕ(Ωk), and the k-th partial derivative of F at Ω is given by

DkF (Ω) = Dϕ (Ωk) , 1 ≤ k ≤ n. (15)

Denote DF (Ω) = (D1F, ...,DpF ) (Ω).
We say that the n-set function F : Γn → R is differentiable at Ω0 ∈ Γn if there

exist DF (Ω0) and a functional ψ : Γn × Γn → R which satisfy

F (Ω) = F (Ω0) +
n

k=1

DkF (Ω
0),χΩk − χΩ0

k
+ ψ Ω,Ω0 (16)
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with ψ Ω,Ω0 = o d Ω,Ω0 .
In order to define generalized convexity, we need to let functional F : Γ × Γ ×

L1(X,Γ, µ)→ R be sublinear in the L1 space, that is, for any Ω,Ω0 ∈ Γ,
F (Ω,Ω0 : f1 + f2) ≤ F (Ω,Ω0 : f1) + F (Ω,Ω0 : f2)

and F (Ω,Ω0 : αf) = αF (Ω,Ω0 : f) for f, f1, f2 ∈ L1 and α ≥ 0.
Let ρ ∈ R and θ : Γ×Γ→ R+ = [0,∞) with the property that θ(Ω1,Ω2) = 0 if and

only if µ(Ω1∆Ω2) = 0. If the set function F : Γ→ R is subdifferentiable, we define the
(F , ρ, θ)-convexity as follows.
DEFINITION 4 (cf. [15]). Given Ω0 ∈ Γ and f ∈ ∂F (Ω0), F is called (F , ρ, θ)-

convex at Ω0 if for all Ω ∈ Γ,
F (Ω)− F (Ω0) ≥ F(Ω,Ω0; f) + ρθ (Ω,Ω0) ;

F is called (F , ρ, θ)-quasiconvex [strictly quasiconvex] at Ω0 if for each Ω ∈ Γ,
F (Ω) ≤ F (Ω0) [resp. F (Ω) < F (Ω0)]⇒ F(Ω,Ω0; f) ≤ −ρθ (Ω,Ω0) ;

F is called (F , ρ, θ)-pseudoconvex [strictly pseudoconvex] at Ω0 if for each Ω ∈ Γ,
F(Ω,Ω0; f) ≥ −ρθ (Ω,Ω0)⇒ F (Ω) ≥ F (Ω0) [resp. F (Ω) > F (Ω0)] .

If F(Ω,Ω0; f) = kχΩ − χΩ0 , fl in Definition 4, then the (F , ρ, θ)-convexity reduces
to ordinary convexity (see [15. Theorem 3.2]). The existence for optimal solutions
of problem (Pv) follows from the converse of Theorem 8 by adding (F , ρ, θ)-convexity
which we state as Theorem 9. Throughout this paper, we use inner products in Rn

and Rm by

αAF (Ω) = kα, F (Ω)ln =
n

i=1

αiFi (Ω)

and

λAG(Ω) = kλ, G (Ω)lm =
m

j=1

λjGj (Ω)

respectively.

THEOREM 9 (Sufficient optimality condition). Let Ω0 be a feasible solution of (Pv)
and suppose there exist α ∈ Rn with each component αi ≥ 1 and λ ∈ Rm+ satisfying
(13), and F(Ω,Ω0;−h) ≥ 0 for h ∈ NS(Ω0) and all feasible solution Ω of (Pv). Then
Ω0 is a Pareto optimal solution of (Pv) provided any one of the following conditions
holds:

a. Fi is (F , ρ1i, θ)-convex at Ω0, i = 1, ..., n, Gj is (F , ρ2j , θ)-convex at Ω0, j =
1, ...,m and kα, ρ1ln + kα, ρ2lm ≥ 0, where ρ1 ∈ Rn and ρ2 ∈ Rm.

b. αAF + λAG is (F , ρ, θ)-convex at Ω0 and ρ ≥ 0.
c. αAF + λAG is strictly (F , ρ, θ)-quasiconvex at Ω0 and ρ > 0.
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d. αAF is (F , ρ1, θ)-pseudoconvex, λAG is (F , ρ2, θ)-quasiconvex and ρ1 + ρ2 ≥ 0.
e. αAF is (F , ρ1, θ)-pseudoconvex, λAG is strictly (F , ρ2, θ)-quasiconvex and ρ1 +

ρ2 ≥ 0.
f. αAF is strictly (F , ρ1, θ)-quasiconvex, λAG is strictly (F , ρ2, θ)-quasiconvex and
ρ1 + ρ2 > 0.

PROOF. We sketch the proof as follows. By (13), there exist fi ∈ ∂Fi (Ω0) , i =
1, ..., n, gj ∈ ∂Gj (Ω0) , j = 1, ...,m and h ∈ NS (Ω0) which satisfy kα, fln+kλ, glm+h =
θ (in L1), and so

F (Ω,Ω0; kα, fln + kλ, glm + h) = 0. (17)

If Ω0 is not a Pareto minimum of (Pv), then there exists Ω1 ∈ FPv such that Fi (Ω1) ≤
Fi (Ω0) for i = 1, ..., n, and Fk (Ω1) < Fk (Ω0) for k 9= i, and so kα, F l (Ω1) <
kα, F l (Ω0) . On the other hand, kλ, G(Ω1)lm ≤ 0 = kλ,G(Ω0)lm . From the above
inequalities, one can get

kα, F ln (Ω1) + kλ, Glm (Ω1) < kα, F ln (Ω0) + kλ, Glm (Ω0) . (18)

If condition (a) holds, then by (F , ρ, θ)-convexity, we have

Fi (Ω1)− Fi (Ω0) ≥ F (Ω1,Ω0; fi) + ρ1iθ (Ω1,Ω0) , i = 1, ..., n, (19)

Gj (Ω1)−Gj (Ω0) ≥ F (Ω1,Ω0; gj) + ρ2iθ (Ω1,Ω0) , j = 1, ...,m. (20)

Multiplying (19) by αi, (20) by λj , and summing up the resulting inequalities, we have

kα, F ln (Ω1) + kλ, Glm (Ω1)
≥ kα, F ln (Ω0) + kλ, Glm (Ω0) + F (Ω1,Ω0; kα, fln + kλ, glm)

+ (kα, ρ1ln + kα, ρ2lm) θ (Ω1,Ω0) .

From (17), (18) and F (Ω1,Ω0;−h) ≥ 0, we obtain 0 > (kα, ρ1ln + kλ, ρ2lm)θ(Ω1,Ω0).
Since θ (Ω1,Ω0) > 0, kα, ρ1ln + kλ, ρ2lm < 0. This contradicts the assumption in (a).
If condition (b) holds, the inequality (18) yields

F (Ω1,Ω0; kα, fln + kλ, glm) < −ρθ (Ω1,Ω0) . (21)

By (18), (21) and F (Ω1,Ω0;−h) ≥ 0, we have ρθ (Ω1,Ω0) < 0 ⇒ ρ < 0 which is a
contradiction since ρ ≥ 0.
If condition (c) holds, the same conclusion can be proved in a way similar to the

previous case.
If condition (d) holds, then λAG is (F , ρ2, θ)-quasiconvex, and so

kλ, G(Ω1)lm ≤ 0 = kλ, G(Ω0)lm ⇒ F (Ω1,Ω0; kλ, glm) ≤ −ρ2θ (Ω1,Ω0) .

By (17) and the sublinearity of F , we have

F (Ω1,Ω0; kα, fln) + F (Ω1,Ω0; kλ, glm) + F (Ω1,Ω0;h) ≥ 0.
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It follows that

F (Ω1,Ω0; kα, fln) + (−ρ2θ (Ω1,Ω0)) + F (Ω1,Ω0;h) ≥ 0.
Since kα, F ln is (F , ρ1, θ)-pseudoconvex, the above inequality and F (Ω1,Ω0; kα, fln) <
−ρ1θ (Ω1,Ω0) then imply

−ρ1θ (Ω1,Ω0)− ρ2θ (Ω1,Ω0) + F (Ω1,Ω0;h) > 0.
Since F (Ω1,Ω0;−h) ≥ 0, it follows that (ρ1 + ρ2) θ (Ω1,Ω0) < 0. This contradicts the
fact that ρ1 + ρ2 ≥ 0.
The other two cases are similarly proved. The proof is complete.

We remark that necessary optimality conditions for problem (Qv) can be obtained
as in Corley [7] (cf. also Zalmai [30]), while sufficient optimality conditions as in
Theorem 9.

5 Fractional Programming Involving Set Functions

Suppose that F = (F1, ..., Fn),−G = (−G1, ...,−Gn) : S → Rn andH = (H1, ···,Hm) :
S → Rm are convex set functions, and that all set functions are subdifferentiable. Then
consider a minimax fractional programming problem as follows

(P ) Minimize

ϕ(Ω) ≡ max
1≤i≤n

Fi(Ω)

Gi(Ω)

subject to Ω ∈ S and Hj(Ω) ≤ 0 for 1 ≤ j ≤ m,
where S is a convex family of Γ with S containing a relative interior point; Gi(Ω) > 0
and Fi(Ω) ≥ 0 for 1 ≤ i ≤ n. We denote the set of all feasible solutions of (P ) by FP .
Let λ = Fi(Ω)/Gi(Ω), 1 ≤ i ≤ m. The fractional programming problem (P ) can be
turned into a nonfractional parametric problem

(EP ) Minimize λ subject to Fi(Ω) − λGi(Ω) ≤ 0 for 1 ≤ i ≤ n and Hj(Ω) ≤ 0 for
1 ≤ j ≤ m with Ω ∈ S.

The problems (P ) and (EP ) are equivalent (cf. Zalmai [30]).

LEMMA 10. Let Ω∗ be an optimal solution of (P ). Then

λ∗ = max
1≤i≤n

Fi(Ω
∗)/Gi(Ω∗)

as well as Ω∗ together constitute an optimal solution of (EP ). Conversely, if (Ω0,λ0)
is an optimal solution of (EP ), then Ω0 is an optimal solution of (P ).

It can be shown that for each feasible solution Ω ∈ S of (P ),

ϕ(Ω) ≡ max
1≤i≤n

Fi (Ω)

Gi (Ω)
= max

u∈I
ku, F (Ω)l
ku,G (Ω)l (22)
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where

I = u ∈ Rn
+ |

n

i=1

ui = 1 .

Similar to Theorem 8, we can state the necessary optimality theorem for (P ) (cf.
[17]) as follows.

THEOREM 11 [17, Theorem 3.1]. Suppose that F, −G and H are proper convex
vector set functions in problem (P ), and that Ω∗ is an optimal solution of (P ) with
optimal value λ∗. If the Slater’s condition holds for (EP ), then there exist u∗ ∈ I ⊂ Rn

+

and z∗ ∈ Rm+ such that (Ω∗,λ∗, u∗, z∗) satisfies the Euler-Lagrange type conditions:

0 ∈ ∂ u∗
A
F (Ω∗) + λ∗∂ −u∗AG (Ω∗) + ∂ z∗

A
H (Ω∗) +NS (Ω∗) , (23)

u∗
A
[F (Ω∗)− λ∗∂G (Ω∗)] = 0, (24)

z∗
A
H (Ω∗) = 0. (25)

We say that a solution Ω∗ of (P ) is regular if there does not exist any h ∈
∂ z∗

A
H (Ω) for z ∈ Rm+ or any η ∈ NS (Ω∗) such that h+ η = 0.

In order to construct parameter-free duality theorems for problem (P ), we replace
the optimal value λ∗ of (P ) by

max
1≤i≤n

Fi (Ω
∗)

Gi (Ω∗)
= max

u∈I
ku, F (Ω∗)l
ku,G (Ω∗)l ≡ ϕ(Ω∗) = λ∗ (26)

(see (22)). Then (23) yields the following corollary.

COROLLARY 11. The results of Theorem 11 can be restated as

0 ∈ u∗
A
G (Ω∗) ∂ u∗

A
F (Ω∗) + ∂ u∗

A
H (Ω∗)

+u∗
A
F (Ω∗) ∂ −u∗AG (Ω∗) +NS (Ω∗) (27)

where

u∗ ∈ I = u ∈ Rm
+ |

m

i=1

ui = 1 .

The existence of optimal solution for (P ) can be obtained from the results of nec-
essary optimality conditions by adding extra assumptions. We use (F , ρ, θ)-convexity
defined in Definition 4 to establish the following sufficient optimality conditions (cf.
[17]).
In order to simplify the notations, for a given Ω∗ ∈ FP , let

A (Ω) = u∗
A
G (Ω∗)u∗

A
F (Ω)− u∗AF (Ω∗)u∗AG (Ω) ,

B (Ω) = z∗
A
H (Ω) ,

C (Ω) = A (Ω) + u∗
A
G (Ω∗)B (Ω)
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for Ω ∈ FP . Then the sufficient optimality theorem can be stated as Theorem 12.

THEOREM 12 (Sufficient optimality conditions). Let Ω∗ ∈ FP be a feasible solu-
tion and suppose there exist u∗ ∈ I ⊂ Rn

+ and z
∗ ∈ Rm

+ satisfying (25), (26), (27) and
F (Ω,Ω∗,−η) ≥ 0 for each η ∈ NS (Ω∗) and Ω ∈ FP . Then Ω∗ is an optimal solution
of (P ) provided any one of the following conditions holds:

a. at Ω∗, u∗
A
F is (F , ρ1, θ)-convex, −u∗AG is (F , ρ2, θ)-convex, z∗AH is (F , ρ3, θ)-

convex and

u∗
A
G (Ω∗) ρ1 + u∗

A
F (Ω∗) ρ2 + u∗

A
G (Ω∗) ρ3 ≥ 0;

b. A is (F , ρ1, θ)-pseudoconvex, B is (F , ρ2, θ)-quasiconvex, and

ρ1 + u
∗AG (Ω∗) ρ2 ≥ 0;

c. A is (F , ρ1, θ)-quasiconvex, B is strictly (F , ρ2, θ)-pseudoconvex, and

ρ1 + u
∗AG (Ω∗) ρ2 > 0;

d. A is strictly (F , ρ1, θ)-quasiconvex, B is (F , ρ2, θ)-quasiconvex and

ρ1 + u
∗AG (Ω∗) ρ2 > 0;

e. C is (F , ρ, θ)-pseudoconvex at Ω∗ and ρ ≥ 0;
f. C is strictly (F , ρ, θ)-quasiconvex and ρ > 0.

The proof can be carried out by arguments similar to those in the proof of Theorem
9.

6 Duality Theorems

Applying Theorems 11 and 12 for (P ), we can construct three dual models including
two parameter-free dual problems and a parametric dual problem with respect to the
primary problem (P ).
There are at least three main results that need to be shown for the duality problem

(D). The first theorem is to show that the minimum value of (P ) is greater than or
equal to the maximum value of (D), that is max(D) ≤ min(P ). The second theorem
is to show that the optimal solution of (P ) yields the optimal solution of (D) under
appropriate conditions, and their optimal values are equal, that is, min(P ) = max(D).
The third theorem is to show that if Ω and Ω∗ are respectively the optimal solutions
of (P ) and (D), then Ω = Ω∗ and their optimal values coincide.
Now we construct two parameter-free dual models denoted respectively by (D1)

and (D2) as follows:
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(D1) Maximize
uAF (Λ) + zAH(Λ)

uAG(Λ)

subject to Λ ∈ S and

0 ∈ uAG (Λ) ∂ uAF (Λ) + ∂ zAH (Λ)

− uAF (Λ) + zAH (Λ) ∂ uAG (Λ) +NS (Λ)

where

uAF (Λ) + zAH(Λ) ≥ 0 and uAG (Λ) > 0, and u ∈ I ⊂ Rn+, z ∈ Rm
+ ,

and

(D2) Maximize
uAF (Λ)
uAG (Λ)

subject to Λ ∈ S and

0 ∈ uAG (Λ) ∂ uAF (Λ) + ∂ zAH (Λ) − uAF (Λ) ∂ uAG (Λ) +NS (Λ)

with zAH (Λ) ≥ 0, where u ∈ I ⊂ Rn+, z ∈ Rm
+ , u

AF (Λ) ≥ 0 and uAG (Λ) > 0.

Another parametric dual model, denoted by (D3), is as follows:

(D3) Maximize λ (∈ R+) subject to Λ ∈ S,

0 ∈ ∂ uAF (Λ)− λ∂ uAG (Λ) + ∂ zAH (Λ) +NS (Λ) ,

uAF (Λ)− λuAG (Λ) ≥ 0 and zAH (Λ) ≥ 0 where u ∈ I ⊂ Rn+, z ∈ Rm+ .

We denote the feasible solutions of (D1), (D2) and (D3) by K1, K2 and K3, re-
spectively.
To each dual problem, we state the weak duality, strong duality, and strict duality

theorems. (see [17], cf. also [15, 16]). First we handle the dual problem (D1).

THEOREM 13 (Weak duality) (cf. [17, Theorem 4.1]). Let Ω ∈ FP , (Λ, u, z) ∈ K1

and set

D (·) = uAG (Ω) uAF (·) + zAH (·) − uAG (·) uAF (Ω) + zAH (Ω) .

Suppose F (Ω,Λ,−η) ≥ 0 for each η ∈ NS (Λ), and any one of the following conditions
holds:

(1) uAF is (F , ρ1, θ)-convex, −uAG is (F , ρ2, θ)-convex, zAH is (F , ρ3, θ)-convex and
uAG (Λ) ρ1 + uAF (Λ) + zAH (Λ) ρ2 + u

AG (Λ) ρ3 ≥ 0;
(2) D is (F, ρ, θ)-pseudoconvex and ρ ≥ 0;
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(3) D is strictly (F, ρ, θ)-quasiconvex and ρ > 0.

Then

ϕ (Ω) ≡ max
1≤i≤n

Fi (Ω)

Gi (Ω)
≥ u

AF (Λ) + zAH (Λ)
uAG (Λ)

,

where ϕ (Ω) is the objective function of (P ).

THEOREM 14 (Strong duality) [17, Theorem 4.2]. Suppose the assumptions of
Theorem 13 hold. Assume further that the vector set functions F, −G and H are
convex (equivalently, (F , ρ, θ)-convex with F (Ω,Λ; f) = kχΩ − χΛ, fl , f ∈ L1). If Ω∗
is an optimal solution of (P ) and u∗, z∗ are as in Theorem 11, then (Ω∗, u∗, z∗) is an
optimal solution of (D1) and min(P ) = max(D1).

THEOREM 15 (Strict converse duality) [17, Theorem 4.3]. Let Ω0 and (Λ, u0, z0)
be optimal solutions of (P ) and (D1) respectively, and suppose the assumptions of
Theorem 14 are fulfilled. If the set function

D (·) = uA0 G (Ω0) uA0 F (·) + zA0 H (·) − uA0 G (·) uA0 F (Ω0) + zA0 H (Ω0)
is strictly (F , ρ, θ)-pseudoconvex with ρ ≥ 0, then Λ = Ω0 is an optimal solution of
(P ) and they have the same optimal values:

ϕ (Ω0) =
uA0 F (Ω0)
uA0 G (Ω0)

= max
1≤i≤n

Fi (Ω0)

Gi (Ω0)
=
uA0 F (Ω0) + z

A
0 H (Ω0)

uA0 G (Ω0)

where ϕ (Ω) is the objective function of (P ). That is, min(P ) = max(D1).

For (D2), there are also three duality theorems similar to Theorems 13—15 which
we state as follows.

THEOREM 16 (Weak duality) (cf. [17, Theorem 5.1] ). Let Ω ∈ FP , (Λ, u, z) ∈
K2. Set E(·) ≡ uAG(Λ)uAF (·) − uAF (Λ)uAG(·), L(·) ≡ zAH (·) and J(·) ≡ E(·) +
uAG(Λ)L(·). Suppose F (Ω,Λ,−η) ≥ 0 for each η ∈ NS(Λ). Moreover suppose any one
of the following conditions holds:

(1) uAF is (F , ρ1, θ)-convex, −uAG is (F , ρ2, θ)-convex, zAH is (F , ρ3, θ)-convex,
and

uAG(Λ)ρ1 + uAF (Λ)ρ2 + uAG(Λ)ρ3 ≥ 0.
(2) E is (F , ρ1, θ)-pseudoconvex, L is (F , ρ2, θ)-quasiconvex, and

ρ1 + u
AG(Λ)ρ2 ≥ 0.

(3) E is (F , ρ1, θ)-quasiconvex, L is strictly (F , ρ2, θ)-pseudoconvex, and
ρ1 + u

AG(Λ)ρ2 ≥ 0.

(4) E is strictly (F , ρ1, θ)-quasiconvex, L is (F , ρ2, θ)-quasiconvex, and
ρ1 + u

AG(Λ)ρ2 > 0.
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(5) J is (F , ρ, θ)-pseudoconvex, and ρ ≥ 0.
(6) J is strictly (F , ρ, θ)-quasiconvex and ρ > 0.

Then

ϕ (Ω) ≥ u
AF (Λ)
uAG(Λ)

.

THEOREM 17 (Strong duality) (cf. [17, Theorem 5.2]). Suppose the assumptions
of Theorem 16 hold. Suppose further that the vector set functions F, −G and H
are convex. If Ω∗ is an optimal solution of (P ), then there exist u∗ ∈ I ⊂ Rn+ and
z∗ ∈ Rm+ such that (Ω∗, u∗, z∗) ∈ K2. Furthermore if conditions of Theorem 16 hold
for all feasible solutions of (D2), then (Ω∗, u∗, z∗) is an optimal solution of (D2) and
min(P ) = max(D2).

THEOREM 18 (Strict converse duality) (cf. [17, Theorem 5.3]). Let Ω0 and
(Λ, u0, z0) be optimal solution of (P ) and (D2), respectively. Assume that the assump-
tions of Theorem 17 are fulfilled, and that E(·) = uA0 G(Λ)uA0 F (·)− uA0 F (Λ)uA0 G(·) is
strictly (F , ρ1, θ)-pseudoconvex, L(·) = zA0 H (·) is(F , ρ2, θ)-quasiconvex and ρ1 + ρ2 ≥
0. Then Λ = Ω0 and min(P ) = max(D2), that is

ϕ (Ω1) =
uA0 F (Λ)
uA0 G(Λ)

.

For the parametric dual model (D3), the following three theorems have been estab-
lished.

THEOREM 19 (Weak duality) (cf. [17, Theorem 6.1]). LetΩ ∈ FP and (Λ, u, z,λ) ∈
K3. Set Q(·) = uAF (·)− λuAG(·), L(·) = zAH (·) and, M(·) = Q (·) + L(·). Suppose
any one of the following conditions holds:

(1) uAF is (F , ρ1, θ)-convex, −uAG is (F , ρ2, θ)-convex, zAH is (F , ρ3, θ)-convex,
and ρ1 + λρ2 + ρ3 ≥ 0.

(2) Q is (F , ρ1, θ)-pseudoconvex, L is (F , ρ2, θ)-quasiconvex, and ρ1 + ρ2 ≥ 0.
(3) Q is (F , ρ1, θ)-quasiconvex, L is strictly (F , ρ2, θ)-pseudoconvex, and ρ1+ρ2 ≥ 0.
(4) Q is strictly (F , ρ1, θ)-quasiconvex, L is (F , ρ2, θ)-quasiconvex, and ρ1 + ρ2 > 0.

(5) M is (F , ρ, θ)-pseudoconvex and ρ ≥ 0.
(6) M is strictly (F , ρ, θ)-quasiconvex and ρ > 0.

Then ϕ (Ω) ≥ λ.

THEOREM 20 (Strong duality) (cf. [17, Theorem 6.2]). Let the vector set func-
tions F , −G and H be convex in S. If Ω∗ is an optimal solution of (P ) satisfying
conditions (22)-(25) in Theorem 11, then (Ω∗, u∗, z∗,λ∗) ∈ K3, a feasible solution of
(D3). Furthermore if the conditions of Theorem 19 hold for all feasible solutions of
(D3), then (Ω∗, u∗, z∗,λ∗) is an optimal solution of (D3) and min(P ) = max(D3).
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THEOREM 21 (Strict converse duality) (cf. [17, Theorem 6.3]). Let Ω0 and
(Λ, u0, z0,λ0) be optimal solutions of (P ) and (D3) respectively. Assume that the
assumptions of Theorem 20 are fulfilled. Furthermore if u0F (·)− λ0u

A
0 G(·) is strictly

(F , ρ, θ)-pseudoconvex, L(·) = zA0 H (·) is (F , ρ2, θ)-quasiconvex, and ρ1+ρ2 ≥ 0. Then
Λ = Ω0 and ϕ (Ω0) = λ0, that is, min(P ) = max(D3).
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