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Abstract

We derive a new bound for the spectral variation of two matrices.

1 Introduction

Everywhere below, A and B are n x n-matrices, \;(A) and \;(B), j = 1,...,n, are
the eigenvalues counting their multiplicities of A and B, respectively. The spectral
variation of A and B is

v(A, B) = minmax | A;(;)(B) — Ai(4)],

where 7 is taken over all permutations of {1,2,...,n}. In addition, |.]| denotes the
Euclidean norm and
q=|[A=Bl2.

The norms for matrices here and below are understood in the sense of the operator
norms.

A lot of papers and books are devoted to bounds for v(A4, B), cf. [1-4], [7], [9-11]
and the references therein. One of the recent results is due to Bhatia et al. [2]. They
prove that

o(A, B) < 227 (| Al + || Bl2) /" (1)

Note that in [4] this inequality is improved in the case when both A and B are normal
matrices with spectra on two intersecting lines.
In the present paper we improve inequality (1) under the condition (6) below.
The following quantity plays an essential role hereafter:

g(A) = (N2(4) = 3 () )2
k=1
Here N?(A) is the Frobenius norm: N?(A) = Trace(A*A). The asterisk means the
adjointness. As proved in [5, Corollary 1.2.7], the inequality

g*(A) < N*(A" - A)/2 (2)
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holds. Moreover,
g(A) =0 iff A is normal: A*A = AA™. (3)

Let
wp(A4), k=1,..,m<n

1
be the different eigenvalues of A: wi(A) # w;(A) if j #k; j,k=1,...,m. Put

wA) = min () - (A))/2

So the minimum is taken over all the different eigenvalues. Consider the algebraic
equation

n—1 p
o = g (A) Zn—k:—l
q kZ:O NG : (4)

It is equivalent to the equation

Since the function in the left-hand side of this equation monotonically decreases as
z > 0 increases, equation (4) has a unique positive root. Denote this root by z(q, A).
Now we are in a position to formulate the main result of the paper.

THEOREM 1.1. For arbitrary n x n-matrices A and B, the inequality
v(4, B) < (¢, A) ()
is valid, provided
w(A) > z(q, A). (6)
The proof of this theorem is presented in the next section.
COROLLARY 1.2. Let A be normal. Then
v(A,B) <gq (7)

provided w(A4) > q.

Indeed, according to (3), z(q, A) = ¢q. Now the result is due to Theorem 1.1. In
this corollary we do not assume that B is a normal matrix and that the spectra of A
and B are on two intersecting lines.

We need the following simple result (see Lemma 4.3.2 from [5]): let zp be the unique
positive root of the algebraic equation

and let
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Then the relation

2 < PY"(1) if P(1) <1, (®)
is valid.
Let us set
n—1 p
g"(4)
61(A) = .
1(4) qk:O N

Due to (8) we have
2(q, A) < [61(A)]Y™ if 6(A) < 1.
Now Theorem 1.1 yields

COROLLARY 1.3. For arbitrary n x n-matrices A and B, the inequality v(A, B) <
[61(A)]Y/™ is valid, provided 61(A) < 1 and w(A) > [61(A)]Y/".

Substitute z = g(A)z in (4). Then

n —1 T
" =qg9™"(A)
= VK
Now put
n—1
) =S L
= VE

By using inequality (8) once more, we see that

2, 4) < [ag" (A6 if gGa(A) < g(A).

Hence, Theorem 1.1 yields
COROLLARY 1.4. For arbitrary n x n-matrices A and B, the inequality

(4, B) < lag" " (A)¢a]'"
is valid, provided,
q6n(A) < g(A) and w(A) > [gg" " (A)Ca)M™.

Theorem 1.1 and its corollaries under the corresponding restrictions are sharper
than (1).

Indeed, let A be a normal matrix and w(A4) > ¢. In view of (7),
q=[A— Bll2 < [|A]l2 + || B2
which improves inequality (1).

Note that due to (2), g(A) in Theorem 1.1 and Corollaries 1.3 and 1.4 can be
replaced by the easily calculated quantity /1/2N(A* — A).
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2 Proof of Theorem 1.1

Let ||.|| be an arbitrary norm in C™. Denote by p(A,\) the distance between the
spectrum o(A) of A and a complex point A, and suppose that the resolvent Ry(A4) =
(A — M)~ where I is the unit matrix, satisfies the inequality

IRA(A)|| < ¢ <m> for all regular A, (9)

where ¢(x) is a continuous monotonically increasing positive function of a positive
variable x with the properties ¢(0) = 0 and ¢(c0) = co. Let z, be the unique positive
root of the equation

A= Bl¢(1/z) = 1. (10)

Denote
Eir(zp) ={2€C:|z—wi| < 2z}, k=1,...,m.

LEMMA 2.1. Under condition (9), let

min |w; — wi| > 224. (11)
k=2,....n

Then the total algebraic multiplicity of the eigenvalues of B that lie in the set Eq(zy)
is equal to the algebraic multiplicity of eigenvalue wy.

PROOF. Put By =(1—t)A+tBfor 0 <t <1. Let uy € o(By) for 0 <¢ < 1. Then
either u; € o(A) or

1< A - Bl Ry (A)] < |14 - Blio (W) | (12)

Indeed,
[B: — Al = [[A— A1 —t) —tB| = t[|B - A.

From the Hilbert identity
Ra(Bt) — RA(A) = RA(A)(A — By)Rx(B:)
it follows that if ||A — B||||Rx(A)|| < 1, then A is a regular point of B. Thus, if
tlA = BllIIRA(A)[ <1,

then A is a regular point of B. This proves relation (12).
Since ¢ is monotone, from (12) and (9) the inequality

p(A, ) = inf i (A) = el < 2o (13)
follows. Furthermore, introduce the set

QN ={z € C: z is an eigenvalue of B; for some ¢ € [0, 1]}.
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Let 7 C Q be a connected component beginning at wy. If py € Q1, then due to the
continuity of eigenvalues and the fact that pg = wq(A),

inf fwy,(A) = pe| = w1 (A) — pu (14)
for all sufficiently small positive ¢. Let us suppose that for some s € [0, 1]
inf wr(A) = ps| = |wj (A) = s (ns € ) (15)

with a j # 1. But due to the continuity of eigenvalues, for any € > 0 there is a ty < s,
such that |uy, — ps| < €. So

wi(A) = ps| < |wr(A) — g | + €.
Thus,
w1 (A) —w; (A)] < |wr(A) = ps| + [wj (A) = ps] < lwr(A) = gty |+ |wi(A) = ps| + €.
Hence, due to (13), (14) and (15)
lwi(A) —w;j(A)| <224 + €.

Taking € small enough we get the contradiction to (11), which proves that relation
(15) is impossible. So (14) holds for all ¢ € [0,1] and p; € €. Thus, in view of (13)
lwi(A) — pe] < zp. That is, Q4 C Eq(rg). This proves the result.

COROLLARY 2.2. Let the conditions (9) and w(A) > z4 hold. Then

0(B) C Ug=1,.. .mEr(24).

Moreover, the total algebraic multiplicity of the eigenvalues of B that lie in set Ey(24)
is equal to the algebraic multiplicity of wy.

LEMMA 2.3. Let the conditions (9) and w(A) > z, hold. Then v(A, B) < z.
Indeed this result is due to Corollary 2.2.

We now turn to the proof of Theorem 1.1. As it is proved in [5, Corollary 1.2.4],
for any an n X n-matrix A, the inequality

n—1
(A= XD)7Y|p < Z & for all regular .
= VEIpE(AN)

is valid (see also Lemma 8.1.2 from [6]). The required result now follows from Lemma
2.3.
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