
Applied Mathematics E-Notes, 2(2002), 72-77 c? ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/
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Abstract

We derive a new bound for the spectral variation of two matrices.

1 Introduction

Everywhere below, A and B are n × n-matrices, λj(A) and λj(B), j = 1, ..., n, are
the eigenvalues counting their multiplicities of A and B, respectively. The spectral
variation of A and B is

v(A,B) ≡ min
π
max
i
|λπ(i)(B)− λi(A)|,

where π is taken over all permutations of {1, 2, ..., n}. In addition, n.n denotes the
Euclidean norm and

q = nA−Bn2.
The norms for matrices here and below are understood in the sense of the operator
norms.
A lot of papers and books are devoted to bounds for v(A,B), cf. [1-4], [7], [9-11]

and the references therein. One of the recent results is due to Bhatia et al. [2]. They
prove that

v(A,B) ≤ 22−1/nq1/n(nAn2 + nBn2)1−1/n. (1)

Note that in [4] this inequality is improved in the case when both A and B are normal
matrices with spectra on two intersecting lines.
In the present paper we improve inequality (1) under the condition (6) below.
The following quantity plays an essential role hereafter:

g(A) = (N2(A)−
n

k=1

|λk(A)|2)1/2.

Here N2(A) is the Frobenius norm: N2(A) = Trace(A∗A). The asterisk means the
adjointness. As proved in [5, Corollary 1.2.7], the inequality

g2(A) ≤ N2(A∗ −A)/2 (2)
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holds. Moreover,
g(A) = 0 iff A is normal: A∗A = AA∗. (3)

Let
ωk(A), k = 1, ...,m ≤ n

be the different eigenvalues of A: ωk(A) 9= ωj(A) if j 9= k; j, k = 1, ...,m. Put
w(A) ≡ min

k 9=j; j,k=1,...,m
|ωk(A)− ωj(A)|/2.

So the minimum is taken over all the different eigenvalues. Consider the algebraic
equation

zn = q
n−1

k=0

gk(A)√
k!
zn−k−1. (4)

It is equivalent to the equation

q
n−1

k=0

gk(A)√
k!
z−k−1 = 1

Since the function in the left-hand side of this equation monotonically decreases as
z > 0 increases, equation (4) has a unique positive root. Denote this root by z(q,A).
Now we are in a position to formulate the main result of the paper.

THEOREM 1.1. For arbitrary n× n-matrices A and B, the inequality
v(A,B) ≤ z(q,A) (5)

is valid, provided
w(A) > z(q,A). (6)

The proof of this theorem is presented in the next section.

COROLLARY 1.2. Let A be normal. Then

v(A,B) ≤ q (7)

provided w(A) > q.
Indeed, according to (3), z(q,A) = q. Now the result is due to Theorem 1.1. In

this corollary we do not assume that B is a normal matrix and that the spectra of A
and B are on two intersecting lines.
We need the following simple result (see Lemma 4.3.2 from [5]): let z0 be the unique

positive root of the algebraic equation

zn =
n−1

k=0

ckz
n−k−1, ck ≥ 0; k = 1, ..., n− 1; c0 > 0,

and let

P (1) =
n−1

k=0

ck.
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Then the relation

z0 ≤ P 1/n(1) if P (1) ≤ 1, (8)

is valid.
Let us set

δ1(A) = q
n−1

k=0

gk(A)√
k!
.

Due to (8) we have

z(q,A) ≤ [δ1(A)]1/n if δ1(A) ≤ 1.
Now Theorem 1.1 yields

COROLLARY 1.3. For arbitrary n×n-matrices A and B, the inequality v(A,B) ≤
[δ1(A)]

1/n is valid, provided δ1(A) ≤ 1 and w(A) ≥ [δ1(A)]1/n.
Substitute z = g(A)x in (4). Then

xn = qg−1(A)
n−1

k=0

xn−k−1√
k!

.

Now put

ζn(A) =
n−1

k=0

1√
k!
.

By using inequality (8) once more, we see that

z(q,A) ≤ [qg1−n(A)ζn]1/n if qζn(A) ≤ g(A).

Hence, Theorem 1.1 yields

COROLLARY 1.4. For arbitrary n× n-matrices A and B, the inequality

v(A,B) ≤ [qg1−n(A)ζn]1/n

is valid, provided,

qζn(A) ≤ g(A) and w(A) ≥ [qg1−n(A)ζn]1/n.

Theorem 1.1 and its corollaries under the corresponding restrictions are sharper
than (1).

Indeed, let A be a normal matrix and w(A) > q. In view of (7),

q = nA−Bn2 ≤ nAn2 + nBn2
which improves inequality (1).
Note that due to (2), g(A) in Theorem 1.1 and Corollaries 1.3 and 1.4 can be

replaced by the easily calculated quantity 1/2N(A∗ −A).
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2 Proof of Theorem 1.1

Let n.n be an arbitrary norm in Cn. Denote by ρ(A,λ) the distance between the
spectrum σ(A) of A and a complex point λ, and suppose that the resolvent Rλ(A) ≡
(A− λI)−1, where I is the unit matrix, satisfies the inequality

nRλ(A)n ≤ φ
1

ρ(A,λ)
for all regular λ, (9)

where φ(x) is a continuous monotonically increasing positive function of a positive
variable x with the properties φ(0) = 0 and φ(∞) =∞. Let zφ be the unique positive
root of the equation

nA−Bnφ(1/z) = 1. (10)

Denote
Ek(zφ) = {z ∈ C : |z − ωk| ≤ zφ}, k = 1, ...,m.

LEMMA 2.1. Under condition (9), let

min
k=2,...,n

|ω1 − ωk| > 2zφ. (11)

Then the total algebraic multiplicity of the eigenvalues of B that lie in the set E1(zφ)
is equal to the algebraic multiplicity of eigenvalue ω1.

PROOF. Put Bt ≡ (1− t)A+ tB for 0 ≤ t ≤ 1. Let µt ∈ σ(Bt) for 0 ≤ t ≤ 1. Then
either µt ∈ σ(A) or

1 ≤ nA−BnnRµt(A)n ≤ nA−Bnφ
1

ρ(A,µt)
. (12)

Indeed,
nBt −An = nA−A(1− t)− tBn = tnB −An.

From the Hilbert identity

Rλ(Bt)−Rλ(A) = Rλ(A)(A−Bt)Rλ(Bt)

it follows that if nA−BtnnRλ(A)n < 1, then λ is a regular point of B. Thus, if

tnA−BnnRλ(A)n < 1,

then λ is a regular point of B. This proves relation (12).
Since φ is monotone, from (12) and (9) the inequality

ρ(A,µt) ≡ inf
k
|ωk(A)− µt| ≤ zφ (13)

follows. Furthermore, introduce the set

Ω = {z ∈ C : z is an eigenvalue of Bt for some t ∈ [0, 1]}.
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Let Ω1 ⊂ Ω be a connected component beginning at ω1. If µt ∈ Ω1, then due to the
continuity of eigenvalues and the fact that µ0 = ω1(A),

inf
k
|ωk(A)− µt| = |ω1(A)− µt| (14)

for all sufficiently small positive t. Let us suppose that for some s ∈ [0, 1]
inf
k
|ωk(A)− µs| = |ωj(A)− µs| (µs ∈ Ω1) (15)

with a j 9= 1. But due to the continuity of eigenvalues, for any � > 0 there is a t0 < s,
such that |µt0 − µs| ≤ �. So

|ω1(A)− µs| ≤ |ω1(A)− µt0 |+ �.

Thus,

|ω1(A)− ωj(A)| ≤ |ω1(A)− µs|+ |ωj(A)− µs| ≤ |ω1(A)− µt0 |+ |ωj(A)− µs|+ �.

Hence, due to (13), (14) and (15)

|ω1(A)− ωj(A)| ≤ 2zφ + �.

Taking � small enough we get the contradiction to (11), which proves that relation
(15) is impossible. So (14) holds for all t ∈ [0, 1] and µt ∈ Ω1. Thus, in view of (13)
|ω1(A)− µt| ≤ zφ. That is, Ω1 ⊆ E1(rφ). This proves the result.
COROLLARY 2.2. Let the conditions (9) and w(A) > zφ hold. Then

σ(B) ⊂ ∪k=1,...,mEk(zφ).
Moreover, the total algebraic multiplicity of the eigenvalues of B that lie in set Ek(zφ)
is equal to the algebraic multiplicity of ωk.

LEMMA 2.3. Let the conditions (9) and w(A) > zφ hold. Then v(A,B) ≤ zφ.
Indeed this result is due to Corollary 2.2.

We now turn to the proof of Theorem 1.1. As it is proved in [5, Corollary 1.2.4],
for any an n× n-matrix A, the inequality

n(A− λI)−1n2 ≤
n−1

k=0

gk(A)√
k!ρk+1(A,λ)

for all regular λ.

is valid (see also Lemma 8.1.2 from [6]). The required result now follows from Lemma
2.3.
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