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8.  Ewaluation of certain indeterminate Jorms

We are concerned here with the evaluation of the limits of certain expres-
sions.

The basic theorem in this section is the following:

" Theorsm 8.1. (L'Hbpital). Ler f{x) and gx) be defined and be differentiahle on the

set E — {p}, E open, pe E. Lot g'(x) # 0 for every x in E — {p}. Let
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FProgfl There are three cases:
(1) A is finite (ie., it is a real number). Let & > 0 be given. Assume that

condition [a) holds. Since
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let x; and x; be two distinct points in the neighborhood Mip, 8) with
Xy <X, <PpoOrp<x <Xx;and g} =0
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By the generalized law of the mean there exists a point ¢ between %, and
%, such that
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We shall keep x, fixed and let x, apgroach p. Here, one sees that since
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Let x, and x; be in N(p, &) with x, <x, <porp<x, <x;, We will
keep x, fixed and let x, approach p. There exists &, < §, &, > [ such that
fo<|x —pl <d,,

glx) > glxy) and  ghx)> 0.
Take
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By the generalized law of the mean, there exists a point ¢ between x,; and
X, such that
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Now f'(tfg'lth = 4 + p, where [y| < &2
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There exisls &, < &,, §, > 0 such that if x, is in Mg, &) — {p]
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Take x, in ¥{p,&;) — {p}. Then
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There exists §; < &, §, > 0 such that if Ixy — A < &, then
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there exists & > 0 such that if 0 < Jx — pl < &, then
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Let x, and x; be two distinct points in W{(p, &), with glx;} # 0 and
X <Xy <P OFP<X; <X By the generalized law of the mean, there
exists a point ¢ between x, and x, such that

Jbe) = fix) _ £t
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We will keep x, fixed and let x, approach p. Since

lim fix} = lim g(x) =
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Thus f(x;)g(x;) = M. Thus
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= +4-ca.
x=p glx}

.Assume now that condition (5} holds. Let 3 > U be given. Since

lim=—"—= ¢ and  lim g{x) = < oo,
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there exists & > 0 such that if 0 < |x — pf < &, then
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and glx) > 0.Let x, and x, be two points in Nip, 81 — {p} withx, <x, <p
E. m__ <X, < x3 We will keep x; fixed and let x, approach m_ There exists
8, &, > O such that if |x; — p| < &,

glx,) > g{xa).

Take x; € Nip,d,) — {p}. By the generalized law of the mean, there exists
a point ¢ between %, and x, such that
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There exists 3, < §,,8, > 0, such that if 0 < |x, — p] < &,, then
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: fixd) ;. fixa)
> M+ .
. glx:} glxy)
Mow there exists 8, < 3,,6; > 0, such that if |x; — p| < &3, then
Jixa)
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Thus if |x; — p| < &, then
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We have shown that if fx, — p| < &, then fix,)elx,) > M, ie.,

(3) 2'= - o0, This reduces to case {2) afier replacing f(x) by — f{x).

This completes the proofl of the theorem.

In Theorem B.i p'was supposed 0 be some real number. We wish to
extend the theorem to the case when p = +o0 or — oo,

One recalls that the statement

Clim fix)= 4, A finite,
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mieans that for each &> 0 there exists M > 0 sach that if x > h.R then
[fix}— i] <&
Let us define the coneept of a neighborhood of oo thus:

N{x, M) = {all real numbers » such that r > M1

We may now phrase the definition of the above limit statement thus: For
each &> O there exists an A >'( such that if x is in N, M), then
) —dl <=

K A = oo, the above limit statement may be defined thus: For each
e > (there exists a & > 0 such that if x is in N{oo, &) then f{x] is in N(co, 2]

Similarly the statement lim, . _, f{x} = 1, ) finite, means (hat for each
.£ > there exists & > 0 such that il x < —N, then |F{x)— i <& By
defining the neighborhood N(—o0, N} to mean the set Jall real numbers r
such that r < — N}, we may phrass the definition of the above limit state-
ment thus:

For gach £ > O there exists N > 0 such hat if x is in MN{— o0, N, then
|Feey = 2 < 2.
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For 1= oo, the above Hmit statement may be defired thus: For each
& > 0 there exists N > 0 such that i x is in N{—o0, N}, then f{x) is in
Nico, £).

The statement

Iim fixl= -

=

may be defined thus: For each ¢ ~ 0 there exists § > 0 such that fxisin

N{—oo, 8, then Jx) is in M{—o00, 2)
The statement

x€E—{+mw}, +oweE

i to be taken to mean that £ has no upper bound and that

. X is any real
Bumber in E. Similarly, the statement

XeE - {—w], ~wek,

is to be taken to mean thai £ h

as no lower bound and that x is any real
number in E.
With the above interpretations one may now siaie L'Hépitai's theorem
in broadest form,

{r}. Eopen
and pe E, p being o veal mumber, or oo, or —co. Let £Tx) 2 0 for alt x in
E— Ipl Lex

mshbmﬂ& ~0 £l oo
=—p 2x]
If either
{a) fim fix) = fim glx) = 0,
ar
(b h_“_ﬂH.wE_n +om,
then

Proaf. With the gbove interpretations, the proof of Theorem &.1 holds for
this broader theorem with no essential change,

We will now discuss the evaluation of certain indeterminate Forms. The
basic problem is the evaluation of lim, ., f{x}a(x) when either
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(1) Bm,_, fix} = Hm, . glx] =0, or

i - ; gix)# 0 on some neighbor-

2 lim,, glx) = +o0, —o0 £p < +:; gix) . T ;

_._E.”nd af Fmﬁ being knowsn that fix) and g(x) are differentiable oa1 this
neighborhood. } :

. ! ital i i ' i to  replace
The theorem of L'Hépital immediately permits s . plac
lim, .., f(x}elx) by its equal lim, . f ,E____.W.E_. If the function f{x}g'[x} is
SEEN mu salisfy the condition of the L'Hdpital theorem, then, of cousse,
ane may in turn replace
[x
i £

m——-

2—p B1X)

by

A =3
I e

The process may be repeated until one arrives al & form F™(x)f¢™(x) for

which lim,_ {7 ™(x)/g"™x]} is obtainable directly. o .
Since E.nnmﬁ substitution in f{x}g(x] results, say, in /0, one may say thai.

in this case, f(xWg(x) assumes the imdeterminate form &0, When

lim g(x) = @0 and lim f(x) = oo,
Z=p . E+p

one says that fix)g(x] assumes the indeterminate form cofon.
We wish to point out that if

Imfix)=d, 0#A#c, and limg)=5 0#B+w,

zp xT
lim,...,f{x)g(x} s, in general, distinct from fim, ., £ {x}/g{x).

ExXabiPLE 1, Evalvate lim,., (x* + x — 2){x — 1}
Solution, Since x is not permitted to assume the value f, one sees that

igg D D0+ 2) lim{x + 2) = 3.
-1 . x=-1 .alcu_.
r_mm.w_:m_.m rufe gives .
Zx+1 3
i =—-=3
im——=3




