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Abstract. We study a chemostat model that describes competition between n microbial species
for a single-limited resource based on storage. The model incorporates internal resource storage
variables that serve the direct connection between species growth and external resource availability.
Mathematical analysis for the global dynamics of the model is carried out by using the fluctuating
method. It is shown that competitive exclusion principle holds for the limiting system of the model.
The species with the smallest ambient nutrient concentration wins the competition. We extend the
result of competitive exclusion in the paper [SW1] from two species to n species.
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1. Introduction. One of the basic hypotheses in the mathematical modeling of
competition of microorganisms for a single-limited nutrient in a continuous culture
([HHW],[T],[FS],[AM],[SW2]), is that the rate of consumption of nutrient and the rate
of growth of organism are directly proportional ([M]): (Rate of growth of organism)=
y (rate of consumption of nutrient), y is called the yield constant and is determined
over a finite period of time by

y =
weight of organism formed
weight of the nutrient used

.

In phytoplankton ecology, it has long been known that the yield can varies depend
on the growth rate([D], [G1], [G2], [CN1], [CN2]). Droop[D] is the first one to give
a variable yield model, or so called ”internal storage” model. He proposed the ideas
that organism consumes the nutrient and converts the nutrient into internal storage
(cell quota). When the internal storage is below the minimum cell quota, organism
ceases to grow. If the cell quota is above the minimum cell quota, then the growth
rate increases with cell quota. Furthermore the nutrient uptake rate increases with
nutrient concentration and decreases with cell quota. The model of growth with
one limiting nutrient incorporating these relations has been tested in both constant
and fluctuating environments ([G3], [SC]). Thus the variable yield models are well
supported experimentally.

In [SW1], the authors studied the competition between two species competing for
a single-limited resource with internal storage. They applied the method of monotone
dynamical system [S] to show that competitive exclusion principle holds. When the
number of species is greater than two, the method of monotione dynamical system no
longer works. In this paper we shall rigorously prove that the competitive exclusion
principle also hold for the competition between n microbial species, n ≥ 2 for a
single-limited resource with internal storage. The result is similar to that of the
classical simple chemostat model [HHW]: the species with smallest ambient nutrient
concentration wins the competition.
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In the section two, we present the mathematical model and state the main re-
sults. In the section three we give the proof of the main theorem. The main tools
in the proof are: the conservation principle, which allows the reduction of (2n + 1)-
dimensional system of ordinary differential equations to (2n)-dimensional one; fluctu-
ating method [HHG, WX], which provides tools to determine the global behavior of the
(2n)-dimensional reduced system; and finally, results on asymptotically autonomous
system due to Thieme [Th], which show that the (2n+1)-dimensional system and the
reduced (2n)-dimensional system have the same global asymptotic behavior. In the
section 4, we discuss the update mathematical models of microorganisms competing
for multiple nutrients in phytoplankton ecology. Several open problems are presented
for future research.

2. The model and main result. The model of n species, n ≥ 2, competing
for a single-limited resource with internal storage in a chemostat, takes the form

S′(t) = (S(0) − S(t))D −
n∑

i=1

xi(t)fi(S(t), Qi(t)),

x′i(t) = [µi(Qi(t))−D]xi(t),
(2.1)

Q′
i(t) = fi(S(t), Qi(t))− µi(Qi(t))Qi(t),

S(0) ≥ 0, xi(0) > 0, Qi(0) ≥ Qmin,i, i = 1, 2, · · · , n.

Here S(t) denotes the concentration of external limiting resource in the chemostat
at time t, xi(t) denotes the concentration of species i at time t, Qi(t) represents the
average amount of stored nutrient per cell of species i at time t, µi(Qi) is the growth
rate of species i as a function of cell quota Qi, fi(S, Qi) is the per capita uptake rate of
species i as a function of resource concentration S and cell quota Qi, S(0) is the input
concentration, D is the dilution rate of the chemostat, Qmin,i denotes the threshold
cell quota below which no growth of species i occurs. The growth µi(Qi) takes the
following forms [D, G1, G2, CN1, CN2]

µi(Qi) = µi∞

(
1− Qmin,i

Qi

)
,

µi(Qi) = µi∞
(Qi −Qmin,i)+

Ki + (Qi −Qmin,i)+
,

where Qmin,i is the minimum cell quota necessary to allow cell division and (Qi −
Qmin,i)+ is the positive part of (Qi −Qmin,i) and µi∞ is the maximal growth rate of
the species. According to Grover [G2],

fi(S, Qi) = ρi(Qi)
S

ai + S
,

ρi(Qi) = ρhigh
max − (ρhigh

max − ρlow
max)

Qi −Qmin,i

Qmax,i −Qmin,i
,

where Qmin,i ≤ Qi ≤ Qmax,i. Cunningham and Nisbet [CN1, CN2] and Klausmeier
and et [KL, KLL] took ρi(Qi) to be a constant.

Motivated by these examples, we assumed that µi(Qi) is defined and continuously
differentiable for Qi ≥ Pi > 0 and satisfies

µi(Qi) ≥ 0, µ′i(Qi) > 0 and continuous for Qi ≥ Pi, µi(Pi) = 0.(2.2)
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In both examples above, Pi = Qmin,i. We assume that fi(S, Qi) is continuous differ-
entiable for S > 0 and Qi ≥ Pi and satisfies

fi(0, Qi) = 0,
∂fi

∂S
> 0,

∂fi

∂Qi
≤ 0.(2.3)

In particular fi(S, Qi) > 0 when S > 0.
From (2.2) and (2.3), it follows that Q′

i ≥ 0 if Qi = Pi and the interval of Qi values
[Pi,∞) is positively invariant under the dynamics of (2.1). Therefore we assume the
initial values satisfy

xi(0) > 0, Qi(0) ≥ Pi, S(0) ≥ 0, i = 1, 2, · · · , n.(2.4)

Assume the equilibrium E takes the form

E = (S, x1, Q1, · · · , xn, Qn).

Then we have the following steady states:
(i) The washout steady state

E0 = (S(0), 0, Q0
1, 0, Q0

2, · · · , 0, Q0
n)

always exists. Here Q0
i is the unique solution of

fi(S(0), Qi)−Qiµi(Qi) = 0.(2.5)

(ii)

E1 = (λ1, x
∗
1, Q

∗
1, 0, Q̂1

2, 0, Q̂1
3, · · · , 0, Q̂1

n),
E2 = (λ2, 0, Q̂2

1, x
∗
2, Q

∗
2, 0, Q̂2

3, · · · , 0, Q̂2
n),

...
En = (λn, 0, Q̂n

1 , 0, Q̂n
2 , · · · , 0, Q̂n

n−1, x
∗
n, Q∗

n).

The equilibrium Ei corresponds to the presence of i-th population and the absence of
the others. The parameter λi, Q

∗
i , x

∗
i , Q̂

i
j , j 6= i satisfy

µi(Q∗
i ) = D,(2.6)

fi(λi, Q
∗
i ) = µi(Q∗

i )Q
∗
i = DQ∗

i ,(2.7)

x∗i =
(S(0) − λi)D
fi(λi, Q∗

i )
=

S(0) − λi

Q∗
i

,(2.8)

fj(λj , Q̂
i
j) = µj(Q̂i

j)Q̂
i
j , j 6= i.(2.9)

The steady state Ei exists if and only if the equation µi(Qi) = D has a unique solution
Q∗

i and

fi(S(0), Q∗
i ) > DQ∗

i .

Lemma 2.1. The solutions S(t), x1(t), Q1(t), · · · , xn(t), Qn(t) of system (2.1) are
positive and bounded for all t ≥ 0. Furthermore,

S(t) +
n∑

i=1

Qi(t)xi(t) = S(0) + O(e−Dt), t →∞.(2.10)
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and there exists γi > Pi, t0 > 0 such that Qi(t) ≥ γi for all t ≥ t0 for i = 1, 2, . . . , n.

The above lemma is a statement that system (2.1) is as ”well-behaved” as one
intuits from the biological problem. (2.10) is the conservation principle. Therefore all
solutions of (2.1) asymptotically approach

S(t) +
n∑

i=1

Qi(t)xi(t) = S(0),(2.11)

as t → ∞. Consequently, as a first step in the analysis of (2.1) we consider the
restriction of (2.1) to the exponentially attracting invariant subset given by (2.11).
Dropping S from (2.1) and letting Ui = Qixi, 1 ≤ i ≤ n, we obtain the following
system

U ′
i(t) = fi

(
S(0) −

n∑
i=1

Ui(t), Qi(t)

)
Ui(t)
Qi(t)

−DUi(t),

Q′
i(t) = fi

(
S(0) −

n∑
i=1

Ui(t), Qi(t)

)
− µi(Qi(t))Qi(t),(2.12)

Ui(0) > 0, Qi(0) ≥ Pi, 1 ≤ i ≤ n,
n∑

i=1

Ui(0) ≤ S(0).

We note that Ui(t) is the total amount of stored nutrient of i-th species at time t.
In the next section, we shall study the reduced limiting system (2.12). The relevant
domain for (2.12) is

Ω =
{

(U1, Q1, · · · , Un, Qn) ∈ R2n :
∑n

i=1 Ui ≤ S(0), Uk ≥ 0,
Qk ≥ Pk, k = 1, 2, · · · , n

}
,(2.13)

which is positively invariant under (2.12).
Lemma 2.2. Let (S(t), x1(t), Q1(t), . . . , xn(t), Qn(t)) be the sytem of (2.1). For

1 ≤ i ≤ n. If either one of the following cases holds,
(i) µi(Qi) < D for all Qi ∈ [Pi,∞);
(ii) (2.6) holds with fi(S, Q∗

i ) < µi(Q∗
i )Q

∗
i for all S ∈ [0, S(0)];

(iii) (2.6) and (2.7) hold with S(0) < λi;
then

lim
t→∞

xi(t) = 0.

In the first two case, we denote λi = +∞.
This lemma states that if the maximal growth rate of the i-th organism is less

than the dilution rate D or the input concentration S(0) is too small, the i-th organism
will die out as time becomes large. Note that the resulting behavior is competition
independent.

Our basic hypothesis is

0 < λ1 < λ2 ≤ · · · ≤ λn,

(Hn)
λ1 < S(0).
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For an equilibrium E = (S, x1, Q1, · · · , xn, Qn) of system (2.1), we denote

Ê = (U1, Q1, · · · , Un, Qn),

the corresponding equilibrium of system (2.12).

Lemma 2.3. Let (Hn) hold, then the equilibrium Ê1 is locally asymptotically
stable and the rest of equilibria Ê0, Ê2, · · · , Ên are saddles if they exist. Furthermore
if S(0) > λi, i = 1, 2, . . . , n then the stable manifolds of Ê0 and Êk, k = 2, 3, . . . , n
are

M+(Ê0) = {(0, Q1, 0, Q2, . . . , 0, Qn) : Pi < Qi, i = 1, 2, . . . , n} ,

and

M+(Êk) =
{

(0, Q1, . . . , 0, Qk−1, Uk, Qk, , . . . , Un, Qn) :
Pi < Qi, i = 1, 2, . . . , n
Ui > 0, i = k, k + 1, . . . , n

}
.

The following is our main theorem.

Theorem 2.4. Let (Hn) hold. The solution of (2.1) satisfies

lim
t→∞

(S(t), x1(t), Q1(t), x2(t), Q2(t), · · · , xn(t), Qn(t)) = E1

= (λ1, x
∗
1, Q

∗
1, 0, Q̂1

2, 0, Q̂1
3, · · · , 0, Q̂1

n).

where Q∗
1, λ1, x∗1, Q̂1

j , j = 2, 3, . . . , n satisfy

µ1(Q∗
1) = D,

f1(λ1, Q
∗
1) = DQ∗

1,

x∗1 =
S(0) − λ1

Q∗
1

,

fj(λ1, Q̂
1
j ) = µj(Q̂1

j )Q̂
1
j , j = 2, . . . , n.

This theorem states that under the hypothesis (Hn) only one species survives, the
one with the lowest value of λi and gives the limiting nutrient concentrations.

3. Proofs.
From differential inequality [H2], the proof of the following Lemma 3.1 is easy

and we omit it.
Lemma 3.1. Let x : R+ → [a,∞), y : R+ → [b,∞) and g : [a,∞) × [b,∞) → R

be continuously differentiable and satisfy

x′(t) ≤ g(x(t), y(t)), t ≥ 0.

Suppose

∂g

∂x
(x, y) < 0,

∂g

∂y
(x, y) > 0,

and suppose that for each y ∈ [b,∞) there exists a unique solution x∗ = x∗(y) ∈ [a,∞)
of g(x, y) = 0. If lim supt→∞ y(t) ≤ α, then

lim sup
t→∞

x(t) ≤ x∗(α).
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Proof of Lemma 2.1. From (2.2), (2.3), (2.4), it is easy to verify that the solutions
S(t), Qi(t), xi(t), 1 ≤ i ≤ n, are positive for all t ≥ 0. The first equation of (2.1) gives

S′ ≤ (S(0) − S)D,

then obviously we have

lim sup
t→∞

S(t) ≤ S(0).(3.1)

For i = 1, 2, · · · , n, consider the differential equation of Qi in (2.1) :

Q′
i = fi(S, Qi)− µi(Qi)Qi.

From (2.2), (2.3), (3.1) and Lemma 3.1 it follows that

lim sup
t→∞

Qi(t) ≤ Q0
i ,(3.2)

where Q0
i > Pi is defined in (2.5).

Let T = S +
∑n

i=1 Qixi. Then T satisfies

T ′ = (S(0) − T )D.

Therefore

T = S(0) + O(e−Dt) as t →∞.(3.3)

Thus the conservation principle (2.10) holds.
Next we show that there exists γi > Pi and t0 > 0 such that Qi(t) ≥ γi for t ≥ t0.

First we show S(t) is bounded below by a constant γ > 0. Let Ui = xiQi. Rewrite
first equation in (2.1) as

S′ +

(
D +

n∑
i=1

Ui

Qi

fi(S, Qi)
S

)
S = S(0)D,

Then from (3.3), (2.3) it follows that

S′ +

D + S(0)

(
max

1≤i≤n

1
Pi

)
· max

1≤i≤n

0≤S≤S(0)

∂fi

∂S
(S, Pi)

S ≥ S(0)D,

Then there exists γ > 0 such that S(t) ≥ γ, t ≥ t0.
From (2.1), we have

Q′
i = fi(S, Qi)− µi(Qi)Qi ≥ fi(γ, Qi)− µ(Qi)Qi.

Then it follows that Qi(t) ≥ γi for t ≥ t0, where γi satisfies

fi(γ, γi) = µ(γi)γi, γi > Pi.

For each 1 ≤ i ≤ n, we have

xi(t) = Ui(t)/Qi(t) ≤ T (t)/Pi ≤ (S(0) + ε)/Pi, for t large.
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Consequently the solution

(S(t), x1(t), Q1(t), · · · , xn(t), Qn(t))

is bounded for t ≥ 0.
Proof of Lemma 2.2. Suppose case (i) holds. Then

µi(Q0
i ) < D,(3.4)

where Q0
i is defined in (2.5). In case (ii) or (iii), we have

fi(S(0), Q∗
i ) < µi(Q∗

i )Q
∗
i .

Since gi(Q) = fi(S(0), Q) − µi(Q)Q is strictly decreasing in Q, from (2.5) it follows
that Q∗

i > Q0
i . Thus from (2.2) we obtain (3.4) again.

To complete the proof, it remains to show that the inequality (3.4) implies that
limt→∞ xi(t) = 0. Let η = (D − µi(Q0

i ))/2. Since µi(Qi) is increasing in Qi, there
exists δ > 0 such that

µi(Qi) ≤ µi(Q0
i ) + η = D − η whenever Qi ≤ Q0

i + δ.

By (3.2) there exists tδ > 0 such that

Qi(t) < Q0
i + δ for all t ≥ Tδ > 0.

It follows that

xi(t)= xi(Tδ) exp
(∫ t

Tδ

(µi(Qi(τ))−D) dτ

)
≤ xi(Tδ)e−η(t−Tδ) → 0 as t →∞.

Proof of Lemma 2.3. Assume the equilibrium Ê takes of the form

Ê = (U1, Q1, · · · , Un, Qn).

Let the variational matrix evaluated at Ê be J(Ê) = (aij)2n
i,j=1.

Let Ê = Ê0. Then it is easy to verify that the eigenvalues of J(Ê0) are a11, a22, . . . ,
a2n,2n, where

a2i−1,2i−1 = µi(Q0
i )−D,

a2i,2i =
∂fi

∂Qi
(S(0), Q0

i )− µ′i(Q
0
i )Q

0
i − µi(Q0

i ) < 0, i = 1, 2, . . . n.(3.5)

From (2.3), (2.5), (2.7) we have S(0) > λi if and only if Q0
i > Q∗

i . Therefore

a1,1 > µ1(Q∗
1)−D = 0,

and consequently Ê0 is unstable. Furthermore it is a saddle since (3.5) holds. It is
easy to verify that if S(0) > λi, i = 1, 2, . . . , n then a2i−1,2i−1 > 0, i = 1, 2, . . . , n and
Ê0 is a saddle point with n-dimensional stable manifold

M+(Ê0) = {(0, Q1, 0, Q2, . . . , 0, Qn) : Pi < Qi, i = 1, 2, . . . , n} .
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Let Ê = Êk, 1 ≤ k ≤ n. Then for i 6= k,

a2i−1,2i−1 = µi(Q̂k
i )−D,

a2i,2i =
∂fi

∂Qi
(λk, Q̂k

i )− Q̂k
i µ′i(Q̂

k
i )− µi(Q̂k

i ) < 0.

It is easy to verify that the set of eigenvalues of J(Êk) is the union of

{a2i−1,2i−1, a2i,2i : 1 ≤ i ≤ n, i 6= k},

and the set of eigenvalues of Mk where

Mk =

(
−∂fk

∂S x∗k −fk(λk, Q∗
k) x∗k

Q∗
k

+ ∂fk

∂Qk
x∗k

−∂fk

∂S
∂fk

∂Qk
− µ′kQ∗

k − µk

)
.

Since

trace(Mk) = −∂fk

∂S
x∗k +

∂fk

∂Qk
− µ′kQ∗

k − µk < 0,

det(Mk) =
∂fk

∂S
x∗kµ′kQ∗

k > 0,

the eigenvalues of Mk have negative real part.
Consider Ê = Ê1. The assumption (Hn) implies that

Q̂1
i < Q∗

i , i = 2, · · · , n.(3.6)

Therefore from (3.6) it follows that

a2i−1,2i−1 = µi(Q̂1
i )−D < µi(Q∗

i )−D = 0, i = 2, · · · , n,

and consequently Ê1 is locally asymptotically stable.
Consider Ê = Êk, k ∈ {2, . . . , n}. The assumption (Hn) implies that λ1 < λk.

Then from (2.3) we have

f1(λ1, Q̂
k
1) < f1(λk, Q̂k

1) = µ1(Q̂k
1)Q̂k

1 ,

f1(λ1, Q̂
k
1)− µ1(Q̂k

1)Q̂k
1 < 0 = f1(λ1, Q

∗
1)− µ1(Q̂∗

1)Q
∗
1.

Thus

Q∗
1 < Q̂k

1 .

Therefore

a1,1 = µ1(Q̂k
1)−D > µ1(Q∗

1)−D = 0,

and consequently Êk is unstable. Furthermore from (3.5) it is a saddle . Similarly it is
easy to verify that if S(0) > λi, i = 1, 2, . . . , n, then a2i−1,2i−1 > 0, i = 1, 2, . . . , k − 1
and Êk is a saddle point with (2n + 1 − k)-dimensional stable manifold. From the
results of ([SW1]) and induction on n, it follows that

M+(Êk) =
{

(0, Q1, . . . , 0, Qk−1, Uk, Qk, . . . , Un, Qn) :
Pi < Qi,
i = 1, 2, . . . , n

}
.
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We note now the following lemma
Lemma 3.2. ([C]) Let f(t) ∈ C2[t0,∞). If f(t) → constant and |f ′′(t)| is

bounded for t ≥ t0, then

lim
t→∞

f ′(t) = 0.

The following is so called the ”fluctuating lemma” which will be used to prove
our main result.

Lemma 3.3. ([HHG]) Let f : R+ → R be a differentiable function. If

lim inf
t→∞

f(t) < lim sup
t→∞

f(t),

then there are sequence {tm} ↗ ∞ and {τm} ↗ ∞ such that for all m

f ′(tm) = 0, f(tm) → lim sup
t→∞

f(t) as m →∞,

f ′(τm) = 0, f(τm) → lim inf
t→∞

f(t) as m →∞.

Now we prove our main result of this paper

Lemma 3.4. Let S(t) = S(0) −
∑n

i=1 Ui(t). Consider the solution

(U1(t), Q1(t), · · · , Un(t), Qn(t))

of the reduced system (2.12) with initial conditions Ui(0) > 0, Qi(0) ≥ Pi, 1 ≤ i ≤ n,
S(0) ≥ 0. Suppose limt→∞ S(t) does not exist, then lim supt→∞ S(t) ≤ λj for some
j ∈ {1, 2, · · · , n}.

Proof. Since limt→∞ S(t) does not exist, it follows that

lim inf
t→∞

S(t) < lim sup
t→∞

S(t).

From Lemma 3.3, there exists {tm} ↗ ∞ such that

S′(tm) = 0 and S(tm) → lim sup
t→∞

S(t) as m →∞.(3.7)

Since

S′(t) = −(U ′
1(t) + . . . + U ′

n(t)),

for each tm there exists jm ∈ {1, 2, · · · , n} such that

U ′
jm

(tm) ≤ 0, m = 1, 2, · · · .

We may choose a subsequence {t̄m} of {tm} such that

U ′
j(t̄m) ≤ 0,

for some j ∈ {1, 2, · · · , n} and for all m. Thus without loss of generality we may
assume

U ′
j(tm) ≤ 0,
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for some j ∈ {1, 2, · · · , n} and for all m. Thus

fj(S(tm), Qj(tm)) ≤ DQj(tm).

Let γS = lim supt→∞ S(t) and γQ = lim supt→∞ Q(t). Let {t̃m} be a subsequence
of {tm} such that limm→∞ Qj(t̃m) = Q̄j . Then Q̄j ≤ lim supt→∞ Q(t) = γQ, and
from above inequality we have fj(γS , Q̄j) ≤ DQ̄j . Since fj(γS , Qj)−DQj is strictly
decreasing in Qj , then fj(γS , γQ)−DγQ < fj(γS , Q̄j)−DQ̄j ≤ 0. Thus we have

fj(γS , γQ) < DγQ.(3.8)

Consider the differential equation of Qj in (2.1) :

Q′
j = fj(S, Qj)− µj(Qj)Qj .(3.9)

From (3.1), (2.3) and Lemma 3.1 it follows that

γQ = lim sup
t→∞

Qj(t) ≤ K(0),(3.10)

where

fj(S(0),K(0))− µj(K(0))K(0) = 0.(3.11)

If λj > S0, from (3.1) the assertion of the lemma holds. Thus we assume λj ≤ S0.
From (2.3) and (3.11) it follows that

fj(λj ,K
(0))− µj(K(0))K(0) ≤ 0.

Compare the above inequality with (2.7) :

fj(λj , Q
∗
j )− µj(Q∗

j )Q
∗
j = 0.(3.12)

From (2.2), (2.3), (3.11), (3.12) it follows that

K(0) ≥ Q∗
j .(3.13)

Let L(1) satisfy

fj(L(1),K(0))−DK(0) = 0.(3.14)

Then from (2.3), (3.10) we have

0 = fj(L(1),K(0))−DK(0) ≤ fj(L(1), γQ)−DγQ.

From (2.3), (3.8), it follows that

fj(L(1), γQ) ≥ DγQ ≥ fj(γS , γQ),

γS ≤ L(1).(3.15)

Since K(0) ≥ Q∗
j , from (3.14) and (2.3) it follows that

fj(L(1), Q∗
j )−DQ∗

j ≥ 0.
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From (3.12) we have

L(1) ≥ λj .

On the other hand, the inequality K(0) ≥ Q∗
j implies that

fj(L(1),K(0)) = DK(0) = µj(Q∗
j )K

(0) ≤ µj(K(0))K(0) = fj(S(0),K(0)).

Thus we have

S(0) ≥ L(1) ≥ λj .(3.16)

By (3.9), (3.15) and Lemma 3.1, we have

lim sup
t→∞

Qj(t) ≤ K(1),(3.17)

where

fj(L(1),K(1)) = µj(K(1))K(1).(3.18)

Since λj ≤ L(1), it follows that

fj(λj ,K
(1))− µj(K(1))K(1) ≤ 0.

By (3.12), we have

K(1) ≥ Q∗
j .

Since S(0) ≥ L(1), from (3.11), (3.16), (3.18) it follows that

K(0) ≥ K(1) ≥ Q∗
j .(3.19)

Inductively we construct two sequences {L(m)}∞m=1 and {K(m)}∞m=1 satisfying

S(0) ≥ L(1) ≥ L(2) ≥ . . . ≥ λj ,

K(0) ≥ K(1) ≥ K(2) ≥ . . . ≥ Q∗
j ,

and for any m = 1, 2, · · · ,

lim sup
t→∞

S(t) ≤ L(m),(3.20)

lim sup
t→∞

Qj(t) ≤ K(m),

fj(L(m+1),K(m)) = DK(m),(3.21)

fj(L(m),K(m)) = µj(K(m))K(m).

Let L = limm→∞ L(m) and K = limm→∞ K(m). Then from (3.21) it follow that

fj(L,K) = DK,

fj(L,K) = µj(K)K.
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Thus K = Q∗
j and L = λj . By (3.20) it follows that

lim sup
t→∞

S(t) ≤ λj ,

lim sup
t→∞

Qj(t) ≤ Q∗
j .

Hence we complete the proof of Lemma 3.4.
Theorem 3.5. Let (Hn) hold. Then the solution

(U1(t), Q1(t), · · · , Un(t), Qn(t))

of the reduced system (2.12) in the relevant domain Ω (See (2.13)) satisfies

lim
t→∞

(U1(t), Q1(t), · · · , Un(t), Qn(t)) = Ê1 = (U∗
1 , Q∗

1, 0, Q̂1
2, · · · , 0, Q̂1

n).(3.22)

Proof. Let S(t) = S(0) −
∑n

i=1 Ui(t). If limt→∞ S(t) exists, we claim that
limt→∞ S(t) = λ1. Let limt→∞ S(t) = c.

If c > λ1 then for ε > 0 small there exists Tε > 0 such that

Q′
1 > f1(λ1 + ε, Q1)− µ1(Q1)Q1, for t ≥ Tε.

Thus Q1(t) ≥ Q∗
1 + η, η > 0 small, t ≥ Tε. Hence

x′1
x1

= µ1(Q1)−D ≥ µ1(Q∗
1 + η)−D > 0.

Then x1(t) is unbounded for t ≥ Tε. This is a contradiction to Lemma 2.1.
If c < λ1 then for 2 ≤ i ≤ n, by the differential equation of Qi in (2.1) and Lemma

3.1, we have lim supt→∞ Q1(t) < Q∗
1 and lim supt→∞ Qi(t) < Q̂1

i for 2 ≤ i ≤ n .
Hence from (3.6) limt→∞ xi(t) = 0, 1 ≤ i ≤ n and limt→∞ S(t) = S(0) < λ1. This is
a contradiction to (Hn) .

Obviously from Lemma 3.2, limt→∞ S(t) = λ1 implies

lim
t→∞

Qi(t) = Q̂1
i , lim

t→∞
xi(t) = 0, 2 ≤ i ≤ n;

lim
t→∞

Q1(t) = Q∗
1, lim

t→∞
x1(t) = x∗1.

Thus the trajectory (U1(t), Q1(t), · · · , Un(t), Qn(t)) tends to Ê1 as t →∞.
If limt→∞ S(t) does not exist, then lim supt→∞ S(t) > lim inft→∞ S(t). From

Lemma 3.4, we have lim supt→∞ S(t) ≤ λj for some j ∈ {1, 2, · · · , n}. From (Hn) , we
have

lim sup
t→∞

S(t) ≤ λn.

Assume (2.6) and (2.7) hold. Consider the differential equation of Qn in (2.1) :

Q′
n = fn(S, Qn)− µn(Qn)Qn.

From Lemma 3.1 it follows that

lim sup
t→∞

Qn(t) ≤ Q̃n,
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where Q̃n satisfies

fn(λn, Q̃n) = µn(Q̃n)Q̃n.

From (2.7) it follows that Q̃n = Q∗
n. Thus

lim sup
t→∞

Qn(t) ≤ Q∗
n.(3.23)

Let

κn = lim inf
t→∞

Qn(t).

If κn = Q∗
n, then limt→∞ Qn(t) = Q∗

n. From (3.23) and Lemma 3.2, we have
limt→∞ S(t) = λn, which contradicts to the assumption that limt→∞ S(t) does not
exist. Hence we have κn < Q∗

n. Let

y0 = (U1(0), Q1(0), · · · , Un(0), Qn(0)), Ui(0) > 0, Qi(0) ≥ Pi(0), for 1 ≤ i ≤ n.

Next we claim that the ω-limit set ω(y0) satisfies

ω(y0) ∩ ({(U1, Q1, · · · , Un, Qn) : Un = 0} \M) 6= ∅,(3.24)

where

M :=
(
M+(Ê0)

⋃
M+(Ê2)

⋃
· · ·
⋃

M+(Ên)
)

,

M+(Ê) denotes the stable manifold of the equilibrium Ê. First we prove that

ω(y0) \M 6= ∅.

If not, then ω(y0) ⊆ M . It is easy to show that ω(y0) 6= {Ê0}. If Ê0 ∈ ω(y0) then
from Bulter-McGhee Lemma [BFW], there exists a point

q ∈
(
M+(Ê0) \ {Ê0}

)⋂
ω(y0).

Then the negative orbit O−(q) ⊆ ω(y0). But from Lemma 2.3, O−(q) is either un-
bounded or (0, P1, 0, P2, . . . , 0, Pn) ∈ O−(q). This contradicts to Lemma 2.1. Assume
Êk ∈ ω(y0) for some k ∈ {2, . . . , n}. Obviously ω(y0) 6= {Êk}. If Êk ∈ ω(y0) then
from Bulter-McGhee Lemma, there exists a point q ∈

(
M+(Êk) \ {Êk}

)⋂
ω(y0).

Then from Lemma 2.3 the negative orbit O−(q) is unbounded or Ê0 ∈ O−(q) or
(0, P1, . . . , 0, Pk−1, Uk, Pk, . . . , Un, Pn) ∈ O−(q) for some Uk, . . . , Un. For any one of
three cases, we obtain contradiction.

Since y0 /∈ M , we may choose

ȳ0 = (Ū1(0), Q̄1(0), · · · , Ūn(0), Q̄n(0)) ∈ (ω(y0) \M).(3.25)

Consider the solution of (2.12)

y(t, ȳ0) = (U1(t; ȳ0), Q1(t; ȳ0), · · · , Un(t; ȳ0), Qn(t; ȳ0)).

From (3.23) and the positive invariance of ω(y0), we have

Qn(t, ȳ0) ≤ Q∗
n, t ≥ 0.
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Thus

µn(Qn(t; ȳ0))−D ≤ 0, t ≥ 0.(3.26)

Let

η = D − µn

(
Q∗

n + κn

2

)
> 0,

and

Λ(t) =
{

τ : 0 ≤ τ ≤ t, Qn(τ ; ȳ0) ≤
Q∗

n + κn

2

}
, t ≥ 0.

Then

µn (Qn(τ, ȳ0))−D < −η, τ ∈ Λ(t).

Since Q′
n(t; ȳ0) is uniformly bounded for t ∈ [0,∞), Qn(t; ȳ0) is uniformly continuous

on [0,∞). Let {τm} ↗ ∞ satisfies Qn(τm; ȳ0) → κn as m →∞. Then given

ε =
Q∗

n + κn

2
− κn > 0,

there exists δ = δ(ε) > 0 such that

|Qn(τ ; ȳ0)− κn| < ε whenever |τ − τm| < δ.

Hence

Qn(τ ; ȳ0) < κn + ε =
Q∗

n + κn

2
for − δ < τ − τm < δ,

and therefore

|Λ(t)| → +∞ as t →∞.

Since

x′n(t; ȳ0) = (µn(Qn(t; ȳ0))−D)xn(t; ȳ0),

it follows that

xn(t; ȳ0) = xn(0; ȳ0) exp
(∫ t

0

(µn(Qn(τ ; ȳ0)−D) dτ

)
≤ xn(0; ȳ0) exp

(∫
Λ(t)

(µn(Qn(τ ; ȳ0)−D) dτ

)
≤ xn(0; ȳ0)e−η|Λ(t)| → 0 as t →∞.

Therefore

lim sup
t→∞

Un(t; ȳ0)≤
(

lim sup
t→∞

xn(t; ȳ0)
)(

lim sup
t→∞

Qn(t; ȳ0)
)

≤
(

lim sup
t→∞

xn(t; ȳ0)
)

Q∗
n = 0.
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Hence

ω(ȳ0) ⊆ {(U1, Q1, · · · , Un, Qn) ∈ Ω : Un = 0}.

Since ȳ0 /∈ M by (3.25), it follows that

ω(ȳ0) ∩ ({(U1, Q1, · · · , Un, Qn) ∈ Ω : Un = 0} \M) 6= ∅.

By the invariance of ω-limit sets, we have

ω(ȳ0) ⊆ ω(y0).

It follows that

ω(y0) ∩ ({(U1, Q1, · · · , Un, Qn) ∈ Ω : Un = 0} \M) 6= ∅.

Continuing the above arguments, we consider the systems (2.12) with 1 ≤ i ≤
n− 1. Then from the positive invariance of ω-limit set,

ω(y0) ∩ ({(U1, Q1, · · · , Un, Qn) ∈ Ω : Un−1 = Un = 0} \M) 6= ∅.

Inductively we have

ω(y0) ∩ (Γ \M) 6= ∅,

where

Γ = {(U1, Q1, · · · , Un, Qn) ∈ Ω : U2 = U3 = · · · = Un = 0}.

In particular,

ω(y0) ∩ (Γ \ {Ê0}) 6= ∅,

It is easy to verify that

ω(Γ \ {Ê0}) = {Ê1}.

Consequently we have

Ê1 ∈ ω(y0).

By Lemma 2.3, the assumption (Hn) implies that Ê1 is asymptotically stable. Thus

ω(y0) = {Ê1}.

That is,

lim
t→∞

(U1(t), Q1(t), · · · , Un(t), Qn(t)) = Ê1.

The above equality contradicts to the assumption that limt→∞ S(t) does not exist.
Thus limt→∞ S(t) exists and we complete the proof of Theorem 3.5.

Proof of Theorem 2.4. From Lemma 2.1 all solutions of the system (2.1) with
initial condition S(0) > 0, xi(0) > 0, Qi(0) ≥ Pi asymptotically approach

S +
n∑

i=1

Ui = S(0),

as t →∞. Hence the system (2.12) is the reduced limiting system of (2.1). To apply
(Theorem 4.2 [Th]), we note that the equilibria of (2.12) are isolated invariant sets
of (2.12) and by Theorem 3.5, every solution of (2.12) converges to the equilibrium
Ê1 = (U∗

1 , Q∗
1, 0, Q̂1

2, · · · , 0, Q̂1
n). Furthermore, we conclude from ([Th], Theorem 4.2)

that every solution of (2.1) converges to the equilibrium

E1 = (λ1, x
∗
1, Q

∗
1, 0, Q̂1

2, 0, Q̂1
3, · · · , 0, Q̂1

n).
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4. Disussion. It is well-known that the competitive exclusion principle holds
for microorganisms competing for a single-limited nutrient in a chemostat when the
yields of organisms are assumed to be fixed constants ([HHW],[H1]). In phytoplankton
ecology, it has long been known that yield is not constant and it can vary depending
on the growth rate [D]. This led to the formulation of the variable-yield model, or
the internal storage model. In this paper we proved that the competitive exclusion
principle also holds for the variable-yield model in case of single-limited nutrient.
Mathematically we extend the result of competitive exclusion in [SW1] from two
species to arbitary n species. Biologically the internal storage model with one limiting
nutrient has been tested successfully in both constant and fluctuating environments
([G3],[SC]). It is more realistic than the constant-yield model.

However organisms require multiple nutrients to live and reproduce. In phyto-
plankton ecology, there are many studies in the competition of species for multiple
nutrients. A. Narang and S. Pilyugin [NP] studied the dynamics of micorbial growth
by constructing some new physiological models. In [LC] Legovic and Cruzado pro-
posed an internal storage model of one species consuming multiple complementary
nutrients in a continuous culture. Then in [LLSK] Leenheer and et proved the global
stability for the above model by the method of monotone dynamical systems. B. Li
and Hal Smith [LS1] studied the internal storage model for two species competing for
two complementary nutrients. By using the method of monotone dynamical systems,
they established the global dynamics of the model. It is shown that basically the
model exhibits the familiar Lotka-Volterra alternatives: competitive exclusion, sta-
ble coexistence and bi-stability. In phytoplankton ecology, many people studied the
competition of organisms for multiple complementary nutrients by using the internal
storage model. In [KL] C. Klausmeier and E. Litchman studied the phytoplankton
growth and stoichiometry under multiple nutrient limitation. In [KLL] Klausmeier
and et. studied the case of two species and two essential nutrients and suggest the ex-
perimental tests for the model. In [LKMSF] the authors studied the multiple-nutrient,
multiple-group model for phytoplankton communities and listed many biological pa-
rameters in the internal storage model.

We conjecture that for internal storage model there are at most two species survive
for the case of n organisms competing for two complementary nutrients. We note that
even in the classical model of fixed yields, the conjecture is still unsolved [LS2]. It
is also interesting to compare the mathematical analysis results of internal storage
model to those of the classical constant-yield model in the case of three or more
complementary nutrients [PH]. These will be our work in the future.

Acknowledgments. We are grateful to two anonymous refrees for their careful
reading and helpful suggestions which led to an improvment of our original manuscr-
ipt.
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