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Abstract

Several inequalities involving the Khatri-Rao products of two four-block pos-
itive definite real symmetric matrices are established by Liu in [1]. We extend
these to two general positive semi-definite real symmetric block matrices and nec-
essary and sufficient conditions under which these inequalities become equalities
are presented.

Let S(m) be the set of all real symmetric matrices of order m. Consider matrices
M ∈ S(m) and N ∈ S(p) which are partitioned as follows

M =

 M11 ... M1t

... ... ...
M 31t ... Mtt

 , N =

 N11 ... N1t
... ... ...
N 31t ... Ntt

 , (1)

where Mii ∈ S(mi) and Nii ∈ S(pi) for i = 1, 2, · · · , t. Obviously,
t[
i=1

mi = m,
t[
i=1

pi = p.

We denote by

M ∗N = (Mij ⊗Nij)ij
and

M �N = (Mij �N)ij =
�
(Mij ⊗Nkl)kl

�
ij

the Khatri-Rao and Tracy-Singh products ofM and N respectively, where ⊗ represents
the Kronecker product. Obviously,

M �N ∈ S(mp), M ∗N ∈ S
#

t[
i=1

mipi

$
.
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118 Matrix Inequalities

When M and N are positive definite real symmetric matrices and t = 2, the following
inequalities are obtained by Liu in [1]:

(M ∗N)−1 ≤M−1 ∗N−1; (2)

M−1 ∗N−1 ≤ (λ1 + λmp)
2

4λ1λmp
(M ∗N)−1 ; (3)

M ∗N − (M−1 ∗N−1)−1 ≤ (
s
λ1 −

s
λmp)

2I; (4)

M2 ∗N2 ≤ (λ1 + λmp)
2

4λ1λmp
(M ∗N)2 ; (5)

M2 ∗N2 − (M ∗N)2 ≤ 1
4
(λ1 − λmp)

2I; (6)

(M2 ∗N2)1/2 ≤ λ1 + λmp

2
s
λ1λmp

(M ∗N) ; (7)

(M2 ∗N2)1/2 −M ∗N ≤ (λ1 − λmp)
2

4(λ1 + λmp)
I, (8)

where λ1 and λmp are the largest and smallest eigenvalue of M �N respectively, and
A ≥ B (or B ≤ A) means that A − B is positive semi-definite. We remark that the
inequality (6) is erroneously printed as (M ∗ N)2 −M2 ∗ N2 ≤ 1

4 (λ1 − λmp)
2I in [1,

Theorem 8]). We remark further that conditions for equalities in (2)-(8) are not known.
The purpose of this paper is to extend these inequalities for general block matri-

ces. We also find necessary and sufficient conditions for equalities to hold. Liu [1,
p.269] also shows that the Khatri-Rao product can be viewed as a generalization of
the Hadamard product. Therefore, our results can also be viewed as a generalization
of those corresponding inequalities involving the Hadamard product, see e.g., [3, (1.4),
(1.5), (2.14), (2.15), (2.19), (2.20)].
For a matrix A ∈ S(m), we denote by λ(A) and τ(A) the largest and smallest

nonzero eigenvalue of A respectively. Let R(A) be the column space of matrix A. We
denote the n× n identity matrix by In, or by I when the order of matrix is clear. Let
S+(m) and S+0 (m) be the set of all positive definite and semi-definite real symmetric
matrices of order m respectively.

LEMMA 1. ([1, Theorem 1 (a)(b)]) If A and B are compatibly partitioned, then

(A�B)(C �D) = (AC)� (BD) (9)

and

(A�B)+ = A+ �B+, (10)

where A+ is the Moore-Penrose inverse of A.

LEMMA 2. Let A and B be compatibly partitioned matrices, then (A � B)3 =
A3 �B3.
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Indeed,

(A�B)3 =
�
(Aij �B)ij

�3
=
��
(Aij ⊗Bkl)kl

�
ij

�3
=

��
(Aij ⊗Bkl)kl

�3�
ji
=
��
(Aij ⊗Bkl)3

�
lk

�
ji

=
��
A3ij ⊗B3kl

�
lk

�
ji
=
�
A3ij �B3

�
ji

= A3 �B3.

LEMMA 3. Suppose A ∈ S(m) and B ∈ S(p). Then
i) A�B ∈ S(mp), λ(A�B) = λ(A)λ(B), τ(A�B) = τ(A)τ(B), and (A�B)n =

An �Bn for any positive integer number n;
ii) A�B ∈ S+0 (mp) if A ∈ S+0 (m) and B ∈ S+0 (p);
iii) A�B ∈ S+(mp) if A ∈ S+(m) and B ∈ S+(p).
PROOF. Let A = U 3ADAUA and B = U

3
BDBUB be the spectral decompositions of

A and B respectively. Then using (9) and Lemma 2,

A�B = (U 3ADAUA)� (U 3BDBUB)
= (U 3A � U 3B)(DA �DB)(UA � UB)
= (UA � UB)3(DA �DB)(UA � UB) (11)

and

(UA � UB)3(UA � UB) = (U 3A � U 3B)(UA � UB)
= (U 3AUA)� (U 3BUB). (12)

Substituting U 3AUA = Im and U 3BUB = Ip into (12), we see that

(UA � UB)3(UA � UB) = Imp. (13)

Combining (13) and (11) completes the proof.

THEOREM 1. There exists a real matrix Z of order mp ×
tS
i=1
mipi such that

Z3Z = I and
A ∗B = Z3(A�B)Z (14)

for any A ∈ S(m) and B ∈ S(p) which are partitioned as in (1).
PROOF. Let

Zi =
�
Oi1 ... Qi,i−1 Imipi Oi,i+1 ... Qit

�3
, i = 1, 2, ..., t, (15)

where Oik is the zero matrix of order mipi ×mipk for any k 9= i. Then Z3iZi = I and

Z3i(Aij �B)Zi = Z3i(Aij ⊗Bkl)klZj = Aij ⊗Bij , i, j = 1, 2, ..., t.
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Letting

Z =

 Z1
. . .

Zt

 , (16)

the result then follows by a direct computation.

THEOREM 2. Suppose Z is defined as in Theorem 1, A ∈ S+0 (mp), W = λ(A),
w = τ(A), and

R(Z) ⊆ R(A). (17)

Then the following conclusions hold.
(i) (Z3AZ)+ ≤ Z3A+Z, and the equality holds if, and only if, R(Z) = R(AZ).
(ii) Z3A+Z ≤ (W+w)2

4Ww (Z3AZ)+, and the equality holds if, and only if, Z 3AZ =
W+w
2 I and Z3A+Z = W+w

2Ww I.

(iii) Z3AZ − (Z3A+Z)+ ≤ (√W − √w)2I, and the equality holds if, and only if,
W = w or

Z3AZ = (W + w −
√
Ww)I, Z3A+Z =

1√
Ww

I. (18)

(iv) Z3A2Z ≤ (W+w)2

4Ww (Z3AZ)2, and the equality holds if, and only if, Z3AZ =
2Ww
W+w I and Z

3A2Z =WwI.
(v) Z3A2Z− (Z3AZ)2 ≤ 1

4(W −w)2I, and the equality holds if, and only if, W = w
or

Z3AZ =
W + w

2
I, Z3A2Z =

W 2 + w2

2
I. (19)

(vi) (Z 3A2Z)1/2 −Z3AZ ≤ (W−w)2
4(W+w)I, and the equality holds if, and only if, W = w

or

Z3A2Z =
(W + w)2

4
I, Z3AZ =

W 2 + w2 + 6Ww

4(W + w)
I. (20)

PROOF. It follows from (15) and (16) that Z+ = Z3 and ZZ 3 ≤ I. This, together
with [2, (23), and Propositions 3.1, 3.2, 3.3 and 3.4], yields the conclusions (i)—(v).
Now we prove (vi). Combining [2, (4)] and Z3Z = I yields

(Z3A2Z)1/2 − Z 3AZ
≤ (Z3AZ)1/2 − 1

W + w
Z3A2Z − Ww

W + w
I

=
(W − w)2
4(W + w)

I −
�

1√
W + w

(Z3A2Z)1/2 −
√
W + w

2
I

�2
≤ (W − w)2

4(W + w)
I,

and the above inequalities become equalities if and only if W = w or (20).

THEOREM 3. Suppose M ∈ S+0 (m) and N ∈ S+0 (p) are partitioned as in (1), Z is
defined as in Theorem 1, W = λ(M)λ(N), w = τ(M)τ(N), and

R(Z) ⊆ R(M �N). (21)
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Then the following conclusions hold.
(i) (M ∗N)+ ≤ M+ ∗N+, and the equality holds if, and only if, R(Z) = R((M �

N)Z).

(ii) M+ ∗N+ ≤ (W+w)2

4Ww (M ∗N)+, and the equality holds if, and only if, M ∗N =
W+w
2 I and M+ ∗N+ = W+w

2Ww I.

(iii) M ∗N − (M+ ∗N+)+ ≤ (√W −√w)2I, and the equality holds if, and only if,
W = w or

M ∗N = (W + w −
√
Ww)I, M+ ∗N+ =

1√
Ww

I. (22)

(iv) M2 ∗N2 ≤ (W+w)
4Ww

2
, and the equality holds if, and only if, M ∗N = 2Ww

W+w I and

M2 ∗N2 =WwI.
(v) M2 ∗ N2 − (M ∗ N)2 ≤ 1

4(W − w)2I, and the equality holds if, and only if,
W = w or

M ∗N =
W + w

2
I, M2 ∗N2 =

W 2 + w2

2
I. (23)

(vi) (M2∗N2)1/2−M ∗N ≤ (W−w)2
4(W+w)I, and the equality holds if, and only if,W = w

or

M2 ∗N2 =
(W + w)2

4
I, M ∗N =

W 2 + w2 + 6Ww

4(W + w)
I. (24)

(vii) (M2 ∗N2)1/2 ≤ W+w
2
√
Ww

(M ∗N), and the equality holds if, and only if,M ∗N =
W+w
2 I and M2 ∗N2 =WwI.

PROOF. Noting i) and ii) of Lemma 3 and (10) and substituting A by M �N in
Theorem 2, we can obtain the conclusions (i)—(vi). Furthermore, the conclusion (vii)
follows from (iv) and [2, Proposition 2.3].

REMARK 1. If t = 2, M ∈ S+(m) and N ∈ S+(p), then M and N automatically
satisfy the assumptions of Theorem 3 by applying iii) of Lemma 3, and hence Theorem
3 extends the inequalities (2)—(8).

REMARK 2. We have shown that the condition (21) is sufficient for the inequalities
stated in Theorem 3. The following two examples will show that this is not a necessary
condition. It is still an open problem to determine a sufficient and necessary condition
under which these inequalities stated in Theorem 3 hold.

EXAMPLE 1. Consider matrices

M =

 7 1 0
1 2 4
0 4 9

 , N =

 1 0 0
0 1 1
0 1 1

 . (25)

It is easy to verify that M,N ∈ S+0 (3). According (15) and (16), we can obtain

Z 3 =

 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1

 . (26)
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Furthermore, we can easily show that matricesM , N and Z do not satisfy the condition
(21) and the inequalities stated in Theorem 3. Indeed, W = 21.7204 and w = 7.0747.
Furthermore,

M+ =

 0.4000 −1.8000 0.8000
−1.8000 12.6000 −5.6000
0.8000 −5.6000 2.6000

 , N+ =

 1.0000 0 0
0 0.2500 0.2500
0 0.2500 0.2500

 ,
M+ ∗N+ =

 0.4000 0 0
0 3.1500 −1.4000
0 −1.4000 0.6500

 ,
(M ∗N)+ =

 0.1429 0 0
0 4.5000 −2.0000
0 −2.0000 1.0000

 ,
M2 =

 50 9 4
9 21 44
4 44 97

 , N2 =

 1 0 0
0 2 2
0 2 2

 ,
M2 ∗N2 =

 50 0 0
0 42 88
0 88 194

 , (M2 ∗N2)1/2 =

 7.0711 0 0
0 3.7366 5.2951
0 5.2951 12.8826

 ,
(M+ ∗N+)+ =

 2.5000 0 0
0 7.4286 16.0000
0 16.0000 36.0000

 ,
M+ ∗N+ − (M ∗N)+ =

 0.2571 0 0
0 −1.3500 0.6000
0 0.6000 −0.3500

 9≥ O,
(W + w)2

4Ww
(M ∗N)+ −M+ ∗N+ =

 −0.2073 0 0
0 2.9204 −1.2979
0 −1.2979 0.6990

 9≥ O,
(
√
W −√w)2I −M ∗N − (M+ ∗N+)+ =

 −0.4973 0 0
0 9.4313 12.0000
0 12.0000 31.0027

 9≥ O,
(W + w)2

4Ww
(M ∗N)2 −M2 ∗N2 =

 16.0994 0 0
0 −15.0207 −28.6455
0 −28.6455 −63.1502

 9≥ O,
(W − w)2
4(W + w)

I − (M2 ∗N2)1/2 −M ∗N =

 1.7912 0 0
0 0.1257 −1.2951
0 −1.2951 −2.0204

 9≥ O,
1

4
(W − w)2I −M2 ∗N2 − (M ∗N)2 =

 52.6243 0 0
0 31.6243 −44.0000
0 −44.0000 −43.3757

 9≥ O,
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and

W + w

2
√
Ww

(M ∗N)− (M2 ∗N2)1/2 =

 −3.0060 0 0
0 −2.5752 −2.9722
0 −2.9722 −7.6561

 9≥ O.
EXAMPLE 2. Consider matrices

M =

 3 0 5
0 0 0
5 0 9

 , N =

 1 0 0
0 1 1
0 1 1

 . (27)

It is easy to verify that M,N ∈ S+0 (3). According to (15) and (16), we can see that
the matrix Z possesses the form (26). Furthermore, we can easily show that matrices
M , N and Z do not satisfy the condition (21), but they satisfy the inequalities stated
in Theorem 3. Indeed, W = 23.6619 and w = 0.1690. Furthermore,

M+ =

 4.5000 0 −2.5000
0 0 0

−2.5000 0 1.5000

 , and N+ =

 1.0000 0 0
0 0.2500 0.2500
0 0.2500 0.2500

 .
Then

M+ ∗N+ =

 4.5000 0 0
0 0 0
0 0 0.3750

 , (M ∗N)+ =
 0.3333 0 0

0 0 0
0 0 0.1111

 ,
M2 =

 34 0 60
0 0 0
60 0 106

 , N2 =

 1 0 0
0 2 2
0 2 2

 ,
M2 ∗N2 =

 34 0 0
0 0 0
0 0 212

 , (M2 ∗N2)1/2 =

 5.8310 0 0
0 0 0
0 0 14.5602

 ,
(M+ ∗N+)+ =

 0.2222 0 0
0 0 0
0 0 2.6667

 ,
M+ ∗N+ − (M ∗N)+ =

 4.1667 0 0
0 0 0
0 0 0.2639

 ≥ O,
(W + w)2

4Ww
(M ∗N)+ −M+ ∗N+ =

 7.3315 0 0
0 0 0
0 0 3.5688

 ≥ O,
(
√
W −√w)2I −M ∗N − (M+ ∗N+)+ =

 17.0532 0 0
0 19.8310 0
0 0 13.4976

 > O,
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(W + w)2

4Ww
(M ∗N)2 −M2 ∗N2 = 10−3

 0.2855 0 0
0 0 0
0 0 2.6631

 ≥ O,
(W − w)2
4(W + w)

I − (M2 ∗N2)1/2 −M ∗N =

 2.9589 0 0
0 5.7899 0
0 0 0.2297

 > O,

1

4
(W − w)2I −M2 ∗N2 − (M ∗N)2 =

 112.9786 0 0
0 137.9786 0
0 0 6.9786

 > O,

and

W + w

2
√
Ww

− (M2 ∗N2)1/2 =

 3.1057 0 0
0 0 0
0 0 12.2496

 ≥ O.
REMARK 3. Since Theorem 3 can be obtained by substituting A with M �N in

Theorem 2, the condition (17) is not necessary for the inequalities stated in Theorem
2 to hold by choosing A = M � N , where M and N are defined as in Examples 1
and 2 respectively. It is also an open problem to determine a sufficient and necessary
condition under which these inequalities stated in Theorem 2 hold.
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