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Oscillation for Nonlinear Neutral Difference Equations∗
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Abstract

In this note, some oscillatory results for neutral difference equations are ob-
tained.

Recently, Tang and Liu in [1] considered delay difference equations of the form

∆xn + qnx
α
n−k = 0, n = 0, 1, 2, ..., (1)

where {qn} is a sequence of nonnegative numbers, k is a positive integer, and α ∈ (0,∞)
is a quotient of odd positive integers. They obtained the following theorems.

THEOREM 1. Assume that 0 < α < 1. Then every solution of (1) oscillates if, and
only if,

∞

n=0

qn =∞. (2)

THEOREM 2. Assume that α > 1. Suppose further that there exists a λ > k−1 lnα
such that

lim inf
n→∞ qn exp −eλn > 0,

then every solution of (1) oscillates.

In this note, we will consider the neutral difference equations

∆ (xn − pxn−l) + qnxαn−k = 0, n = 0, 1, 2, ..., (3)

and
∆2 (xn + pxn−l) + qnxαn−k = 0, n = 0, 1, 2, ..., (4)

where α, k and {qn} are defined as before, l is a positive integer, and 0 ≤ p < 1. It is
clear that equation (1) is a particular case of (3). We will discuss the oscillation of (3)
and (4) in two cases where α < 1 and α > 1. In the sequel, for convenience, when we
write a functional inequality without specifying its domain of validity, we assume that
it holds for all sufficiently large n.

THEOREM 3. Assume that 0 ≤ p < 1 and 0 < α < 1. Then every solution of (3)
oscillates if, and only if, (2) holds.
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PROOF. The fact that oscillation of (3) implies (2) can be found in [2]. Next,
assume that {xn} is an eventually positive solution of (3). In view of Lemma 1 in [3],
we get that zn = xn − pxn−l is eventually positive. Thus,

xn−k = zn−k + pxn−l−k ≥ zn−k + pzn−l−k ≥ (1 + p) zn.
Substituting it into (3), we have

∆zn + qn (1 + p)
α zαn ≤ 0.

Thus
z−αn ∆zn + qn (1 + p)

α ≤ 0. (5)

We define r(t) = zm + (t−m)∆zm, m ≤ t ≤ m + 1. Since ∆zm ≤ 0, then zm+1 ≤
r(t) ≤ zm and

r3(t)
rα(t)

≤ ∆zm
zαm

. (6)

In view of (5), (6) and (2), we obtain

r(∞)

r(N)

dr

rα
= −∞,

which contradicts the fact α ∈ (0, 1). The proof is complete.
If α > 1, 0 ≤ p < 1 and {xn} is an eventually positive solution of (3), then we have

xn−k = zn−k + pxn−l−k = zn−k + pzn−l−k + p2xn−l−2k
= zn−k + pzn−l−k + ...+ pmzn−l−mk + pm+1xn−l−(m+1)k
≤ pmzn−l−mk.

By (3), we have
∆zn + qnp

mαzn−l−mk ≤ 0
for any m ≥ 0. Note that when p > 0,

lim inf
n→∞ qn exp −eλn > 0⇔ lim inf

n→∞ pmαqn exp −eλn > 0.

In view of Theorem 2, we have the following result.

THEOREM 4. Assume that α > 1 and 0 ≤ p < 1. Suppose further that for some
nonnegative integer m there exists a λ > (l +mk)−1 lnα (where m = 0 if p = 0) such
that

lim inf
n→∞ qn exp −eλn > 0,

then every solution of (3) oscillates.

To obtain oscillatory results of equation (4), we need the following lemma which
can be found in [4].

LEMMA 1. An eventually concave sequence {xn}(i.e. ∆2xn ≤ 0 for all large n)
is of constant sign eventually. If xn > 0 and ∆2xn ≤ 0 eventually and ∆2xn has
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a negative subsequence, then {∆xn} is eventually positive. Furthermore, there is a
number θ ∈ (0, 1) such that xn ≥ θn∆xn for all large n.

Assume that {xn} is an eventually positive solution of equation (4). Clearly, we
have yn = xn + pxn−l > θn∆yn > 0 and ∆

2yn ≤ 0. Thus,

xn−k = yn−k − pyn−k−l + p2xn−l−2k ≥ (1− p) yn−k−l
≥ (1− p) θ (n− k − l)∆yn−k−l.

Substituting it into (4), we have

∆2yn + qn (1− p)α θα (n− k − l)α (∆yn−k−l)α ≤ 0.

In view of Theorem 1, we have the following theorem.

THEOREM 5. Assume that α ∈ (0, 1) and p ∈ [0, 1). Suppose further that
∞

n=0

qn (n− k − l)α =∞,

then every solution of (4) oscillates. While if α > 1, p ∈ [0, 1), and there exists
λ > (k + l)

−1
lnα such that

lim inf
n→∞ qn (n− k − l)α exp −eλn > 0,

then all solutions of (4) oscillate.
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