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Abstract

We prove a uniqueness theorem for meromorphic functions sharing one finite
set with weight two and this improves some results of Yi [11], Li and Yang [8]
and Fang and Hua [2].

1 Introduction

Let f be a meromorphic function defined in the open complex plane C. For S C CU{o0}
we define by E¢(S) the set

Ef(S) = Uses{z: f(z) —a =0},

where an a-point of multiplicity m is counted m times.

In 1976, Gross [3] proved that there exist three finite sets S, S2,S3 such that any
two entire functions f, g satisfying E;(S;) = E,4(S;) for j = 1,2, 3 must be identical. In
the same paper Gross asked the following question: Can one find two (or even one) finite
sets S1 and S such that any two entire functions f and g satisfying E;(S;) = E4(S;)
for 7 = 1,2 must be identical?

A set S for which two meromorphic functions f, g satisfying E;(S) = E,(S) become
identical is called a unique range set of meromorphic functions (cf. [4, 8]).

In 1982, Gross and Yang [4] proved the following theorem.

THEOREM A. Let S = {z : e* + 2z = 0}. If two entire functions f, g satisfy
E¢(S) = E4(S) then f =g.

Since the set S = {z : e* + z = 0} contains infinitely many elements, the above
result does not answer the question of Gross.

In 1994, Yi [10] exhibited a finite set S containing 15 elements which is a unique
range set of entire functions and provided an affirmative answer to the question of
Gross.

In 1995, Yi [11] and Li and Yang [8] independently proved the following result which
gives a better answer to the question of Gross.
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THEOREM B. Let S = {z: 27 — 26 — 1 = 0}. If two entire functions f, g satisfy
E;(S) = E4(S) then f =g.

Extending Theorem B to meromorphic functions, recently Fang and Hua [2] proved
the following theorem.

THEOREM C. Let S = {2 : 27 — 26 — 1 = 0}. If two meromorphic functions f, g
are such that ©(oco; f) > 11/12, O(c0;g) > 11/12 and Ef(S) = E4(S) then f = g.

Here © is the ramification index which is defined below.

In [6, 7] the notion of weighted sharing is introduced which we explain in the
following definition.

DEFINITION 1. Let k be a nonnegative integer or infinity. For a € C' U {o0}, we
denote by Fj(a; f) the set of all a-points of f where an a-point of multiplicity m is
counted m times if m < k, and k + 1 times if m > k. If Ex(a; f) = Ex(a;g), we say
that f and g share the value a with weight k.

The definition implies that if f, g share a value a with weight k then zy is a zero
of f — a with multiplicity m(< k) if and only if it is a zero of g — a with multiplicity
m(< k), and zg is a zero of f — a with multiplicity m(> k) if and only if it is a zero of
g — a with multiplicity n(> k) where m is not necessarily equal to n.

We say that f, g share (a, k) if f, g share the value a with weight k. Clearly if f,
g share (a, k) then f, g share (a,p) for all integer p which satisfies 0 < p < k. Also we
note that f, g share a value a IM (ignoring multiplicity) or CM (counting multiplicity)
if and only if f, g share (a,0) or (a,o0) respectively.

DEFINITION 2. For S C C U{oo}, we define E¢(S, k) as E¢(S, k) = UsesEx(a; f),
where k is a nonnegative integer or infinity.

The above definition is in [6]. Clearly Ef(S) = Ef(S,00).

DEFINITION 3. A set S for which two meromorphic functions f, g satisfying
E;(S,k) = E4(S, k) becomes identical is called a unique range set of weight k for
meromorphic functions.

Unless stated otherwise, throughout the paper f and g are two nonconstant mero-
morphic functions. We now explain some basic definitions and notations of the value
distribution theory (see e.g. [5]). We denote by n(r, f) the number of poles of f in
|z| < r, where a pole is counted according to its multiplicity, and by 7i(r, f) the number
of distinct poles of f in |z| < r. Also we put

N(r, f) = / nttf) —n(0.f) ;"(O’f)dt +n(0, f)log,
0

and

N(r, f) =

N /T _n—(t, 1) ; (0. f) dt +7(0, f)logr.

0

The quantities N(r, f), N(r, f) are called respectively the counting function and re-
duced counting function of poles of f. Let

2m
mirf) = = [ og* | flre”) | a0,
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where logT 2z = logz if # > 1 and log"z = 0if 0 < = < 1. We call m(r, f) the
proximity function of f. The sum T'(r, f) = m(r, f) + N(r, f) is called the Nevanlinna
characteristic function of f. If a is a finite complex number, we put

m(r,a;f) =m (T,ﬁ) , N(r,a;f) =N (’I”, fia> s N(Tva;f) _N(T’ fia) :
The quantity —
O(a: 1) = 1~ timsup 7 %)

is called the ramification index, where a € C U {oo} and N(r, oc; f) = N(r, f). By the
second fundamental theorem we know that the set {a : a € CU{o0}, O(a; f) > 0} is
countable and ) O(a; f) < 2. Finally we denote by Na(r,a; f) the counting function
of a-points of f where an a-point of multiplicity m is counted m times if m < 2 and is
counted twice if m > 2 (see e.g. [1]).

In this paper we prove the following theorem which improves Theorem B and The-
orem C.

THEOREM 1. Let S = {2z : 2" —25—1 = 0}. If f and g satisfy ©(occ; f)+0O(c0; g9) >
3/2 and E¢(S,2) = Ey(S,2), then f =g.

2 Preparatory Lemmas

In this section we present some lemmas which will be required to prove our main
Theorem. The first one is in [9].

LEMMA 1. Let P(f) = Z?:o ajf?, where ag,ai,...,a,(# 0) are such that
T(r,a;) = S(r, f) for j =0,1,...,n. Then T'(r, P(f)) = nT(r, f) + S(r, f).

LEMMA 2. If ©(oc; f)+O(00; g) > 3/2, then for n > 3, fr=1(f—1)g" (g—1) # 1.

PROOF. Assume to the contrary that

-0 g - =1 (1)

Suppose f does not have any pole. Then from (1) it follows that g has no zero nor
1-point. So by the deficiency relation we get O(oc0; g) = 0, which contradicts the given
condition. So the lemma is proved in this case. Similarly we can prove the lemma when
g does not have any pole. Now we suppose that f and g have poles. From (1), we see
that if zg is a zero of f with multiplicity p then zg is a pole of g with multiplicity ¢ such
that p(n—1) = ng, i.e., p = gn/(n—1). Since n, p, q are all positive integers, it follows
that p > n. Hence O(0; f) > 1 — 1/n. Again from (1), we see that if z is an 1-point
of f with multiplicity p then zq is a pole of g with multiplicity ¢ such that p = nq and
so p > n. Hence O(1; f) > 1 —1/n. Similarly we can prove that ©(0;¢) > 1 —1/n and
©(1;9) > 1 —1/n. So by the deficiency relation we get

0(0; f) +O(1; f) + ©(0; 9) + O(1;9) + O(o0; f) + O(00; g) < 4,

or,

1. 3
41-=)+=<4
(1-=)+5<4,
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or n < 8/3, a contradiction. This proves the lemma.
LEMMA 3. If ©(o0; f) +©O(00;g) > 3/2, then for n > 4, f*1(f-1)=g"1(g—1)

implies f = g.
PROOF. Let
-0 =9""g ). (2)
Assume to the contrary that f # g. Then from (2) we get
n—1
Y
f=1- (3)

1+y+y2+...+yn—1’
where y = g/f. If y is constant then y # 1. Also from (2) we see that y™ # 1 and
y" 1 # 1 and so (2) implies
1— ynfl
f=4—0m

-y

which is a contradiction because f is nonconstant. Let y be nonconstant. From (3) we
get by the first fundamental theorem and Lemma 1 that

- 1 1
T(r,f) = Z o) 8(ry) = (n=DT(r, 2) +5(r,y)
§=0
= (n=1T(r,y)+S(ry).
Now we note that any pole of y is not a pole of 1 —y"~ 1/ Zj 1 "4, So from (3) it
follows that

ZNruk, < N(r,00; f),

where uy, = exp(2kmi/n) for k =1,2,...,n — 1. By the second fundamental theorem
we get

1

3
|

(n—3)T(r,y) N(r,up;y) + S(r,y)

(]

T,OO;f)‘FS(T,y)
1—0(co; f) +e)T(r, f)+ S(r,y)
n—1)(1—06(co; f) + )T (r,y) + S(r,y), (4)

A IA
=il

—~

where € > 0.
Again putting y; = 1/y, noting that T'(r,y) = T(r,y1) + O(1) and proceeding as
above we get

(n=3)T(r,y) < (n—1)(1 = O(o0; 9) + )T (r,y) + S(r,y), ()
where € > 0. From (4) and (5) we get in view of the given condition,

2(n = 3)T(r,y)
< (n=1)(2=6(00; f) = O(00;9) +2)T(r, y) + 5(r,y)
<

1
(n = 1)(5 +2)T(r,9) + 5(r,1),
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which implies a contradiction for all sufficiently small positive € due to the assumption
that n > 4. Hence f = ¢.This completes the proof.

LEMMA 4. If f, g share (1,2), then one of the following holds: (i) T'(r)
NQ(Ta 0; f) + NQ(Ta O;Q) + NQ(Ta 003 f) + NQ(T’ OO;g) + S(T, f)+S(T7g)7 where T(T)
max{T(r, ), T(r,g)}, (ii) fg=1, or, (iil) f =g.

The proof can be found in [7].

I IA

3 Proof of Theorem

Let F = f5(f — 1) and G = ¢%(g — 1). Since E¢(S,2) = E{(S,2), it follows that
F, G share (1,2). Also by Lemma 1, we see that T(r, F) = TT(r, f) + S(r, f) and
T(r,G)="1L(r,g) + S(r,g). Now

Ny(r,0; F) + Na(r,0; G) + Na(r,00; G) + Na(r,00; G) + S(r, F) 4+ S(r,G)

2N (r,0; f) + Na(r,0; f — 1) +2N(r,0; g)

+N2(r, 0;9 — 1) + 2N(r, 00; f) + 2N(r, 00 9) + S(r, f) + S(r, 9)

{6 +2(2 - 6(c0; f) = O(0039) +)}T(r) + S(r, f) + 5(r, 9)

(10 — 20(o0; f) — 20(00; g) + 26)T(r) + S(r, f) + S(r, g), (6)

IN

where £ > 0. Also we see that
max{T(r, F"),T(r,G)} = 7T (r) + S(r, f) + S(r, 9). (7)

From (6) and (7), we see that

max{T(r, F),T(r,G)}

< No(r,0; F) + No(r,0;G) + Na(r, 00; F') + Na(r,00;G) + S(r, F) + S(r, G)

if

TT(r) < (10 — 20(00; f) — 20(00; g) + 2)T(r) + S(r, f) + S(r, g)
ie., if

(26(00; f) +20(00; 9) = 3 = 26)T(r) < S(r, f) + 5(r, 9).

Then a contradiction is reached for sufficiently small positive ¢ because ©(co; f) +
©(00; g) > 3/2. By Lemma 2, we see that F'G % 1 because O(o0; f) + O(o0;g) > 3/2.
Hence applying Lemma 4, we see that F' = G and so by Lemma 3, we get f = g. This
completes the proof.
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