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A wave equation on a one-dimensional inter&élas a van der Pol type nonlinear
boundary condition at the right end. At the left end, the boundary condition is fixed.
At exactly the midpoint of the intervdl energy is injected into the system through

a pair of transmission conditions in the feedback form of anti-damping. We wish to
study chaotic wave propagation in the system. A cause of chaos by snapback
repellers has been identified. These snapback repellers are repelling fixed points
possessing homoclinic orbits of the non-invertible map in 2D corresponding to
wave reflections and transmissions at, respectively, the boundary and the middle-
of-the-span points. Existing literatufé&. R. Marotto, J. Math. Anal. Appl63,
199-223(1978] on snapback repellers contains an error. We clarify the error and
give a refined theorem that snapback repellers imply chaos. Numerical simulations
of chaotic vibration are also illustrated. ®998 American Institute of Physics.
[S0022-248898)02012-X

I. INTRODUCTION

Earlier, in a series of pape(Refs. 1-4, we studied chaotic vibrations of the wave equation
due to a nonlinear self-excitation boundary condition of a van der Pol type: For the wave equation

Wii(X, 1) =Wy (X, 1) =0, 0<x<1, t>0, (1)
let the right-end boundary condition be self-exciting:
Wy (1) =aw(1t)— Bwi(1t), a,B>0, t>0; 2
and let the left-end boundary condition be either fixed or free:
w(0t)=0 (fixedend or w,(0t)=0 (freeend, (3
then the study in Refs. 2 and 4 shows that for initial conditions of generic type, the gradient
(wy ,w;) and the Riemann invariantsv(+w; ,w,—w;) of (1) will be asymptotically periodic with
one(for 0<a=<1) or two frequenciegfor a>1). Thus the wave equation does not have chaotic

vibrations. However, instead 63), if energy is injected into the system at the left end in the form
of the boundary condition
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wy(0t)=— 7w (0t), #»>0, xn#l. 4

Then for a certain parameter rangemfthe injected energy will excitéasymptotically periodic
vibrations into chaogRefs. 3 and % The proofs in Refs. 1 and 4 are based upon the reflection
relations of the equatiofl) at the two endpointg=0 andx= 1, which is perhaps the most natural
Poincaresection of the initial-boundary value problem stated above.

Existing study on chaos in differential equations is concerned mostly with unpredictable
behavior originating from nonlinearities appearing either in the governing equations or/and bound-
ary conditions. Very few works have treated chaotic nonlinear systems containing disturbances or
excitations from in-span or interigrointwise sourcesSo let us consider the following scenario.

Let (1)—(3) stay the same as above and, in addition, assume that energy is injected into the system
at anin-span point sayx=a, where 6<a<1. This is apointwise excitationCan this also rouse
periodic vibrations to chaos?

A volcanic eruption on earth may be idealized as a pointwise disturbance or excitation to the
physical system governing global weather, because the scale of the volcano is negligibly small
compared with that of the earth. The eruption injects ashes, chemicals, and energy, among other
things, into the atmospheric currents and the stratosphere and can easily throw the global weather
patterns off balance and into chaos, provided that the eruption is long and forceful. Our study
undertaken here bears the resemblance of the kind of pointwise excitation occurring in Mother
Nature and, thus, signifying certain mathematical and physical relevance of both models meriting
investigation. However, we must also point out the dissimilarity: the volcanic eruption injects
energy into the weather system esogenous forcingvhereas the energy injection at an in-span
point considered in this paper is in te@adogenous feedback form of anti-damping.

We now describe the details of the mathematical model we wish to treat. Consider the wave
equation

Wi (X,1) =Wy (X,1)=0, —1<x<0, 0<x<1, t>0. (5)

The spatial interval is chosen to be-{,1) just for convenience. The wave speed plays a very
minor role in the subsequent mathematical analysis, so we just set it to be equal(f).1Again,
let the right-end boundary condition be self-exciting:

Wy (1) =aw(1t)—Bwi(1t), 0<a<1, B>0, t>0. (6)

Note here that we require<Oa=<1 in order to avoid hysteresis and nonuniqueness of solutidns.
At the left end, assume that the boundary condition be fixed:

w(—1t)=0, t>0. (7)

[If this is replaced by the free end boundary conditwy{—1t)=0, t>0, then the mathemati-
cal analysis remains qualitatively the sain&t exactly the middle of the span=0, we consider
two types of transmission conditions:

Wi(0+,1) =W (0—,t) = — pW,(0+,1),
(Type)) Wo(O— ) =Wy (0+ 1), t>0, >0, 7#2, )
or
w(0—,t)=w(0+,t) )
(Typell) W 04 1) — Wy O— 1) = — 7W(0+ 1), t>0, >0, n+2. (8
Also prescribed are two initial conditions
W(XIO)ZWO(X)! WI(X!O):Wl(X)r _1<X<1; (9)

where the initial statew,,w4) lies in appropriate function spaces. The energt), of the
overall systen(5)—(9), at timet, is defined to be
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E(t)= %jll[wx(x,t)erwt(x,t)z] dx.

We now examine the two sets of transmission conditi@sand (8’). Consider the time rate of
change of energy:

d 0 1
aE(t): f_l(WxWxt+Wtth) dx+ fo (Wy Wi+ WiWyi) dX

=...[integrating by parts and utiliziri§)—(8') ]

W, (0+,t)%  for (8), (10)

— 2_ 4
—AWLDTBMLDTE ] 0402 for (8)'. (10"

We see that ifp<<0, then the transmission conditiof®) or (8)' would have contributetbss of
energy to the system. Indeed, fer<0, (8) and (8)' model (the only) two primary feedback
dampingdesigns we know of today in structural dynamigef. 5, pp. 50-5) But here in(8) or
(8)’, we requiren>0. Therefore the in-span conditio®) or (8)’ contributeenergy increasé¢o
the system. Therefore, physicall®) or (8)' correspond tdeedback anti-dampindevices which
inject energyinto the system.

Note that the first two termaw,(1,t)?>— Bw,(1t)*, in (10) or (10)’, signify as in Refs. 2—4
the self-regulating(or self-exciting effect of the boundary conditio(6) because we have

=0 |w(1b[=(a/B)Y?
aw(1)2— Bw(1t)* if (11
<0 |w(1h[>(a/B)Y? (117)

i.e., it causes energy tise if the velocity magnitudew,(1,t)| is small and tofall if |w,(1;t)| is
large, just like what the damping terms do in the van der Pol ordinary differential equation

+(— ax+ Bx3) +kx=0. Incidentally, the transmission conditiof81) can be incorporated into
the governing equatio(b) by rewriting it as

Wi(X,1) = Wy (X,1) — W (0+,t) 8(x) =0, t>0, (12

where §(x) is the Dirac delta distribution concentrated >at 0. Therefore,(8)' does indeed
correspond to a pointwise disturbance or excitation. Even thé8lgalso corresponds to a point-
wise excitation, we do not as yet know of any similar way to incorpof@tento the governing
equation(5) through the adding of some delta functions.

The advantage of choosing the exact middle-of-the-span pgin0=* in (8) or (8)' is that it
makes themethod of characteristiceasily applicable to our model problem for the purpose of
mathematical analysis. If, instead, we replage=0+ by xo=a= therein, for some arbitrarg,
—1<a<1, then the problem obviously is much more generally posed. Unfortunately, this gener-
ality (of xg) also renders the problem highly intractable in mathematical technicality. As we will
see below, the approach of the method of characteristics adopted byeisrabustwith respect
to the choice of energy injection poirg=0= in the sense that a slight perturbation, say, chang-
ing Xo=0= to Xo=¢ = for some smalk # 0, would immediately fail all the mathematical analysis
based on this approach. So the question is, how good or sound is the main conclusion of the paper
that chaotic vibrations exist wheg# 0= ? This may be responded to, in a nonrigorous way, as
follows. From the work in Ref. 6, we know that, in the linear case, corresponding to the choice
Xo=¢e* with & being irrational, there are maraperiodicsolutions and, thus, the general system
(with xo=¢ =) should be “even more chaotic” than the special cage 0= when the nonlin-
earity (6) is present. However, a rigorous proof of this heuristic claim seems to be far out of reach
for the time being; more efforts are required in order to be able to treat the general case.

We are now in a position to apply the method of characteristics to t&at9) as follows.
Define, by folding the interval{ 1,0) onto the interval0,1), the following:
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w(x,t)=—w(—x,t)

W(x,t) =w(x,t) for xe[0,1], t=0, 13

w=dwdewf), v=wd-w), =12 (14

Then the wave equatiofb) is converted into a first-order hyperbolic system

w] 1 0 0 O Uy

al us, 0 1 O O0|og|us

s vy = 00 -1 0 lax vy’ 0<x<1, t>0. (15
[ %) 0 0 0 -1 %)

The reflection relation at= 1, according td6), (7), and(14), is

[}
:Rl,aﬁ =

vo(1h)
where for each given € R the functionu=F, 5(v) is well defined through the following implicit
cubic equatior?,

u(1yt)
us(1t)

v(1t)

Fop(va(18)]’ (16

Bu—v)+(1—a)(u—v)+2v=0. (17

Thus (16) constitutes the right-end boundary condition @E). In what follows, we often write
R1.p Simply asR4, in case no ambiguities should occur.

Remark I.1:In (17), for given fixeda, 0<a<1, there exists a uniquee R satisfying(17) for
each giverv e R. Contrarily, if ¢ ¢ (0,1], i.e., 1— a« ¢[0,1), for each givem € R, then there may
exist one, two, or three real soluti@ u € R, and thusF, 4 is no longer a well-defined function.

See more in31)—(33) below. O
The reflection(i.e., transmissionrelation atx= 0, according tq8), (8'), and(14), is, respec-
tively,
7 2
vl(O,t) Ul(o,t) 2— Y 2— n u1(0,t)
[vz(on}‘n‘”( won|/=| 2y |lugon] @ 19
2—-n 2—7q
vl(O,t) Ul(o,t) , '
Lz(ol) ——RO,,,( (01| for (8'). (18)

The abovd(18) or (18')) constitutes the left-end boundary condition {@6). From now on, we
often abbreviat&},, , asR,. By abuse of notation, we will make no distinction betwéeg), and
the matrix on the rhs of18).

The original initial conditiong9) now lead to

u1(x,0) Uz o(X)
uy(x,0) 3 Up o(X)
01(x.0) | | v1oX) [’
v2(X,0) U2,(X)

o<x<1, (19

for some functionsu; o(x),v; o(X),xe(0,1),i=1,2, according to(14). In summary,(15—(19)
constitute the complete set of a well-posed initial-boundary value problem. This system has a
unique solution {4 ,uU,,v1,v5): for t=2k+ 7, k=0,1,2 ...,0=<7<2 and G=x=<1,
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¢

o [UrdX+7) L
o g —
(R1°Ro) Up o X+ 7) T X,
ug(X,t) N ol | V12— X=7)
= o o , 1—-x<7r<2-— ,
U,(X,t) Ro o(Ro?Ra) Voo 2—X—17) Xsr=emx
U10(7'+X_2)
o \k+1 : < r<D:
k(721 Ro) ( Uy +x—2)] )" 2—X<7=<2;
(20
( ) ul,o(x—T))
° <
(Ro°R1) V2 X, 7) y  TSX
PO ) e (Reery | T ) x<7<14X
v )| ] O (Ro"Ra upd7=x) |/’ =T
010(2+X_7')
R | T 1+x<7<2
x(Ro ) ( v2(2+X—1) ) X=r=%

which has the same form as Ref.(23) and(14). In the above, all thé&k,'s may be replaced by
—Ry's if (18') [or, equivalently,(8'))] takes place in lieu of18).

Naturally, from the explicit representatid®0) of the solution, the systeifd5)—(19) manifests
chaotic behavior if and only ifthe iterates 9fthe composite map) RyR, and/orR,R, is/are
chaotic. Actually,RyR,; and R;R, have identical dynamical behavior. This is seen in the fol-
lowing.

Proposition I.1: For each givem, 0<a<1, >0, and >0, n# 2, the mapsR, ,R1,z and
R1.4sR0,, are topologically conjugate.

Proof: First, we note thaR , is an invertible 2<2 matrix. The rest is then obvious from the

following commutative diagram:

R2 RO,an,aﬁ

%5} | |
R1.03Ro,
R2 A0, g2 O

Therefore, investigation of the periodic and chaotic behavior of &Y, suffices, because
it implies that of R, Ry, and vice versa.

If the transmission condition@’) take effect rather thafB), then we need to usg8') and,
consequently(20), but with all Ry's therein substituted by-Ry’'s. This means that we must
investigate the chaotic behavior efRyR, rather thanRyR,. From the mathematical analysis
point of view, we have found that the treatment-ofRyR; is qualitatively the same as that of
RoR,. Henceforth, we will therefore only considés), (18), and the ensuin@ R .

The main objective of this paper is to study the occurrence of chaos for the wave equation
system as described. Recall from our earlier studies in Refs. 2—4 that the pargnpddgs the
role of scaling Therefore, we may just fig to be a positive constant, s@# 1. By varyinga and
7 increasingly from zero, either separately or jointly, we have observed through computer simu-
lations at least the following three routes/sources of chaos for theRgaRy .4:

A. Period doubling

For positivea and » close to zero, the maR, ,R1,z has a stable period-4 orbit in two
dimensions(2D). (It does not have any period-2 orbit, according to Proposition 111.5 in Sec. llI
below) Let us, say, fixa=1/2 (and B=1), for example. By increasing, at »~0.6725, we
observe that this period-4 orbit loses stability, and a new stable period-8 orbit supersedes it. The
ratios of successive differences of parametrical valpeghere period doublings occur have been
verified to tend to Feigenbaum’s constant. So the numerical evidence in support of period dou-
bling is strong and beyond doubt. Nevertheless, at this moment, the authors are only partially
successful in establishing a period-doubling bifurcation theorem in 2D and in carrying out a
computer-aided verification of the theorem. We hope to be able to defer a complete presentation
of this to a sequel.
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B. Snapback repellers

These are repelling fixed points or periodic points in whose neighborhoods a homoclinic orbit
originates. For examplésee Example V.1 in Sec.)Vthe origin inR?, as a repelling fixed point,
is a snapback repeller for a restricted rangexoéind » values. So far, this is the only case for
which we have sufficient understanding; its discussion will be the focus of the study in this paper
(see more in Secs. IV and)V

C. Nondiffeomorphic horseshoes

The Smale horseshoe is a powerful technique for proving chaos of multidimensional maps.
However, the powerful Smale—Birkhoff homoclinic theoréRef. 7, pp. 482—483requires that
the map be aliffeomorphismso it must at least bavertible Ours is not the case here because
R1.4p is not invertible for anye, 0<a<1, 8>0; see Remark I.1 an@1)—(33) below. The lack
of invertibility of R, and, consequently, d®,R is related to the prevalemtreversiblebehavior
of time-dependent nonlinear PDESs; see Sec. Il. Numerical evidence strongly suggests that the map
RoR41 has many periodic points &faddle nodeaype in whose neighborhoods homoclinic orbits
originate and, thus, we speculate that they cause cliBoslack of a better term, we call this a
“non-diffeomorphic horseshoe” for the time beindsee some details in Example V.2. Notwith-
standing, we must concede that before a rigorous proof is given, this remains just a speculation.
For general non-invertible maps in two- or higher-dimensional spaces, as pointed out by Mira
et al® there arenot many optionatheoretical methods available to rigorously prove the occur-
rence of chaos. More dedicated cultivation of this area is very desirable.

The organization of the paper proceeds as follows. In Sec. I, we discuss the time irrevers-
ibility of our PDE system. In Sec. lll, elementary properties of the map, including fixed points,
stability, and invariant domains, are studied. In Sec. IV, we study chaos caused by snapback
repellers. We point out an error in an earlier work by Mardgnd give a refined proof. In Sec. V,
we present examples and illustrations of chaotic vibrations.

II. IRREVERSIBILITY FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS: THE
LACK OF DIFFEOMORPHISM TO FORM A SMALE HORSESHOE

Recall from Ref. 2 that for €a<1, 8>0, the implicit relation(17) determines a unique

functionu=F(v)=F, g(v), where
v+\/1 l—a3+v21/3+ v \/1 1-a|® v’
B N2l g | " g B N2l g | " g
by Cardan’'s formula. The functiok is odd, with two critical points—one maximum and one

minimum—at, respectively-v% andvy , wherev? =[(2—a)/3]V(1+ @)/3B8. We also know
that F satisfies the following properties:

1/3

u=F(v)=v+ , (21

) F(0)=— 2 22
(i) F'( )——E, (22
(i) O<F'(v)<1 for |v|>v}; (23
) 1+a

(i) F has three intercepts at=-v,, 0,v,, wherev,= \/T. (29

Also, recall from Ref. 3 that forp, 0<7<1, the mapu=GeF(v)=G,°F, s(v), where
G,=(1+5)/(1-n), has exactly three fixed points

1+ [1+any

27 Bn

Now, let us consider the question whether the systEB(19) is time reversibleWe make
a change of variable— —t and considet=0; we obtain the time-reversed system

v=GeF(v), for v=—v*,0,v*; v*

(29)
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u] 10 0o o U
glu,l |01 0 0fg|u,
a5, 1o 0 -1 oaxgl’OXLtO’ (26)
;2 0 0 0o -1 ;2
with boundary conditions
_ ” )
100 |~ []Uy(0) 2+ 2+7 ||uy0p
at x=0|_" =R, ! ): 2 , >0, (7>0),
v,(0}) Uu,(0t) 2 " U,(0t)
L 2+ 7y 2+ 7
(27
u(1)] . ([Ba(1p) Dy(11)
at x=1 =R |- =l_ , t>0, (29)
Up(1,0) [va(11) Fop(va(l)
and certain initial conditions
U(x,0=Uio(x), vi(x0=viyx), =12, xe[01], (29)

where, in(28), the relationu=F, z(v) is defined through the following cubic equation:
BU-7)3—(1+a)(U-7)—2v=0, 0<a<1, B>0. (30)

Note thatu andv are restricted to be reals {80). The relatiorfzaﬁ is nota function, as Cardan’s
formula for cubic algebraic equations gives the solution§36j as follows: let

be the discriminant fof30). Then
(i) if D(v)>0, thenu is uniquely determined by:

~ 1/3 ~ 1/3
U=F, 40)=0+ —%+\/D(Z) + _%—\/D@)} , (31)
(i) If D(v)<0, then(30) yields three real solutions:
WV [ B

. k=123. (32

~ ¢+ 2k ll+a 4
u=2S cosT; S= 57, ¢$=cos

(iii) If D(Z)=O, then(30) yields two distinct real solutions:

~ 3o . 3/ v
u;=2 E U,= —E(Wlth multiplicity 2). (33

The multiplicity of solutions given in(32) and (33) spells trouble for the systeii26)—(29).
We have the following.

Theorem II.1 [Lack of global irreversibility of the system (15)—(19)]: Let (26)-(29) be the
time-reversed system of (£§19). Assume that the initial conditiorTs,,dax) ,Ziyo(x), i=1,2,in
(29) are continuous functions on [0,1] such that not all of these functions are identically zero.
Then there exists as>0 such that if

(1+a) Vita
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0< inf [Ujo(x)|<e, or O< inf [v;¢(x)|<e, for somei=1 or 2,
xe[0,1] xe[0,1]

then the solution of the system (2639) is not unique for *T, for some F0.
Proof: If Zzyo(x)aéo, and if there exists somg&e (0,1) such that

1+ta [1+ta

lvoo(€) $m 5 (34

then D(szo(g))so. By (32 or (33), after the reflection ak=1 takes place at timé=1—¢

through the relatior§28), we see that thaz—component lacks uniqueness. Therefore the solution
of the system(26)—(29) loses uniqueness aftér=1—¢.

If ZZ’O(X)EO or if (34) does not hold for an¥ e (0,1), then there exists songe= (0,1) such
that one of the following,

0<[uf&|<e, 0<[uydé)|<e, O0<[v,d¢)|<e, (35)

is true. We note that at=0 the reflection matrifk, has two eigenvalues: 1 and(2— 7)/(2+7),
both with magnitudes not larger than 1. Thitg is nonexpansive. By choosing sufficiently

small and tracing reflections along characteristics, by using the nonexpansivef&splo$ some
detailed argumentévhich are omittefi we obtain from(20) that at some >0, we will gain

FaEtoll= a2 Fe (0.0
vo(Etg)|<s——=\/—5— for someée(0,]).
N

Therefore agairi32) or (33) applies, and, by28), the solution loses uniqueness. O

The above irreversible behavior has all but ruled out the direct applicability of Smale’s
horseshoe to our problem.

lll. ELEMENTARY PROPERTIES OF THE MAP RyR,

In this section, we perform an elementary stability analysis of fixed pointRg®, and
determine some invariant regions.
Proposition IIl.1: LetO<a=<1, B=1, and n>0,n#2. Then the maRy R, has exactly three

fixed points:
1 /1+an 1+ [l+ay
OIOI *l 5 E( 1
(0.0.iw2)={2,N 5y " 2y B7

Proof: We determine the fixed points by solving

, (—vT,—v3). (36)

T+ F

U1 Uq 2_77Ul 2_7] (02)
=RoR, = . (37

Uy Uy 2 L1 )

52— 7’01 2— 7 (v

From the first component equation (87), we obtain
F(v2)
V=7, #1, 38

1 1— 7 n ( @
F(vz)=0, »n=1. (38b

For »+# 1, substituting(38a into the second component equation(87), we obtain

Downloaded 21 Jan 2002 to 144.214.5.217. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



J. Math. Phys., Vol. 39, No. 12, December 1998 Chen, Hsu, and Zhou 6467

1+7n
1-9

F(va). (39

Vo=

However, in the notation of Ref. 32.1), (39) says exactly that ,=G°F(v,), i.e.,v, is a fixed
point of the 1D mapGeF, which according tq25) and(39) gives three values af:

1+ [l1+an 1+ [1+an
U2:0, 2 ) - 2 . (40)
7 Bn 7 Bn

Substituting these values first inf89) to obtainF(v,) and next into(38a), we obtain(36).
For =1, (38b) says that, is av-axis intercept of. By (24), there are three intercepts:

1+« 1+«
v2=0, V= “ N5 (4D)

Using these values an{@8b) in the second component equation(87), we obtainv;=v,/2. Thus
we again havé36) with # being set to 1 therein. O

For any differentiable mag: RN—RN, we letD F(x) denote the Jacobian matrix & at x.
For our mapRyR., we have

7 2
2= EF (v2)
D(RoR1)(v1,v2)= . . (42
2_77 2_7]F (UZ)

The stability analysis of fixed points and periodic points is well known to be important in the
understanding of the dynamics of the nf@gR,. We perform such an analysis for the three fixed
points given in Proposition 111.1.

Proposition 111.2: Let 0<a<1,8>0, and 0< »<2. The fixed poin{0,0) is a repelling fixed
point of RyR; .

Proof: First, note from Ref. 2, Sec. ll[P. 3, thatF'(0)=— (1+ a)/(1— «). From(42), we

get
7 2 l+a
2—17 _2—771—a
J=D(RoR1)(0,0= 5 7 1+a (43

2—7 _2—7]1—a

el (5 |

1 20 7@ 20 7 \? 4(1+a)2+7
)\1,)\225 -

The eigenvalues af are computed from

1+«
1-«a

0=dei\l,—J) (det=determinant=\2— ( 1

which are

— -+
l-a2-7n" l-a2—79 l-a 2—-7]|
(44)
(*“+" for Ny, ="for\y).
If the discriminantA is negative,
20 7 \? 4(1+a) 2+
Az(l—aZ—n) 11—« 2—17 0, (49

which happens if
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7?—4(1—a?)<0, (46)

then\, and\, are complex conjugates of each other and, far{<2,
7 \? 2 \2 1ta 2+
2—n 2—79) | 1-a2-9

1+«

2_ 1y |2 _
IN]“=[No[?=N1Np 1—a

>1.

Therefore the origin is a repellingpiral point
On the other hand, iA=0, then\,<\;<0. We now show thak;<—1, or, from(44),

20 7 \/( 20 7 )2 41+ a) 2+77< )

——
l-a2—7 l-a2—7 l-a 2—19 '
or
2a 2 4(1+a) 2+ 2a
\/ n AUt 2vy e 7 47
l-a2—9p l1-a 2—79 l-a2—179

Note that the rhs of the inequality above is non-negative because

1/2

2 2

A=0=a?+ L=1ma+ 22| a2+ 1| =1 for a>0, 7>0
22 2 22
at 220224 2% T 0 for 0ca<l 0<p<2
—2=0=— = .
=2a+7n = 1—a2-7 or a<l, 7

Squaring both sides d#7), we see thah;<—1 if and only if

b)) 2 o o 0ca<l 0<p<2
T 78 or a<l, 7<2,

which is always valid. Therefore,<A;<—1. O

Corollary 111.1: Let 0<a=<1,8>0, and0< %<2. Then

(i) if 7°—4(1—a?)<0, then (0,0 is a repelling spiral point ofRyR; .

(i) if »*—4(1—a?) =0, then(0,0) is a repelling (star) nodal point oRR;. O

Proposition 111.3: Let0<a<1,8>1, and 0<7<2. Then the fixed pointév} ,v3) and
(—v?,—v}) are unstable saddle nodes BHR; .

Proof: We need only consider the stability of{,v3); that of (—v7,—v3) follows from a
symmetry argument.

The Jacobian matrix av§ ,v3), by (42), is

2
! *
2_77 2_7]F (02)

2 7

- _ ! *
2_77 2_77F (UZ)

The eigenvalued ; and\, of J satisfy

_ CByen2 T Erry 2
O=det\l,—B)=A\ 2_7](1+F(v2)) 2_7]':(02)'

(48)

7 |2

A
S Py F'(v3))* \/(ﬂ

(““+' for Ny, =7 for Ayp).

2—

2+
(1+F'(u;))2+4-—ZF'(u§) ,
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From (22), (23), and Ref. 3, Lemma 2.4, we have

O<Fl( * 1+77 ! *
vi)<1, —1_7]F (v%)>1. (49)

Therefore we have >0, \,>0. We want to show further that
N>1, —1<\,<0. (50)

From (48), we see thah,>1 holds if and only if

=

If 2—[n/(2—7)]1(1+F'(v%))<0, then(51) automatically holds. So we consider-Z »/(2
—7)]1(1+F'(v3))>0. Squaring both sides ¢51) and simplifying yields

? P kN2 2+77 1ok n 1y k
(1+F'(v3)) +4-EF (v )>2_ﬂ(l+F (v3)). (51

2+77 ’ * 477 ’ *
)\1>O4:)4~EF (v2)>4—ﬂ(1+|: (v3)),

@F /( * )>1__77

v2) 7y n’
which holds by(49).

Next, we show that &\,>—1. From(48),

N> —1e2+ i(1+|:'(u*))>\/ 7 2(1+F’(v*))2+4'2+—7]F’(v*) (52)
2 2 7 2 2 7 2 2— 7 2
Squaring both sides d62) and simplifying yields
2 E i) asa 2 TR )
2—7 v2 2—7 v2)s
F'(v3)<lL.
The above again is true b3). Thereforex,>— 1. O

We now determine an elementary invariant rectangle, for posiwehich is close to 0.
Proposition I1l.4: Assum@<a<1,8>0,and0<n<1.Let G=G, ,F=F, 5, v*,v; andvg
be defined as i122)—(25). Assume thab;’;’ p satisfies
G,]*BFQ’B(—US)$U*. (53
Then fory, 0<n<n, 4,

D={(v1,07) € R?||vq|<vT |val<v3} (54

is invariant underRyR, i.e., RgR1(D)CD, where

vyi= vy=v*. (55)

Proof: Let (v4,v5) e D and
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7 -2 F

2=t 2, (v2)

= . (56)
2 ]

vit EF(vz)

2—7

We want to show thati(; ,u,) e D.
By (25) and (53), using Ref. 3, Lemma 2.5, we first note thaE[ —v*,v* ] is an invariant
interval of GeF. So we have

—Ugsi—ZF(vz)su’z‘, for all v,,|v,/<vi=v*. (57)
Thus, forv,,|v,|<v7},
ulzﬁvl—f— 2éﬂF(vz)s %vf-ﬁ-zf—nlz(vz).
However,
217770’1c + %F(vz)iv’f‘:’%ﬂl&)g 2(21__7777) vye iJ_r nF(UZ)gvz . (58
By (57) we know that the last inequality i(68) holds. Therefore
u,<v¥. (59
Next,
7 2
Ul:ﬂvl+ EF(vz)Z— 5 vi+ 5 F(va)
We have
M., 2 v 2
- ﬂvl + EF(UZ)B—%@EF(UZ)

—-2)(1— 1+
2( )( 7])”{@1—2':(”2)

2—n
=—(1+n)v}

_ et *
——UZ@EF(UZ)?—vz. (60)

By (57), we again know that the last inequality (60) holds. Hencau,=—v7 , which, incorpo-
rated with(59), gives|u|<v7 .
The proof thatu, satisfiesu,|<uv3 is similar and therefore omitted. O

Example 111.1:
By Ref. 3,(2.20, and(25), we can determine;’;”g from the equality

. 1+ nhplta [1+a . 1+7h s [1tan,,
G77* Fa,ﬁ(_vc): 3 3 =0 = " .
@B 1 ’B Bna,ﬁ

- 772,3 27/2,/3

Let a=1/2, B=1, for example; we have
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4 T T T T
35 3
] D 3
invariant region
2] 4
¥
14 A ]
2 ]
5 o
& ®
> 3
—1 h
2 .
-3 h
-4 T T T T T T T T T T
-3 =2 -1 0 1 2 3
vl-axis

FIG. 1. An attracting period-4 orbit for Example IIl.1, whete=1/2, =1, and »=2/3 are used. The square is an
invariant region guaranteed by Proposition II1.4.

vg~0.3536, v*~1.7678 andnzvﬁ=2/3~0.6667,
vy ~1.0607, v;=v*~1.7678.

For these values o, B, and 772,;3, we use the computer to plot the orbiR§R,)¥Py, with Py
=(0.005,0.005) and f8<k=10°. What we obtain is just an attracting period-4 orbit as shown in
Fig. 1. There is another attracting period-4 orbit which is symmetric with respect to the origin of
the one shown in Fig. 1 but not plotted there. O

The following can be verified in a straightforward way; its proof is omitted.

Proposition II1.5: For givena,0<a<1, B>0, andn>0,n+ 2, the mapR,R, does not have
any prime period-2 points. O

The following theorem gives two unbounded invariant domains whereupon all trajectories
grow unbounded.

Theorem lll.1: LetO<a=<1, B>0, and 0<n<1. Then the following two sets,

Ui={(v1,v2) eR¥v1=0} w205},
Up,=—U;={(v1,05) e R¥(~v1,~vy) e Uy},
are invariant underRoR,. Furthermore, for each pointv,v,) e U\ {(v} ,v3)} we have

lim [(RoR1)"(v1,02)]2=22, (61)

n—oo

where||, is the Euclidean norm ift2. Same forU,.
PI‘OOf: Let (Ul,v2) S Ul and (Ul,UZ) ERoRl(Ul,Uz). Then

Downloaded 21 Jan 2002 to 144.214.5.217. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



6472 J. Math. Phys., Vol. 39, No. 12, December 1998 Chen, Hsu, and Zhou

7 2
ﬂvl"‘_F(Uz)

U1= 2_7]

U

=

=

2
U*+_F U*
7 1 2_77 ( 2)
__ " o, 2 1=,

T2 T o=t by 55
2—7 2-7 1t7 7)|V1 1 d

2
u2=—vl+LF(v2)
2—7 2—n

n
U*+_FU*
n ) n (v3)

2_

2 1 1-
_ . L7 U
2—-n 1+ 2-nl+ny

=v3 [by (25),(55)].

ThereforeU, is invariant underRyR,. The invariance ofU, follows immediately from the
oddness of the maRyR; .

For any initial state ¢{?,0{?) e Uy, let (0{V,0)=(RoR1)"(v{¥,vY) be thenth iterate.
Define the following Liapunov function ol ;:

W(vq,0,)=06v,+v,, for some 6>0.
Then
A W=W(v" v5") = W(vi” v

= (v +v8") = (801" +vE”)

= U (0) i 0)
6|:2_ 77()1 + 2_ 7]F(UZ )

2 7
+ 2_771}5_0)4‘ EF(U(ZO))}_((sUg_O)'FU(ZO))
_[on+2 5 25-!—7]': 62
=\ 2= "0t (v2)—va|. (62

Now chooses= 1/(1— 7). Then ¢7+2)/(2—7n) —6=0, and

26+ _1+9g
2—n 1-9
Continuing from(62), we get
1+
Alw:ﬁF(ug"))—u;O)zo, for vy=v% . 63)

Note that equality in(63) holds when and only when,=0v%. However, if v{V>v%, v
=v3 , then
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2 T T M T
I
i Lo: v =1 i
10, v1) .
1 ' Po(ur,u2) 1
Py(F(v2),v1)
S
Py
Py(vr,
2 P(F(un),v2) » b, ve)
ﬂF 0 L Uy
N 0 Wl
> Py(Fva), F(va)) ™
Py(v1, F(v3))
14 ]
v = F(v)
-2 T T f T T
-2 -1 0 1 2
vl-axis

FIG. 2. Graphical construction ofu ,u,) =RyR1(v1,v5).

2 ] 7 n 1-79
(1) — (0) AP * *
U3 2_7701"'2_77':(02) 2_7]01 2_7’1+7]02
2 1 1-
= 7 7 v5=05.
2—-nl+t+n 2—nlt+ny

ThereforeA;W>0 for (v{?,0{?) e U\ {(v? ,v5)}. A little more elaborate argument further
shows thatW(v{”,v{V)— asn—o. Details are omitted. We therefore ha{@). O

Remark 111.1:By Theorem lll.1, clearly chaos will not occur id; andU, because trajecto-
ries originating or passing therein grow unbounded. This information is rather useful in eliminat-
ing nonchaotic cases.

Then, will chaos occur in the bounded invariant rectariglin (53) for » in the range 0
<p< 772,5? Through numerical experiments, we have found that the answer is also negative; the
map RyR, displays only periodic behavior with periods,2i.e., for the parameter rangg, 0
<p< 772,;4: all orbits are asymptotically periodic; see Example 11l.1. What we have found em-
pirically is that strange attractofgvariant regiongsfor chaoticRyR, consist mainly of points in
D, plus a small portion of points lyingutside DUU,;UU, (see Figs. 3 and 14, for example

Also, even though in Proposition Ill.4 and Theorem Ill.1 the rangeyd§ restricted to O
< y<1 (rather thany>0, n#2), numerical experiments indicate that ongexpproaches %,
then trajectories become unbounded. Thus, it appears that no chaotic cases are lost if we restrict
0<g9p<1.

Graphical methods, such as LienardRef. 10, pp. 31-33 have been found effective and
useful in studying systems of nonlinear differential equations in 2D. To conclude this section, we
describe a graphical method for the m&gR,. For any given point«{;,v,), we rewrite the
relation (56) as

u; 2

2+ 7

F(vy)

U1

2+7
_E

U1
F(vy)

Note that in(64), the terms inside the curly parentheses are a convex combination of two points
(vq,F(v,)) and (F(v,),v4). Thus such a sum of terms corresponds to a point on the line segment
with endpoints ¢,,F(v,)) and @,,F(v4)). Using (64), we show the graphical construction in
Fig. 2 whereC is the curve representing the functiop=F , 5(v5), | is the point (Qy,), L, is the
straight linev,=v,, Py is the point ¢1,v5), P; is the point E(v,),v,), P, is the point

_n
2+7

} . (64)

u
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(F(v,),F(v,)), P3is the point ¢4,F(v,)), P4 is the point €(v,),v4), L, is the line segment
joining P5 with P,, Pg is a point onL, satisfyingPsP5:PsP,= 7:2, andPg is the image point
(uq,u,) satisfyingOPg:OPs=(2+ 5)/(2— 7).

IV. SNAPBACK REPELLERS AS A CAUSE OF CHAOS

Difficulties associated with proving chaos for noninvertible maps in two- or higher-
dimensional spaces have been described itemwise in Secs. | A, B and C. As promised, we now
focus our study on Sec. | B, the snapback repellers.

Snapback repellers fdnoninvertible one-dimensional maps are repelling fixed points with
homoclinic orbits. The proof that they cause chaos may be found in Dev&efy11, Theorem
1.16.5, p. 124 We have found that that theorem can be properly generalizéédimensional
noninvertible maps, and that for our 2D model problems under study here, such snapback repellers
actually exist and, thus, they cause chaos. However, we are alerted by Ref. 9, p. 63, that a
reference citation for snapback repellers by Marbéteady exists in the literature. It turns out
that, however, by comparing Marotto’s proof with ours, we are surprised that there is an error in
Ref. 9. The error is not grievous; at his writing Marotto might think that it was just a simple fact
(by changing to an equivalent norm to make things wamkt worth mentioning at all. We
nevertheless feel that the situation is confusing at least, leading us to clarify it below. We will then
present a somewhat refined theorem in the spirit of Ref. 11, Theorem 1dd.8it. (Even though
the authors seem to have independently rediscovered such snapback repellers here, the credit of
priority clearly goes to Marottd)

First, recall the definition of a snapback repeller based on Maf&#b. 9, Def. 2.3, p. 203

Definition 1V.1: Let Z:RN—RN be C!. Let Z be a fixed point ofF such that all of the
eigenvalues oD F(Z) have absolute values larger than 1. We say tiata snapback repeller if
there exists a poinK, in W,,((Z), the local unstable set &, and some integeM, such that
FM(Xo)=Z and deb FM(X,) #0. O

Now, let us restate the main theorem in Ref. 9.

Theorem IV.1: [Marotto (Ref. 9, Theorem 3.1, pp. 20205)] Let 7:RN—RN be C. If F
possesses a snapback repeller, tiféis chaotic. That is, there exists

() a positive integer n such that for each integerp, F has a point of period p

(i) a “scrambled set” of 7, i.e., an uncountable set S containing no periodic pointg efich
that:

(a) F(SXS,
(b) for every XY e S with X#Y,

lim | F4(X) = F5(Y)|>0,

k— o0
(c) for every Xe S and any periodic point Y of,

lim | FX(X) — FX(Y)|>0;

K— o0

(iii) an uncountable subsetySf S such that for every X e S,

lim
ol PO = FH(Y)| =0
O

The statements in Theorem IV.1 are all correct without question. However, an error was made
in the proof: in Ref. 9, p. 202, line 34, Marotto first states thakththat the usual Euclidean norm
is to be used. Let us write it as

N 112
|x|2=(2 xlz) , for x=(xq, ... Xy eRN,
=

where the subscript 2 denotes tHge-norm. Then in Ref. 9, p. 203, lines 15-17, he writes:
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“If all eigenvalues of DF(Z) are greater than 1 in norm, théndisplays the following local
behavior aZ. For somes>1 andr>0:

IF(X)=F(Y)|>s|X=Y| for all X,YeB,(Z).” (65)

(B;(2) is the ball with radiug centered a¥.)
There, Marotto obviously was using the following property:
“Let A be anNXN real constant matrix such that all of its eigenvalues are larger than 1 in
absolute value. TheA satisfies

|Ax|=pu|x|, for some u>1, for all xeRN.” (66)

Since in(65), the norm of Marotto’s choice for the underlying space is4Benorm, he must be
interpreted to mean that if66), there is au>1 such that

|AX|,=pu|x|,, for all xeRN. (67)

But it is well known that(67) is false. The following is a simple counterexample.
Example IV.1:Lekt and § be positive. The matrix

o 1

ety 25
A= s
? 1+€+§

has two eigenvaluesHle and 1+ e+ 6/2, with respective corresponding eigenvectors

1 1
_52 ’ 52 .
Choose a unit vector
1 1
X——2 1
Then
1 1
1 +6+§—5\
AX= —
2| & L9
7 ey
Take 6=1/2. Then
AX|,= ! +l 2+ 1+e+ 3 21/2— ! 377+ 27+2 1/2<O9<1
A=< 2 16 | ~ 7|z ¢8| <0L
if €is small. O

All norms in RN or CN are equivalent. What we need is a certain nornithor CN making
(66) valid. We show, step by step, how to do this in the following.

Lemma IV 1: Let A be an invertible XIN real (resp. complex) constant matrix and |lef be
anorm inRN (resp.CN). Then there exists a>0 such thajAx|= u|x| holds for all xe RN (resp.
CNy if and only if|[A”Y|<u 1, where|A™ Y| is the operator norm of Al corresponding to the
norm| | of the underlyingkN (resp.CN).

Proof: For anyxe RN or CN, x#0, we have
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Ay AW I
“1=|A7Y=su = =
w = IA = sup = I = Tax

(x=A"1w).

Therefore| Ax|= u|x| for all xe RN or CN, x#0, if and only if [A"Y<u~ 1. Whenx=0, the

proof is trivial. O
Lemma IV.2: Let B=diag(\ ¢, - . . ,Ay) be an NXN diagonal matrix with diagonal entries
N1, ... AyeCN. Let CN be the N-dimensional complex Euclidean space witinorm

N 1/2
|Z|2:(J_2l |Z]-|2) . z2=(2q,...,2y)eCN,

Then||D||,, the operator norm of D corresponding d,, satisfies

IDll2= max |A].

1<j<N
Proof: Just expand any vectare CN in terms of the basis eigenvect@s,e,, . .. .e,, where
g; is the unit vector pointing in thgth axial direction. O

Lemma IV.3: Let J be an mam Jordan matrix with eigenvalug of Riesz index m:

A 1 0 ... O
1
J=| : . (69)
(0 ... 0 |

Then for any givers, J has a similarity matrix D ~1JD, where D is an invertible diagonal
matrix, such that

TN ¢ 017

J= . (69)

0 \.

Proof: This can be found in Devandyref. 11, Proposition 2.1.12, p. 168r Franklin (Ref.
12, Exercise 13, p. 174lts proof can be easily illustrated through the following 3 similarity

matrix:
a’ 0 O07[x 1 0][ay O O A oajla, 0
D-4Jp=| 0 a* 0 [|0 N 1|/0 a O|=[0 X ay'as].
0 0 a3;'J][0O O N]LO 0O a3 0 o0 A

Therefore, if we choos@,,a,, andas;, the diagonal entries ob, to satisfya{lazzaz’lag
=g, we obtain the desired forrf69). O
Theorem IV.2: Let A be an XIN (real or complex) constant matrix such that all of its
eigenvalues have absolute values larger thariThen there exists a norfm| in CN such that the
associated operator-norm of &, |A™Y, satisfies|A~Y|<u 1. Consequently, A satisfi¢ax|
= ul|x| for all xe RN or CN,
Proof: We first perform a similarity transformation to obtaki *=PJP!, whereJ is a
Jordan canonical form o&h~; J consists of submatricek, diagonally, fork=1,2, ..., where
eachJ, has the form68). Applying Lemma IV.3, we may now assume that edghhas the form

Downloaded 21 Jan 2002 to 144.214.5.217. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



J. Math. Phys., Vol. 39, No. 12, December 1998 Chen, Hsu, and Zhou 6477

(69). Therefore,J is an e-perturbation of a diagonal matrix; call that diagonal mafix The
diagonal entries ob consist of)\j’l, the multiplicative inverses of the eigenvalugsof A. By
Lemma IV.2 and the assumption tHat|>u for all A;, we have

IDllo=maxa; | <p
J

SincelJ is aneg-perturbation oD, for ¢ sufficiently small we obtain
I9l=<IDllo+e&"<p %, (70

because:' >0 depends only os and can thus be made as small as we wish.
In CN, we now define @&-norm by

|zlp=|P~2,.
Then, for aze CN,
|A™'z|p=|P 1A Z|,=|IP 2| ,<[3],|P " 'zl;< " Y2|p, by (70).
Therefore

A~

A
1A lp=sup——

P -1
< .
1| p H

By Lemma IV.1, we have
|AX|p=pu|X|p, for all xeRN or CN,

By incorporating Theorem V.2 into its proof, Theorem IV.1 is now true. However, in what
follows, let us provide a somewhat refined version of Theorem IV.1. Let

FRNSRN,  AX)=(F,(%),F2(X), . .. fn(X), XxeRN,

be aC! map. Then fox®) x? e RN, by applying the mean value theorem to the scalar-valued
functionsfq, ... ,fy, we have

FX®) = FX®) = (Vv (X =), Vip(y2) - (xP=xP), L V() (X =x?)),

(72)
for somey?, ... yNe RN, where eachy’ lies on the open line segmeht={y e RNy= ax(®
+(1—a)x®?, e (0,1)}. We write (71) as

F(xM)—FAx?)=DF - [xP-x2], (72)

whereDF=DZF(Y), with Y=(y%, ... y") e RV*N is anNxN matrix whoseith row vector is
Vfi(y'"), whereVf,(y') makes(71) satisfied.

Theorem IV.3: Letm:RN—RN be C!, and p be a snapback repeller &. Then for each
neighborhood U of p, there is an integert® such thatF" has a hyperbolic invariant subset in
U on which F" is topologically conjugate to the shift map on the binary symbol space

Proof: The argument goes the same way as that in Ref. 11, Theorem 1.16.5, p. 124p Since
is a snapback repeller, all of the eigenvalueDdf(p) have absolute values larger than 1. By
Theorem IV.2, we can define a nofn} on RN such that|[D F(p) ]~ Y|<u 1, for someu>1. By

continuity, we can find an open neighborhdétof p in U and soma],1<ﬁ<,u, such that
IIDAY)] Y=<t forall Y=(y%, ... yN)eWN (73

By the assumption of a snapback repeller, we can take a peiw such thatF"(q)=p and
detD(F")(q)) #0. Since the orbit of] contains only a finite number of points that do not lie in
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W, and since defd #"(q)) #0, by continuity we can find a neighborhodtlof g in W such that
DF"(Y) is invertible for allY=(y%, ... yN) e VN. Therefore there exists sonae>0 such that

I[PF"(Y)] Y <e™t, forall Y=(yi, ... yN)eV\ (74)
From the invertibility of DF"(Y), we see thatF" mapsV diffeomorphically onto an open set
F"(V) containingp in its interior.

We now choosg so that {u/e) “*<1. We choos&/ sufficiently small so tha#"*'(V)C W,
but 7" (V)NV=y, fori=1,2,...j. SinceVCW, from (72), (73), and Lemma V.1, fork
>j and for any two pointx*,x?eV, we have

|fn+k(Xl)_.7n+k(X2)| — |fn+k(X1) _fn+k(X2)|
— |DJT(Y1) . (anJrk*l(Xl) _fn+kfl(x2))|
=] FrHR L (xh) = Frrke (k)| (where Yie W)
=u|DF(Y?)- (FME2(xh) = FPTE2(x?)| (where Y2 WN)
>p2|]_-n+k72(xl)_]_-n+k72(X2)|

=

=K FN(xY) = FNx3) | =K DFNYY) - (xt=x3)|  (where Y<e VN)
= ke |xt—x?| =k |xt—x2|.

ThereforeF"*k expandsv and fork sufficiently large, 7" "%(V) coversV. We have a diffeomor-
phism F"*k:v— FMk(V) such thatpe F"*¥(V) andVC F" (V).

Let us choose a sufficiently small open subgétcontaining (") "1(V). By choosingV
sufficiently small andk large, we can mak¥' satisfy

i) VNV =g;

(i)  F"TV)DVUV';

(i)  Fkv)DV;

(iv)  F"kvHcw;

(v)  F""Kis a strict expansion o’.

Therefore the mapF"** has a shift sequence
V' —=V-=V'UV,

where each membéexcept the leadgiof the sequence is covered by the image of the predeces-
sor. ThereforeF"*¥(V'UV)DV'UYV, andV'UV has an invariant subset

A={xeV'UV|(F"i(x)eV'UV,j=0,1,2,.. }.
For anyxe A we define its binaryitinerary) symbol as
S(X)=(SpS1Sz - - .S . ..), §=0 if (F"M)ixeV’', s=1 if (F"")ixeV.

Then it is a standard procedure to show t/#&t ¥ is topologically conjugate to the shift automor-
phism onZ,, the space of all binary symbols. The proof is complete. O

Note that all consequencés, (ii), and(iii) in Marotto’s Theorem IV.1 can be deduced from
the symbolic dynamics implied by Theorem IV.3.

Remark 1V.1:In verifying the snapback repeller assumption in order to be able to apply
Theorem IV.3, one needs to check the following conditions according to Definition 1V.1:

() p is a fixed point of F such that all eigenvalues & F(p) have absolute values larger

than 1; (79
(i)  there exists @ e W,.(p) such thatFM(q)=p for some positive integeM; (76)
(i) detDFM(q)+0. (77
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v2-axis
<

-4 N aamasrats vty
-3 -2 -1 0 1 2 3
v1-axis

FIG. 3. The strange attractor for Example V.1, whare0.9980,38=1, andn=0.7570 are used represents the region
defined by(54). The origin lies inside the “cloud” and, thus, is a snapback repeller.

In most cases, the verification work must be done through the aid of a computer, which
automatically involves numerical errors. The verificationiofis easiest, and the computer result
can be trusted with total confidence. To verify), one needs to do computer-aided search of
preimagesof p and then check whether such preimages can wind uglp(p). This kind of
reverse search can easily accumulate large numerical errors. Therefore, the visluewadn if
computable in principle, woulahot be entirely trustworthyNevertheless, using theontinuity
property of 7, one can still conclude whether such ldin(and, consequently, a homoclinic opbit
exists or not

The verification of(iii ) is themost difficultin general, because as we just pointed out in the
above paragraph, it is very difficult to pin down an accurate valudofEven if M is firmly
determined, checking whether detF™(q) # 0 is still generallyimpossiblebecause the evaluation
of DFM(q) usually involves computer roundoff errors. On the one hand, using the holomorphic
property of the mapF with respect to the parameter, one may claim that there exist at least
some parameter values such tkatl3 holds for some snhapback homoclinic orbit. On the other
hand, we can expect, “almost beyond reasonable doubt,” that eve(i/7f fails, i.e.,
detDFM(q)=0, there should still be chaos. The situation BV (q) =0 signifiesdegeneracy
and leads us to believe that what we have degenerate (snapback) homoclinic orl#iccording
to our knowledge of 1D maps, degenerate homoclinic orbits actually causes perhapsnigest
chaos!! This leads us to pose a conjecture below:

Conjecture:Let F:RN—RN be C?! satisfying(75) and (76). Then there exists a hyperbolic
invariant subset oWV, (p) on which 7" on A is topologically conjugate to the shift map an.

O

V. NUMERICAL EXAMPLES

We provide two examples in this section. Throughout, wefix 1.
Example V.1: The origin as a snapback repelleffR,. For a, 0<a=<1, we know that the
origin (0,0 is a repelling fixed point by Proposition Il1.2.
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Solution ul
a=0.998 b=1. e=0.757

FIG. 4. The spatiotemporal profile of; for initial time duration[0, 2].

Solution u2
a=0.998 b=1. e=0.757

FIG. 5. The spatiotemporal profile of, for initial time duration[0, 2].

Downloaded 21 Jan 2002 to 144.214.5.217. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



6481

Chen, Hsu, and Zhou

J. Math. Phys., Vol. 39, No. 12, December 1998

a=0.998 b=1. e=0.757

Solution v1

FIG. 6. The spatiotemporal profile of; for initial time duration[0, 2].

Solution v2

1. e=0.757

a=0.998 b

g

FIG. 7. The spatiotemporal profile of, for initial time duration[0, 2].
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Solution ul
a=0.998 b=1. e=0.757

ul-axis

e 101 .
1”100 t—axis

FIG. 8. The spatiotemporal profile of; for time duration[100, 102.

Solution u2

a=0.998 b=1. e=0.757

FIG. 9. The spatiotemporal profile of, for time duration[100, 102.
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Solution v1
a=0.998 b=1. e=0.757

””“ LA

'_

e
i ummﬂ' i
'“MH” m“ WW |

‘;'ﬁ‘ '4."’ l“"‘”""‘mnn

‘""’”""""""”‘5‘5HHHW““'“”

x-axis

FIG. 10. The spatiotemporal profile of, for time duration[100, 103.

Solution v2
a=0.998 b=1. e=0.757

v2-axis

FIG. 11. The spatiotemporal profile of, for time duration[100, 103.
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vl-Axis

-5 r
1
X—-Axis

FIG. 12. The snapshot ef; at timet=101.

Through many numerical experiments, we have found that the origin will not be a snapback

repeller unlessy is close to 1.
We choosex=0.9980,8=1, and»=0.7570. To see whether there is a strange attractor, we

plot the iterates
(RoR1)¥Pg, Py=(0.005,0.005, 10*<k<10’.

What we obtain is a “cloud,” the strange attractor, as shown in Fig. 3. Note that the point
=(0p,) (cf. Fig. 2 is mapped into the origin:

(RoR1)1=(0,0),
and in Fig. 3,1 is “hidden in the cloud.” Therefore, by Remark V.1, the continuity B§R,
implies that the origin is a snapback repeller, i@6) is satisfied. The verification of77) is
difficult, however, as noted in Remark 1V.1. We have made no attempts to verify it.

To see chaotic vibration, we consider the syst@m—(18), with the initial data

[((x—x7)%/h%, X <x=X,,

3(x—%p)  3(X—Xx2)? 3(x—xp)*
ot R X< X<X3,

1
udX)=75° { L 3(X—Xy) .\ 3(X—X4)? . 3(x—x,)°® N (78

h h? h®
(xs—x)3/h3,  x,<x<Xg

\ 0, elsewhere,
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v2-Axis
<
]

-5 T
X-Axis

FIG. 13. The snapshot af, at timet=101.

h=1/6, x;=j/6, for j=1,2,3,4,5;

(79
Up o X)=v1(X)=v2dX)=0, O=x=L.

Note that the function given ifi78) is a C?-continuous smoothest spline of degree 3. The initial
data(78) and (79) satisfy the boundary conditior(d6) and (18). It is not difficult to show(by
mimicking the proof in Ref. 3, Theorem 6.1 that the system has a uni@solution
(Ul,U2,Ul,U2) on (X,t) € [O,l]X[0,00)

The spatiotemporal profiles of;,u,,vq,v, are displayed, respectively, in Figs. 4, 5, 6, and 7
for the first two time units, i.ete[0,2].

For time te[100,103, the spatiotemporal profiles af;,u,,v,,v, are displayed, respec-
tively, in Figs. 8, 9, 10, and 11.

The snapshots at=101 ofv, andv, are displayed, respectively, in Figs. 12 and 13. We do
not need to display; andu, att=101 becaus&, andu, are identically zero.

These profiles are computed by using the explicit representation fornf2@asNote that
because of thaondispersiveffects of wave propagation, all componeunisu,,v,, andv, of the
system can display a “totally serendi.e., zero or no disturbanteone right next to the chaotic
spatiotemporal region. O

Example V.2: A period-4 point as a snapback repelle( BR,)*. Let us choosex=0.6,
B=1, and»=0.8200.

The mapRyR, has a strange attractor as shown in Fig. 10, suggestingRi§iy, is chaotic.
Note in Fig. 14 that neither the poihthor the origin lies inside the strange attractor “cloud;” in
this case, we can easily rule out the origin as a snapback repeller.

The mapRoR, has many period-4 orbits. So let us compute the fixed pointRgiR;)* by
Newton’s method. We have obtained three sets of such of®@s (82), and (84) and other
relevant data as given below:
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Iterations from 10000 to 100000
4 T T T T T T T r T

L
-l
s

3] 3

-4 N ans e
-3 -2 -1 0 1 2 3
vl—axis

FIG. 14. The strange attractor for Example V.2, where0.6, 3=1, andz=0.82 are used is the rectangle defined by
(54). Note that the origin is not inside the “cloud” of the strange attractor.

Iterations from 10000 to 400000

0.7746 T T —
- SN T a*
¥ + B+
. e P ‘
i N AT
e Lt R . S, ]

- :
e P

iy,
0.7- .
7]
54
T
o
N
¢ %
[ L
i %
: Cor
0.6 AN 2 1
¥ LTI
05899 L& +o

0.8418
vl-axis

FIG. 15. This is a zoom-in of the vicinity of the period-4 po{"=(0.7582, 0.6762), cf(80), from Fig. 14. Note that

P(ll)is highlighted as the intersection of the horizontal and vertical lines near the center of the figure. Chaos in the
immediate vicinity ofP{" is not strong.
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Iterations from 10000 to 400000

-0.4353

FIG. 16. This is a zoom-in of the vicinity of the period-4 pom§1>:(70.5988, —0.5229), cf.(81), from Fig. 14. Note
that P{!) is highlighted as the intersection of the horizontal and vertical lines near the center of the figure. Chaos is strong
in the immediate vicinity ofPS .

|P<11>:(o.7582, 0.6762 P¥=(2.1507, 1.0699 0
i 80

P¥=(-0.1942, —7.6573, P{¥=(0.2591, —0.1675;

| 44737 —1.962 e | .
D((ReR)(P}7)= —89024 —5.7953" with eigenvalues—9.2007 and—1.0683.
(81)
PY=(-0.5988, —0.5229, P%=(0.1968, —0.7636,
i 82
o) P{¥=(0.5988, 0.5229 PY=(—0.1968, 0.7638 82

3.9208 1.210

D((ROR1)4(P(21)))=L4494 14961; with eigenvalues 0.0908 and 5.3267.(83)

PV=(-0.4492,-0.0329, P¥'=(-0.1076, —0.6774,
(iiil) (84)

P=(0.4492, 0.0324 PyY=(0.1076, 0.677%

—6.1730 44.675

_13.7347 90-562E with eigenvalues 0.6515, 83.7384(85)

D(<R0R1>4<P<31>>>={
Note thatP{)) satisfies
(RoRp)K(P)=pikriimed & =723,

Let us now zoom in on Fig. 10 about these period-4 paiifs,PSt , andPS" (see Figs. 15, 186,
and 17, respectively.
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Tterations from 10000 to 400000

v2-axis

vl-axis

FIG. 17. This is a zoom-in of the vicinity of the period-4 polP§"= (—0.4492, —0.0324), cf.(84), from Fig. 14. This
point is not inside the “cloud” of the strange attractor; it does not have a homoclinic orbit. There is no chaos in the close
vicinity of P§V.

From (81) and Fig. 15, by the continuity argument as given in Remark IV.1, it is quite clear
that with F= (RoR1)* the pointP{V satisfie75) and(76). Thus,P{") “should be” a snapback
repeller. However, we observe in Fig. 15 tlshhos is not strong in the immediate vicinity dlﬂ?

From (83) and Fig. 16, we see th&" is a saddle node fixed poinfRyR,)* with a ho-
moclinic orbit. Chaos is very strong in the immediate vicinity df®®

From (85), we note thaP(31) is again a saddle node fixed point G¢R,)*. However,Pgl) is
not on the strange attractor, as can be seen from Fig. 17, suggestiriggjthalbes not have a
homoclinic orbit. There is no chaos at all in the immediate vicinity df-P

This example suggests the following:

(1) Snapback repellers imply chaos, but its strength may not be strong when other sources of
chaos are present.

(2) A saddle node fixed point having(éorward homoclinic orbit seems to cause strong chaos,
even without the diffeomorphism assumption.

Point (2) above appears particularly important. We hope to be able to report some results in the
future. O
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