Application of Derivatives

Basic Graphing

How to graph $y=f(x)$?

1. Find f^{\prime} and $f^{\prime \prime}$.
2. Determine where the graph of $f(x)$ is increasing or decreasing from f^{\prime}
3. Determine concavity of the graph from $f^{\prime \prime}$
4. Plot specific points (roots, critical points and inflection points) and sketch the curve.

Remark 1 A reflection point is a point x_{0} where $f^{\prime}\left(x_{0}\right) \in \mathbb{R} \cup\{ \pm \infty\}$ and f changes concavity at x_{0}. $f^{\prime \prime}\left(x_{0}\right)$ may or may not exist. For example, $f(x)=x|x|$ and $x_{0}=0$. Moreover, if $f^{\prime \prime}\left(x_{0}\right)=0$, it may or may not be a point of reflection. For example, $f(x)=x^{4}$ and $x_{0}=0$.

Example $1 f(x)=x^{1 / 3}(x-4)$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{4}{3} x^{-2 / 3}(x-1) \\
f^{\prime \prime}(x) & =\frac{4}{9} x^{-5 / 3}(x+2)
\end{aligned}
$$

Figure 1: Plot of $y=x^{1 / 3}(x-4)$

Example $2 f(x)=x^{4}-4 x^{3}+10$

$$
\begin{aligned}
f^{\prime}(x) & =4 x^{2}(x-3) \\
f^{\prime \prime}(x) & =12 x(x-2)
\end{aligned}
$$

Figure 2: Plot of $y=x^{4}-4 x^{3}+10$

Example $3 f(x)=x^{5 / 3}-5 x^{2 / 3}$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{5}{3} x^{-1 / 3}(x-2) \\
f^{\prime \prime}(x) & =\frac{10}{9} x^{-4 / 3}(x+1)
\end{aligned}
$$

Figure 3: Plot of $y=x^{5 / 3}-5 x^{2 / 3}$

Asymptotes and Dominating Terms

Definition 1 The line $y=b$ is called a Horizontal Asymptote of $y=f(x)$ if

$$
\lim _{x \rightarrow \infty} f(x)=b \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=b
$$

The line $x=a$ is called a Vertical Asymptote of $y=f(x)$ if

$$
\lim _{x \rightarrow a^{+}} f(x)= \pm \infty \quad \text { or } \quad \lim _{x \rightarrow a^{-}} f(x)= \pm \infty
$$

Example $4 y=\frac{1}{x^{2}-1}$

Figure 4: Plot of $y=\frac{1}{x^{2}-1}$

Definition 2 The line $y=a x+b$ is called an Oblique Asymptote of $y=f(x)$ if

$$
\lim _{x \rightarrow \infty} f(x)-(a x+b)=0 \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)-(a x+b)=0
$$

Example $5 y=\frac{x^{2}-3}{x-1}$

Figure 5: Plot of $y=\frac{x^{2}-3}{x-1}$

Similarly, we say that $g(x)$ is a Dominant Term of $f(x)$ near $x=c, \pm \infty$ if

$$
\lim _{x \rightarrow c, \pm \infty} \frac{f(x)-g(x)}{g(x)}=0
$$

Example $6 y=\frac{x^{3}+1}{x}$

Figure 6: Plot of $y=\frac{x^{3}+1}{x}$

Optimization-Finding Absolute Extrema (Skip Examples in Economics)

How to Find Global Min and Global Max of $y=f(x)$?

1. Find all critical points of f.
2. Compare values of $f(x)$ at all critical points and endpoints.

Example 7 Find the largest box (in volume) made from a 10-by-10-cm sheet with 4 small squares of equal size cut at the 4 corners.

Example 8 Find a rectangle contained in the ellipse $x^{2}+2 y^{2}=1$ that has the largest area and perimeter, respectively.

The Mean Value Theorem

Theorem 1 (From Advanced Calculus) A continuous function f defined on a closed interval $[a, b]$ always attains (absolute) maximum and absolute minimum.

It is easy to see that one may fail to find absolute maximum and minimum proveided either f is not continuous or the interval is not closed, for example (a, b).

Example $9 y=1 / x$ on $[-1,1]$
Example $10 y=1 / x$ on $(0,1]$
Theorem 2 (Rolle's Theorem) If g is contoinoues on $[a . b]$ and differentiable on (a, b), and if $g(a)=g(b)=0$, then there exists a point $c \in(a, b)$ such that $g^{\prime}(c)=0$

Rolle's Theorem a special case of the following
Theorem 3 (Mean Value Theorem) If f is contoinoues on $[a . b]$ and differentiable on (a, b), then there exists a point $c \in(a, b)$ such that $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)$.

In fact, it is easy to show that Rolle's Theorem is equivalent to Mean Value Theorem. In fact, if we take $g(x)=f(x)-\left(f(a)+\frac{f(b)-f(a)}{b-a}(x-a)\right.$, it is easy to see that Mean Value Theorem can be derived from Rolle's Theorem.

Corollary 1 If $f^{\prime}=0$ on an interval (a, b), then $f(x)$ is a constant on (a, b).

Corollary 2 If $f^{\prime}=g^{\prime}$ on an interval (a, b), then $f(x)-g(x)$ is a constant on (a, b).
Corollary 3 Suppose f is contoinoues on $[a . b]$ and differentiable on (a, b). If $f^{\prime}>0$ on (a, b), then f strictly increasing on $[a, b]$. If $f^{\prime}<0$ on (a, b), then f strictly decreasing on $[a, b]$.

Remark 2 (see Chap 9, Taylor's Theorem) Applying the Mean Value Theorem repeatedly, one can show that

$$
f(b)=f(a)+f^{\prime}(a)(g-a)+\frac{1}{2} f^{\prime \prime}(y)(b-a)^{2}
$$

for some y between a and b, provided f, f^{\prime} are continuous on $[a, b]$ and f is twice differentiable on (a, b).
proof:
Define a quadratic function

$$
g(x)=f(a)+f^{\prime}(a)(x-a)+\frac{K}{2}(x-a)^{2} .
$$

Note that $f(a)=g(a), f^{\prime}(a)=g^{\prime}(a)$. We choose the constant K such that $f(b)=g(b)$. It follows that we can apply the Mean Value Theorem to $f(x)-g(x)$. (twice, on different intervals. details omitted)

Example 11 Show that $f(x)=x^{3}+3 x+1$ has exactly one real root.

