Bifurcation of an equation arising in porous-medium combustion

SHIN-HWA WANG

Department of Mathematics, National Tsing Hua University,
Hsinchu, Taiwan 300, Republic of China

[Received 21 March 1994 and in revised form 4 June 1995]

We study the bifurcation of positive solutions of a steady-state problem arising in porous-medium combustion:

\[\frac{\partial^2 u}{\partial x^2} + \lambda \frac{1 + au}{1 + e^{(1-u)/\epsilon}} = 0 \quad (-1 < x < 1), \]

\[u(-1) = u(1) = 0. \]

We give explicit criteria for a unique solution for all \(\lambda > 0 \) when \(a = 0 \) and for an S-shaped bifurcation curve when \(a > 0 \). We also prove a conjecture of Norbury & Stuart (1987, IMA J. Appl. Math. 39, 241–57).

1. Introduction

Porous-medium combustion occurs in a number of situations including the burning of cocal, the smouldering of polyurethane, the use of catalytic converters as exhaust filters, and the burning of cigarettes; see [1,5]. Recently, a model for combustion in a porous medium was developed by Norbury & Stuart [5]. Norbury & Stuart developed a three-dimensional model for a chemical process of the type

\[\text{solid} + O_2 \rightarrow \text{heat} + CO_2 + \text{ash}. \]

Their model represents conservation of mass and energy for both the gas and solid species, while the fluid flow is governed by Darcy's law and the ideal-gas law. Subsequently, in the case of one-space-dimension combustion, they used a number of asymptotic considerations to arrive at a simplified heat-equation model

\[\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \lambda f(u) = \frac{\partial^2 u}{\partial x^2} + \lambda \frac{1 + au}{1 + e^{(1-u)/\epsilon}} \quad (-1 < x < 1), \quad (1.1) \]

with \(u(\pm1, t) = 0 \) and initial conditions.

In (1.1), \(u \) is the dimensional solid temperature, \(\lambda > 0 \) is the Frank–Kamenetskii parameter, and \(f(u) \) is the reaction rate of the chemical reaction, in which \(\epsilon \) is small is the reciprocal activation energy, and \(a \neq 0 \) is a parameter which determines the ratio of the rate of oxygen consumption to that of the solid. Note that combustion of carbonaceous material typically involves a reciprocal activation energy of \(\epsilon \sim 0.1 \); see [4,5].

The steady-state equation associated with (1.1) is the two-point boundary-value
For simplicity of computation in the analysis of problem (1.2), we let
\[d = \frac{1}{\epsilon} > 0 \]
(1.3)
and rewrite problem (1.2) as
\[-\frac{\partial^2 u}{\partial x^2} = \lambda f(u) = \lambda \frac{1 + au}{1 + e^{a(1-u)}}, \]
(1.4)
\[u(-1) = u(1) = 0. \]

For problem (1.4), we are interested in positive solutions. More importantly, we are interested in positive solutions, \(u \), with
\[\|u\|_\infty > 1; \]
see [4, 5]. Let
\[S = \{(\lambda, u) : \lambda \geq 0 \text{ and } u \text{ is a positive solution of (1.4)}\}. \]
(1.5)
It can be shown by a time-map formula that the bifurcation curve \(S \) defined above is a smooth continuum satisfying
\[\lim_{\lambda \to 0} \lambda = 0, \quad \lim_{\lambda \to +\infty} \lambda = \frac{\pi^2}{4a} := \lambda_\infty. \]

Norbury & Stuart [4] studied (1.4) and they showed that

Proposition (Theorem 6.2 of [4]) There exists a positive stable solution of problem (1.4) (when viewed as a steady state of (1.1)) for all \(\lambda \), \(d > 0 \), whenever
\[0 < \lambda < \lambda_\infty. \]
Through numerical evaluation, Norbury & Stuart [4] claimed that, for any \(\lambda > 0 \), if \(d \) is large enough, two positive numbers \(\lambda, \lambda \) exist, with
\[\lambda < \lambda_\infty < \lambda, \]
(1.6)
such that the bifurcation curve \(S \) is S-shaped; that is, the bifurcation curve \(S \) has exactly two turning points. Moreover, they claimed that

(i) problem (1.4) has exactly three positive solutions for \(\lambda < \lambda < \lambda_\infty \), exactly two positive solutions for \(\lambda < \lambda < \lambda_\infty < \lambda < \lambda \) and \(\lambda = \lambda, \) exactly one positive solution for \(0 < \lambda < \lambda \) and \(\lambda = \lambda, \) and no positive solution for \(\lambda > \lambda; \)

(ii) at the turning points \((\lambda, u_\lambda) \) and \((\lambda, u_\lambda) \) of the S-shaped bifurcation curve \(S, \)
\[\|u_\lambda\|_\infty < 1 < \|u_\lambda\|_\infty \]
(see Fig. 2 and pp. 254–5 of [4]).
In this paper, we prove this claim by Norbury & Stuart [4]. Moreover, we give explicit criteria for a unique solution for all $\lambda > 0$, where $a = 0$, and for an S-shaped bifurcation curve when $a \geq 0$. Our method is based upon detailed analysis of the time-map formula

$$\left[\lambda (\alpha) \right]^a = 2^{-1} \int_0^\alpha \frac{du}{[F(\alpha) - F(u)]^2} := T(\alpha) \quad (\alpha > 0),$$

(1.7)

where $F(x) = \int_0^x f(u) \, du$ and $\alpha = \|u\|_\infty = u(0)$. Note that when $a = 0$ this time-map formula, $T(\alpha)$, has been applied by Norbury & Stuart [5] to the study of the stable positive solution $u = u(x, d)$ of (1.4) with $\|u\|_\infty > 1$ as $d \to +\infty$ (see the appendix of [5] for details).

2. Main results

The main results are given in Theorem 1 for $a = 0$ and in Theorems 2–4 for $a > 0$ in which we study the shape of the bifurcation curve S of positive solutions for (1.4). For $a \geq 0$ and $d > 0$, we say the bifurcation curve S is a monotone curve if the bifurcation curve S has no turning point. That is, problem (1.4) has at most one positive solution for all $\lambda > 0$; see, for example, Fig. 1(a).

Theorem 1 (see Fig. 1) Let $a = 0$ and $d > 0$. Then the bifurcation curve S satisfies

$$\lim_{\alpha \to 0} \lambda (\alpha) = 0, \quad (2.1)$$

$$\lim_{\alpha \to +\infty} \lambda (\alpha) / \alpha = 2. \quad (2.2)$$

Moreover,

(i) the bifurcation curve S is a monotone curve for $0 < d \leq 2$;

(ii) a number $d_0 \approx 2.43751$ exists such that for $d > d_0$, the bifurcation curve S is S-shaped. More precisely, two positive numbers λ and λ^\ast exist, with $\lambda < \lambda^\ast$, such that problem (1.4) has exactly three positive solutions for $\lambda < \lambda < \lambda^\ast$, exactly two positive solutions for $\lambda = \lambda$ and $\lambda = \lambda^\ast$, exactly one positive solution for $0 < \lambda < \lambda$ and $\lambda > \lambda^\ast$. Moreover, at the turning points (λ, u_λ) and $(\lambda^\ast, u_{\lambda^\ast})$ of the S-shaped bifurcation curve S

$$\|u_\lambda\|_\infty < 1 < \|u_{\lambda^\ast}\|_\infty.$$

Theorem 2 (see Fig. 2) Let $a > 0$ and $d > 0$. Then the bifurcation curve S satisfies

$$\lim_{\alpha \to 0} \lambda (\alpha) = 0, \quad (2.3)$$

$$\lim_{\alpha \to +\infty} \lambda (\alpha) = \lambda_\infty \left(= \frac{\pi^2}{4a} \right). \quad (2.4)$$
Fig. 1. Bifurcation curves for: (a) $a = 0$ and $0 < d < 2$, and (b) $a = 0$ and $d > d_0 \approx 2.43751$.

(i) A number $d_1 \approx 3.05084$ exists which is the unique positive root of equality (3.29) and which is independent of a, such that for

$$d > d_1$$

the bifurcation curve S is S-shaped. More precisely, two positive numbers λ and $\bar{\lambda}$ exist, with $\lambda < \bar{\lambda}$ and $\lambda < \lambda_\infty$, such that:

case 1, if $\bar{\lambda} > \lambda_\infty$ then problem (1.4) has exactly three positive solutions for $\lambda < \lambda < \lambda_\infty$, exactly two positive solutions for $\lambda_\infty < \lambda < \bar{\lambda}$ and $\lambda = \lambda_\infty$, exactly one positive solution for $0 < \lambda < \lambda_\infty$ and $\lambda = \bar{\lambda}$, and no positive solution for $\lambda > \bar{\lambda}$;

case 2, if $\bar{\lambda} = \lambda_\infty$ then problem (1.4) has exactly three positive solutions for $\lambda < \lambda < \lambda_\infty$, exactly two positive solutions for $\lambda = \bar{\lambda}$ and $\lambda = \lambda_\infty$, exactly one positive solution for $0 < \lambda < \lambda_\infty$ and $\lambda = \lambda_\infty$, and no positive solution for $\lambda > \lambda_\infty$;

case 3, if $\bar{\lambda} < \lambda_\infty$ then problem (1.4) has exactly three positive solutions for $\lambda < \lambda < \bar{\lambda}$, exactly two positive solutions for $\lambda = \bar{\lambda}$ and $\lambda = \lambda_\infty$, exactly one positive solution for $0 < \lambda < \lambda_\infty$ and $\lambda < \lambda_\infty$, and no positive solution for $\lambda > \lambda_\infty$.

Moreover, at the turning points $(\bar{\lambda}, u_{\bar{\lambda}})$ and $(\lambda_\infty, u_{\lambda_\infty})$ of the S-shaped bifurcation curve S,

$$\|u_{\bar{\lambda}}\|_\infty < 1 < \|u_{\lambda_\infty}\|_\infty.$$

(2.6)
(ii) In addition to (2.5), if
\[d > d_2 := 2 \log \left(\frac{2 + a}{8a} \right) \pi^2 - 1 \]
then
\[\bar{\lambda} > \lambda_\infty; \]
that is, only case 1 occurs (see Fig. 2(a) and figure 5 of [4]).
Note that
\[\max (d_1, d_2) = \begin{cases} d_1 & \text{if } a > \hat{a}, \\ d_2 & \text{if } a < \hat{a}, \end{cases} \]
for some \(\hat{a} \approx 0.56548 \).

For \(a > 0 \) (compare with \(a = 0 \) in Theorem 1), it is interesting that the bifurcation curve \(S \) is S-shaped if \(d > 0 \) is small. This is equivalent to saying that, for any \(d > 0 \), the bifurcation curve \(S \) is S-shaped if \(a \) is sufficiently large.

Theorem 3
Let \(a > 0 \) and \(d > 0 \). In addition to (2.3) and (2.4), if
\[
\frac{a}{d} > \frac{d}{e^{x^2} + e^{x^2 + d} + e^{x^2 + d}} := A(d)
\]
then the bifurcation curve \(S \) is S-shaped. More precisely, two positive numbers \(\lambda \) and \(\bar{\lambda} \) exist with \(\lambda < \bar{\lambda} \) and \(\bar{\lambda} < \lambda_{\infty} \) \((= \pi^2/4a) \) such that:

case 1, if \(\lambda > \lambda_{\infty} \) then problem (1.4) has exactly three positive solutions for \(0 < \lambda < \lambda_{\infty} \), exactly two positive solutions for \(\lambda_{\infty} < \lambda < \bar{\lambda} \) and \(\lambda = \bar{\lambda} \), exactly one positive solution for \(\lambda = \bar{\lambda} \) and no positive solution for \(\lambda > \bar{\lambda} \);

case 2, if \(\bar{\lambda} = \lambda_{\infty} \) then problem (1.4) has exactly three positive solutions for \(\bar{\lambda} < \lambda < \lambda_{\infty} \), exactly two positive solutions for \(\lambda = \bar{\lambda} \), exactly one positive solution for \(\lambda = \lambda_{\infty} \) and no positive solution for \(\lambda > \lambda_{\infty} \);

case 3, if \(\bar{\lambda} < \lambda_{\infty} \) then problem (1.4) has exactly three positive solutions for \(\lambda < \bar{\lambda} \), exactly two positive solutions for \(\lambda = \bar{\lambda} \) and \(\lambda = \lambda_{\infty} \), exactly one positive solution for \(0 < \lambda < \lambda_{\infty} \) and \(\bar{\lambda} < \lambda < \lambda_{\infty} \), and no positive solution for \(\lambda = \lambda_{\infty} \).

In addition to (2.2), if
\[
a > \frac{d\pi^2}{8e^{x^2 - 1} - \pi^2 + 8},
\]
then
\[
\bar{\lambda} > \lambda_{\infty},
\]
that is, only case 1 occurs.

Note, for \(a > 0 \), suppose \(d \) is small and that it satisfies (2.8) (contrast with the case when \(d \) is large and satisfies (2.5); see Theorem 2 and Fig. 2); if
\[
0 < d < \frac{2}{1 + a},
\]
then it can be shown that \(\theta'(u) := f(u) - uf''(u) > 0 \) on \((0, 1)\) and hence \(T'(<a) > 0 \) for \(0 < a \leq 1 \) (see (3.1)-(3.3)). So, at the turning point \((\bar{\lambda}, \|u_{\bar{\lambda}}\|_{\infty})\) of the S-shaped bifurcation curve \(S \),
\[
\|u_{\bar{\lambda}}\|_{\infty} > 1;
\]
compare this with (2.6) in Theorem 2.

We obtain the next theorem as an easy corollary to Theorems 2 and 3.
Theorem 4 (see Fig. 3) Let \(a > 0, \ d > 0 \).

(i) If either (2.5) or (2.8) holds, then the bifurcation curve \(S \) is S-shaped.

(ii) For \(d > 0 \), the bifurcation curve of a positive solution for problem (1.4) is S-shaped if

\[
a > \bar{a} := \max_{d \in [0,d_1]} A(d) \approx 2.10492,
\]

where \(A(d) \) is defined in (2.8).

3. **Proofs of Theorems 1–4**

For Theorem 4, part i is an immediate consequence of Theorems 2 and 3, and part ii follows easily from part i; see Fig. 3. In the following, we shall prove Theorems 1–3 by an analysis of the time map \(T(\alpha) \) in (1.7). First, note that the solutions \(u \) of (1.4) corresponds to \(\|u\|_\omega = \alpha \) and \(T(\alpha) = \lambda^\frac{1}{2} \). Thus,

(A) to show that the bifurcation curve \(S \) is S-shaped on the \((\lambda, \|u\|_\omega)\)-plane is equivalent to showing that the time map \(T(\alpha) \) has exactly two critical points, a local maximum and a local minimum, on \((0, +\infty)\);

(B) to show that the bifurcation curve \(S \) is a monotone curve on the \((\lambda, \|u\|_\omega)\)-plane is equivalent to showing that the time map \(T(\alpha) \) is an increasing function of \(\alpha \) on \((0, +\infty)\).

For \(T(\alpha) \) in (1.7), it is easy to compute that

\[
T'(\alpha) = 2^{-\frac{1}{4}} \int_0^\alpha \frac{\theta'(\alpha) - \theta(u)}{[F'(\alpha) - F(u)]^{\frac{3}{4}}} \frac{du}{\alpha},
\]

(3.1)
where

\[\theta(x) = 2F(x) - xf(x) \]
(3.2)

and (3.2) gives

\[\theta'(x) = f(x) - xf'(x), \]
(3.3)

\[\theta''(x) = -xf''(x), \]
(3.4)

which are useful in our analysis of the time map \(T \). We first study the graph of the nonlinear function \(f(u) \) in (1.4).

Lemma 5 For \(a \geq 0 \) and \(d > 0 \), \(f(u) = (1 + au)/(1 + e^{d(1-u)}) \in C^2(0, +\infty) \) and it satisfies

1. \(f(u) > 0 \) on \([0, +\infty)\);
2. \(f'(u) > 0 \) on \((0, +\infty)\);
3. \(f(u) \sim 1 + au \) as \(u \to +\infty \);
4. for fixed \(a \geq 0 \), \(f(u) \) has exactly one positive inflection point at some point \(C = C(d) \) such that

\[f''(u) > 0 \quad \text{on} \quad (0, C), \quad f''(C) = 0, \quad f''(u) < 0 \quad \text{on} \quad (0, +\infty). \]
(3.5)

More precisely,

\[C = 1 \quad \text{if} \quad a = 0, \]
(3.6)

\[C > 1 \quad \text{if} \quad a > 0, \]
(3.7)

\[1 < C < 2 \quad \text{if} \quad d \geq 2, \]
(3.8)

\[\lim_{d \to +\infty} C(d) = 1 \quad \text{if} \quad a > 0. \]
(3.9)

Proof. Parts i and iii are easy. So we will only prove parts ii and iv. For \(f(u) = (1 + au)/(1 + e^{d(1-u)}) \), we compute

\[f'(u) = \frac{a + (a + d + adu)e^{d(1-u)}}{(1 + e^{d(1-u)})^2} > 0 \quad \text{on} \quad (0, +\infty), \]
(3.10)

\[f''(u) = \frac{de^{d(1-u)}(2a - d + 2ae^{d(1-u)} + de^{d(1-u)} - adu + adue^{d(1-u)})}{(1 + e^{d(1-u)})^3}; \]
(3.11)

(3.10) is part ii. For part iv, let

\[H(u) = 2a - d + 2ae^{d(1-u)} + de^{d(1-u)} - adu + adue^{d(1-u)}. \]
(3.12)
It is easy to see that finding the inflection point C for $f(u)$ is equivalent to finding the zero point of $H(u)$. Now

$$H(0) = 2a + 2ae^d + d(e^d - 1) > 0,$$

$$H(1) = 4a \begin{cases} = 0 & \text{if } a = 0, \\ > 0 & \text{if } a > 0, \end{cases}$$

$$H(2) = 2a - d - 2ad + (2a + d + 2ad)e^{-d}$$

$$= 2a - d - 2ad + \frac{1}{2}(2a + d + 2ad)$$

(since $e^{-d} < \frac{1}{2}$ if $d < 2$)

$$= -\frac{d}{2} + (\frac{1}{2} - \frac{1}{2}d)a$$

if $d > 2$

$$< 0 \text{ if } d < 2,$$

$$H'(u) = -(ad + d^2 + ad^2)ue^{-d} (1 - u) - ad < 0 \text{ on } (0, +\infty).$$

Now (3.13)–(3.15) prove (3.5)–(3.8), since in (3.11), for $d > 0$,

$$de^{d(1-u)} > 0 \text{ and } (1 + e^{d(1-u)})^3 > 0.$$

Next, we prove (3.9). First,

$$H(1 + 1/d) = e^{-1}[3 + a + a + d(1 + a)(1 - e)]$$

$$< 0 \text{ if } d \text{ is large enough;}$$

(3.17)

secondly, (3.14) and (3.17) prove that (3.9) holds. Thus part iv holds. □

The next lemma is the key lemma to Theorems 1–4, in which we study the bifurcation curve of positive solutions for problem (1.4); this is equivalent to studying $\lambda(\alpha) (= [T(\alpha)]^2)$ in (1.7).

Lemma 6 For a given $a \geq 0$,

$$\lim_{\alpha \to 0} \lambda(\alpha) = 0,$$

$$\lim_{\alpha \to +\infty} \frac{\lambda(\alpha)}{\alpha} = 2 \text{ if } a = 0,$$

$$\lim_{\alpha \to +\infty} \lambda(\alpha) = \frac{\pi^2}{4\alpha} \text{ if } a > 0.$$

Moreover, for $d > 0$, let $C = C(d)$ be the unique positive inflection point for $f(u)$ in (1.4).

(i) If

$$\theta'(C) = 0,$$
then the bifurcation curve S is a monotone curve (see Fig. 1(a));

(ii) if

$$\theta(C) < 0,$$ \hspace{1cm} (3.22)

then $T'(C) < 0$ and the bifurcation curve S is S-shaped (see Fig. 1(b) for $a = 0$ and Fig. 2 for $a > 0$).

Proof. Since $f(0) = 1/(1 + e^a) > 0$, (3.18) follows from the well-known result that

$$\lim_{a \to 0} [\lambda(a)]^{1/2} = \lim_{a \to 0} T(\alpha) = 0;$$

see theorem 2.9 of [3].

Now (3.19) is the result of a theorem in [2]; and (3.20) is a well-known result (theorem 2.7 in [3]). By (3.2)-(3.5), it is easy to see that

$$\theta(0) = 0, \quad \theta'(0) = f(0) > 0,$$

$$\theta''(x) > 0 \quad \text{on} \quad (0, C), \quad \theta''(C) = 0, \quad \theta'(x) < 0 \quad \text{on} \quad (C, +\infty).$$

Thus:

(i) If $\theta'(C) \geq 0$, $\theta(x)$ is a strictly increasing function on $(0, +\infty)$, which implies that $T(\alpha)$ is a strictly increasing function of α on $(0, +\infty)$, by (3.1). So the bifurcation curve S is a monotone curve.

(ii) If $\theta(C) < 0$, then $T'(C) < 0$ by (3.1). Moreover, since $f(x) \sim 1 + ax$ as $x \to +\infty$, $\lim_{x \to +\infty} \theta(x) = +\infty$. Then the same argument used to prove theorem 3 in [6] can be applied to show that the corresponding time map $T(\alpha)$ to $f(u)$ has exactly two critical points, one local maximum and one local minimum, on $(0, +\infty)$. That is, by (1.7), the bifurcation curve S is S-shaped. \(\square\)

The proof of part ii of Lemma 6 showing that the bifurcation curve is S-shaped is also of general interest for nonlinearities. We write it as the next theorem.

Theorem 7 (cf. theorem 3 of [6]) Consider

$$-u''(x) = \lambda f(u(x)) \quad (-1 < x < 1),$$

where $\lambda > 0$ and f is defined on $[0, +\infty)$ satisfying

(H1) $f \in C^2([0, +\infty), f(u) > 0$ on $[0, +\infty)$, and $f''(u) > 0$ on $[0, +\infty)$;

(H2) there exists a number $C > 0$ such that

$$f''(u) > 0 \quad \text{on} \quad (0, C), \quad f''(C) = 0, \quad f''(u) < 0 \quad \text{on} \quad (C, +\infty);$$

(H3) $f(u) \sim 1 + au$ for some $a \geq 0$ as $u \to +\infty$;

(H4) $\tilde{T}(C) := 2\tilde{F}(C) - C\tilde{f}(C) < 0$ (where $\tilde{F}(u) := \int_0^u \tilde{f}(s) \, ds$).

Then, in addition to (3.18)-(3.20), the bifurcation curve S is S-shaped.

We are now in a position to prove Theorems 1-3.
Proof of Theorem 1 Now (2.1) and (2.2) follow from Lemma 6. Moreover, by (3.6), for \(a = 0 \), we have \(C = 1 \).

(i) It can be shown that
\[
\theta'(C) = \theta'(1) = \frac{1}{2}(2 - d) \geq 0 \quad \text{if } 0 < d \leq 2.
\]
Thus, by Lemma 6, the bifurcation curve \(S \) is a monotone curve for \(0 < d \leq 2 \).

(ii) It can be shown that
\[
\theta(C) = \theta(1) = 2F(1) - f(1) = \frac{[3d + 4 \log 2 - 4 \log (1 + e^d)]/2d}{< 0 \quad \text{if } d > d_0,}
\]
where \(d_0 \approx 2.43751 \) is the unique positive root of
\[
3d + 4 \log 2 - 4 \log (1 + e^d) = 0.
\]
Thus, by Lemma 6, the bifurcation curve \(S \) is \(S \)-shaped if \(d > d_0 \approx 2.43751 \). Moreover, \(T'(C) = T'(1) < 0 \) by Lemma 6. By the graph of \(T(\alpha) \) on \((0, +\infty)\) and by (1.7), at the turning points \((\lambda, u_A)\) and \((\lambda, u_B)\) of the \(S \)-shaped bifurcation curve \(S \),
\[
\|u_A\|_\infty < 1 < \|u_B\|_\infty;
\]
see Fig. 1(a). \(\square \)

Proof of Theorem 2. Now (2.3) and (2.4) follow from Lemma 6. Moreover, by (3.7), for \(a > 0 \), we have \(C > 1 \). In the following, we show that
\[
\theta(C(d)) < 0
\]
if \(d > d_1 \) for some \(d_1 \approx 3.05084 \), which is the unique positive root of (3.29). By (3.3),
\[
\theta'(0) = f(0) = \frac{1}{1 + e^d} > 0.
\]
By (3.4) and (3.5),
\[
\theta''(u) = -uf''(u) < 0 \quad \text{on } (0, C). \tag{3.24}
\]
Thus the function \(\theta'(u) \) is a strictly decreasing function on \((0, C)\). To show \(\theta(C(d)) < 0 \) for \(d > d_1 \), we compute and find that
\[
\theta'(\frac{1}{2}) = \frac{4 + 4e^{d_1} - 2de^{d_1} - ade^{d_1}}{4(1 + e^{d_1})^2} < 0 \iff \frac{4e^{-d_1^2} + 4 - 2d}{d} < a, \tag{3.25}
\]
in which, for any \(a > 0 \), \((4e^{-d_1^2} + 4 - 2d)/d < a \) for \(d > d_1 \) for some \(d_1 \approx 2.55693 \), which is the unique positive root of
\[
4e^{-d_1^2} + 4 - 2d = 0.
\]
Thus, for $d > d_3 \approx 2.556\,93$,

$$\theta'(C) < \theta'(1) < \theta'(\frac{1}{2}) < 0. \tag{3.26}$$

Since $\theta'(u)$ is a strictly decreasing function on $(0, C)$ and $\theta'(u) < 0$ on $(1, C)$,

$$\theta(C) = \int_0^C \theta'(u) \, du$$

$$< \int_0^1 \theta'(u) \, du \quad (= \theta(1))$$

$$= \int_0^1 \theta'(u) \, du + \int_\frac{1}{2}^1 \theta'(u) \, du$$

$$< \int_0^1 \theta'(0) \, du + \int_\frac{1}{2}^1 \theta'(\frac{1}{2}) \, du$$

$$= \frac{1}{2} [\theta'(0) + \theta'(\frac{1}{2})]$$

$$= \frac{1}{2} \left(\frac{1}{1 + e^d} + \frac{4 + 4e^{d/2} - 2de^{d/2} - ade^{d/2}}{4(1 + e^{d/2})^2} \right). \tag{3.27}$$

In (3.27),

$$\frac{1}{1 + e^d} + \frac{4 + 4e^{d/2} - 2de^{d/2} - ade^{d/2}}{4(1 + e^{d/2})^2} < 0$$

if and only if

$$\frac{2(4 + 6e^{d/2} - de^{d/2} + 4e^d + 2e^{3d/2} - de^{3d/2})}{de^{d/2}(1 + e^d)} < a. \tag{3.28}$$

Now (3.28) holds for any $a > 0$ if

$$d > d_1,$$

where $d_1 \approx 3.050\,84$ is the unique positive root of

$$4 + 6e^{d/2} - de^{d/2} + 4e^d + 2e^{3d/2} - de^{3d/2} = 0. \tag{3.29}$$

We conclude that if $d > d_1 \approx 3.050\,84$, then

$$\theta(C(d)) < \theta(1) < 0, \tag{3.30}$$

and hence Lemma 6 implies that $T'(C) < 0$ (C > 1) and that the bifurcation curve S is S-shaped. Similarly, as before, by the graph of $T(\alpha)$ on $(0, +\infty)$ and by (1.7), at the turning points (λ, u_λ) and (λ, u_λ) of the S-shaped bifurcation curve S

$$\|u_\lambda\|_\infty < 1 < \|u_\lambda\|_\infty.$$
In the above, we know that $C > 1$ and that the time map $T(\alpha)$ has exactly one critical point, a local maximum, say at $\alpha = \widetilde{\alpha} < C$ on $(0, C)$. Then, by (1.7),
\[
\bar{\lambda} = [T(\widetilde{\alpha})]^2 > [T(\frac{1}{2})]^2 = \left(2^{-1} \int_0^{\frac{1}{2}} [F(\frac{1}{2}) - F(u)]^{-1} du \right)^2 = \left(2^{-1} \int_0^{\frac{1}{2}} [f(\frac{1}{2})(\frac{1}{2} - u)]^{-1} du \right)^2
\]
for some b, with $0 < u < b < \frac{1}{2}$, by the mean value theorem.

Since $f'(u) > 0$ on $(0, +\infty)$,
\[
\bar{\lambda} > \left(2^{-1} \int_0^{\frac{1}{2}} [f(\frac{1}{2})(\frac{1}{2} - u)]^{-1} du \right)^2 = \left[f(\frac{1}{4}) \right]^{-1} \left(2^{-1} \int_0^{\frac{1}{2}} (\frac{1}{2} - u)^{-1} du \right)^2 = \left[f(\frac{1}{4}) \right]^{-1} = \frac{1 + e^{\frac{d}{2}}}{1 + \frac{1}{2}a}.
\]

Thus
\[
\bar{\lambda} > \lambda_{\infty}
\]
if
\[
\frac{1 + e^{\frac{d}{2}}}{1 + \frac{1}{2}a} > \frac{\pi^2}{4a},
\]
which is equivalent to (2.7), that is, to
\[
d > 2 \log \left[\frac{(2 + a)}{8a} \right] \pi^2 - 1.
\]
That is, in addition to (2.5), if (2.7) holds then $\bar{\lambda} > \lambda_{\infty}$. \(\Box\)

Proof of Theorem 3 Now (2.3) and (2.4) follow from Lemma 6. Similarly, as before, we next show that $\theta(C(d)) < 0$ if (2.8) holds. First, suppose (2.8) holds. It is then easy to compute, and verify, that for $d < 0$

(i) \[
a > \frac{d(2e^2 + 2e^{2d} + 2e^{1+d} + e^{2+d})}{e^{1+d} + e^{2+d}} > de^{1-d},
\]
which implies
\[
\theta'(1/d) = \frac{de^{1-d} - a}{d(1 + e^{d-1})^2} < 0; \quad (3.31)
\]
(ii)

\[a > \frac{d(2e^2 + e^{2d} + 2e^{1+d} + e^{2+d})}{e^{1+d} + e^{2+d}} > \frac{1}{4}d(e^{2d} - 1), \]

which implies

\[f''(2/d) = \frac{4de^{2+2d}[a - \frac{1}{4}d(e^{2d} - 1)]}{(e^2 + e^d)^3} > 0, \]

and hence

\[\frac{1}{d} < \frac{2}{d} < c, \quad (3.32) \]

by (3.5).

Now, by (3.31) and (3.32), and by the fact that the function \(\theta'(u) \) is strictly decreasing on \((0, C) \) (since \(\theta''(u) = -uf''(u) < 0 \) on \((0, C) \)), we have

\[\theta(C) = \int_0^C \theta'(u) \, du \]

\[< \int_0^{2/d} \theta'(u) \, du \]

\[= \int_0^{1/d} \theta'(u) \, du + \int_{1/d}^{2/d} \theta'(u) \, du \]

\[< \int_0^{1/d} \theta'(0) \, du + \int_{1/d}^{2/d} \theta'(1/d) \, du \]

\[= \frac{1}{d} [\theta'(0) + \theta'(1/d)] \]

\[= \frac{1}{d} \left(\frac{1}{1 + e^d} + \frac{de^2 - a e^{d+1}}{d(e + e^d)^2} \right) \]

\[= \frac{d(2e^2 - e^{2d} + 2e^{1+d} + e^{2+d}) - a(e^{1+d} + e^{1+2d})}{d^2(1 + e^d)(e + e^d)^2} \]

\[< 0, \]

if

\[a > \frac{d(2e^2 + e^{2d} + 2e^{1+d} + e^{2+d})}{e^{1+d} + e^{1+2d}}, \]

which is (2.8). Thus, if (2.8) holds, by Lemma 6, the bifurcation curve \(S \) is S-shaped.

In addition to (2.8), suppose (2.9) holds, we next show

\[\bar{\lambda} > \lambda_\infty \quad (= \pi^2/4a). \]
In the above, we know that $C > 2/d$ and that the time map $T(\alpha)$ has exactly one critical point, a local maximum, say at $\alpha = \bar{\alpha} < C$, on $(0, C)$. Then by (1.7),

$$\bar{\lambda} = [T(\bar{\alpha})]^2 > [T(1/d)]^2 = \left(2^{-1} \int_0^{1/d} [F(1/d) - F(u)]^{-1} \, du \right)^2 = \left(2^{-1} \int_0^{1/d} [f(b)(1/d - u)]^{-1} \, du \right)^2$$

for some b, with $0 < u < b < 1/d$, by the mean value theorem; since $f'(u) > 0$ on $(0, +\infty)$

$$\bar{\lambda} > \left(2^{-1} \int_0^{1/d} [f(1/d)(1/d - u)]^{-1} \, du \right)^2 = [f(1/d)]^{-1} \left(2^{-1} \int_0^{1/d} (1/d - u)^{-1} \, du \right)^2 = [f(1/d)]^{-1} \frac{2}{d} = \frac{2(1 + e^{d-1})}{a + d}.$$

Thus

$$\bar{\lambda} > \lambda_\infty$$

if

$$\frac{2(1 + e^{d-1})}{a + d} > \frac{\pi^2}{4a},$$

which is equivalent to (2.9), that is, to

$$a > \frac{d\pi^2}{8e^{d-1} - \pi^2 + 8}.$$

That is, in addition to (2.8), if (2.9) holds then $\bar{\lambda} > \lambda_\infty$. □

4. A conjecture

We finish by giving a conjecture for the bifurcation diagram for problem (1.4). By Theorems 1–4, and by some numerical evaluation, we advance the conjecture that, for any $a \geq 0$ and for $d > 0$, problem (1.4) has at most three positive solutions for each $\lambda > 0$. Moreover, on defining the sets

$$F = \{(a, d) : a > 0, d > 0\}, \quad F_0 = \{(a, b) : a \geq 0, d > 0\},$$

there exists a simple connected compact set $M \subset F_0$ with $M \cap F \neq \emptyset$, which contains the set $\{(0, d) : 0 < d \leq 2\}$ such that
(i) the bifurcation curve \(S \) is S-shaped if \((a, d) \in F_0 \setminus M\),

(ii) the bifurcation curve \(S \) is a monotone curve if \((a, d) \in M\);

see Fig. 3.

\textit{Note}, numerical evaluation shows that for \(a = 1 \), the bifurcation curves \(S \) are S-shaped for all \(d > 0 \), and for \(a = 0.01 \) the bifurcation curves \(S \) are monotonic for \(0.01 < d < 1 \).

\textbf{Acknowledgement}

The author thanks the referee for many useful suggestions and valuable comments. The author is grateful to the National Science Council of the Republic of China for financial support.

\textbf{References}

