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Snapback repellers as a cause of chaotic vibration
of the wave equation with a van der Pol boundary
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A wave equation on a one-dimensional intervalI has a van der Pol type nonlinear
boundary condition at the right end. At the left end, the boundary condition is fixed.
At exactly the midpoint of the intervalI , energy is injected into the system through
a pair of transmission conditions in the feedback form of anti-damping. We wish to
study chaotic wave propagation in the system. A cause of chaos by snapback
repellers has been identified. These snapback repellers are repelling fixed points
possessing homoclinic orbits of the non-invertible map in 2D corresponding to
wave reflections and transmissions at, respectively, the boundary and the middle-
of-the-span points. Existing literature@F. R. Marotto, J. Math. Anal. Appl.63,
199–223~1978!# on snapback repellers contains an error. We clarify the error and
give a refined theorem that snapback repellers imply chaos. Numerical simulations
of chaotic vibration are also illustrated. ©1998 American Institute of Physics.
@S0022-2488~98!02012-X#

I. INTRODUCTION

Earlier, in a series of papers~Refs. 1–4!, we studied chaotic vibrations of the wave equati
due to a nonlinear self-excitation boundary condition of a van der Pol type: For the wave eq

wtt~x,t !2wxx~x,t !50, 0,x,1, t.0, ~1!

let the right-end boundary condition be self-exciting:

wx~1,t !5awt~1,t !2bwt
3~1,t !, a,b.0, t.0; ~2!

and let the left-end boundary condition be either fixed or free:

w~0,t !50 ~fixed end! or wx~0,t !50 ~free end!, ~3!

then the study in Refs. 2 and 4 shows that for initial conditions of generic type, the gra
(wx ,wt) and the Riemann invariants (wx1wt ,wx2wt) of ~1! will be asymptotically periodic with
one~for 0,a<1) or two frequencies~for a.1). Thus the wave equation does not have chao
vibrations. However, instead of~3!, if energy is injected into the system at the left end in the fo
of the boundary condition

a!Electronic mail: gchen@math.tamu.edu
b!Electronic mail: sbhsu@am.nthu.edu.tw
c!Electronic mail: jzhou@math.tamu.edu
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wx~0,t !52hwt~0,t !, h.0, hÞ1. ~4!

Then for a certain parameter range ofh, the injected energy will excite~asymptotically! periodic
vibrations into chaos~Refs. 3 and 4!. The proofs in Refs. 1 and 4 are based upon the reflec
relations of the equation~1! at the two endpointsx50 andx51, which is perhaps the most natur
Poincare´ section of the initial-boundary value problem stated above.

Existing study on chaos in differential equations is concerned mostly with unpredic
behavior originating from nonlinearities appearing either in the governing equations or/and b
ary conditions. Very few works have treated chaotic nonlinear systems containing disturban
excitations from in-span or interiorpointwise sources. So let us consider the following scenari
Let ~1!–~3! stay the same as above and, in addition, assume that energy is injected into the
at anin-span point, sayx5a, where 0,a,1. This is apointwise excitation. Can this also rouse
periodic vibrations to chaos?

A volcanic eruption on earth may be idealized as a pointwise disturbance or excitation
physical system governing global weather, because the scale of the volcano is negligibly
compared with that of the earth. The eruption injects ashes, chemicals, and energy, amon
things, into the atmospheric currents and the stratosphere and can easily throw the global w
patterns off balance and into chaos, provided that the eruption is long and forceful. Our
undertaken here bears the resemblance of the kind of pointwise excitation occurring in M
Nature and, thus, signifying certain mathematical and physical relevance of both models m
investigation. However, we must also point out the dissimilarity: the volcanic eruption in
energy into the weather system asexogenous forcing, whereas the energy injection at an in-sp
point considered in this paper is in theendogenous feedback form of anti-damping.

We now describe the details of the mathematical model we wish to treat. Consider the
equation

wtt~x,t !2wxx~x,t !50, 21,x,0, 0,x,1, t.0. ~5!

The spatial interval is chosen to be (21,1) just for convenience. The wave speed plays a v
minor role in the subsequent mathematical analysis, so we just set it to be equal to 1 in~5!. Again,
let the right-end boundary condition be self-exciting:

wx~1,t !5awt~1,t !2bwt
3~1,t !, 0,a<1, b.0, t.0. ~6!

Note here that we require 0,a<1 in order to avoid hysteresis and nonuniqueness of solution2,4

At the left end, assume that the boundary condition be fixed:

w~21,t !50, t.0. ~7!

@If this is replaced by the free end boundary conditionwx(21,t)50, t.0, then the mathemati
cal analysis remains qualitatively the same.# At exactly the middle of the span, x50, we consider
two types of transmission conditions:

~Type I!H wt~01,t !2wt~02,t !52hwx~01,t !,

wx~02,t !5wx~01,t !,
t.0, h.0, hÞ2, ~8!

or

~Type II!H w~02,t !5w~01,t !

wx~01,t !2wx~02,t !52hwt~01,t !,
t.0, h.0, hÞ2. ~88!

Also prescribed are two initial conditions

w~x,0!5w0~x!, wt~x,0!5w1~x!, 21,x,1, ~9!

where the initial state (w0 ,w1) lies in appropriate function spaces. The energy,E(t), of the
overall system~5!–~9!, at timet, is defined to be
 21 Jan 2002 to 144.214.5.217. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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E~ t !5
1

2E21

1

@wx~x,t !21wt~x,t !2# dx.

We now examine the two sets of transmission conditions~8! and ~88!. Consider the time rate o
change of energy:

d

dt
E~ t !5E

21

0

~wxwxt1wtwtt! dx1E
0

1

~wxwxt1wtwtt! dx

5...@ integrating by parts and utilizing~5!–~88!#

5awt~1,t !22bwt~1,t !41H hwx~01,t !2 for ~8!,

hwt~01,t !2 for ~8!8.

~10!

~108!

We see that ifh,0, then the transmission conditions~8! or ~8!8 would have contributedlossof
energy to the system. Indeed, forh,0, ~8! and ~8!8 model ~the only! two primary feedback
dampingdesigns we know of today in structural dynamics~Ref. 5, pp. 50–51!. But here in~8! or
~8!8, we requireh.0. Therefore the in-span conditions~8! or ~8!8 contributeenergy increaseto
the system. Therefore, physically,~8! or ~8!8 correspond tofeedback anti-dampingdevices which
inject energyinto the system.

Note that the first two termsawt(1,t)22bwt(1,t)4, in ~10! or ~10!8, signify as in Refs. 2–4
the self-regulating~or self-exciting! effect of the boundary condition~6! because we have

awt~1,t !22bwt~1,t !4H >0 uwt~1,t !u<~a/b!1/2,
if

,0 uwt~1,t !u.~a/b!1/2,

~11!

~118 !

i.e., it causes energy torise if the velocity magnitudeuwt(1,t)u is small, and tofall if uwt(1,t)u is

large, just like what the damping terms do in the van der Pol ordinary differential equationmẍ

1(2a ẋ1b ẋ3)1kx50. Incidentally, the transmission conditions~81! can be incorporated into
the governing equation~5! by rewriting it as

wtt~x,t !2wxx~x,t !2hwt~01,t !d~x!50, t.0, ~12!

where d(x) is the Dirac delta distribution concentrated atx50. Therefore,~8!8 does indeed
correspond to a pointwise disturbance or excitation. Even though~8! also corresponds to a poin
wise excitation, we do not as yet know of any similar way to incorporate~8! into the governing
equation~5! through the adding of some delta functions.

The advantage of choosing the exact middle-of-the-span pointx0506 in ~8! or ~8!8 is that it
makes themethod of characteristicseasily applicable to our model problem for the purpose
mathematical analysis. If, instead, we replacex0506 by x05a6 therein, for some arbitrarya,
21,a,1, then the problem obviously is much more generally posed. Unfortunately, this g
ality ~of x0) also renders the problem highly intractable in mathematical technicality. As we
see below, the approach of the method of characteristics adopted by us isnot robustwith respect
to the choice of energy injection pointx0506 in the sense that a slight perturbation, say, cha
ing x0506 to x05«6 for some small«Þ0, would immediately fail all the mathematical analys
based on this approach. So the question is, how good or sound is the main conclusion of th
that chaotic vibrations exist whenx0Þ06? This may be responded to, in a nonrigorous way,
follows. From the work in Ref. 6, we know that, in the linear case, corresponding to the c
x05«6 with « being irrational, there are manyaperiodicsolutions and, thus, the general syste
~with x05«6) should be ‘‘even more chaotic’’ than the special casex0506 when the nonlin-
earity ~6! is present. However, a rigorous proof of this heuristic claim seems to be far out of
for the time being; more efforts are required in order to be able to treat the general case.

We are now in a position to apply the method of characteristics to treat~5!–~9! as follows.
Define, by folding the interval (21,0) onto the interval~0,1!, the following:
 21 Jan 2002 to 144.214.5.217. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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w~1!~x,t !52w~2x,t !

w~2!~x,t !5w~x,t ! J for xP@0,1#, t>0, ~13!

ui5
1
2 ~wx

~ i !1wt
~ i !!, v i5

1
2 ~wx

~ i !2wt
~ i !!, i 51,2. ~14!

Then the wave equation~5! is converted into a first-order hyperbolic system

]

]tF u1

u2

v1

v2

G5F 1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 21

G ]

]xF u1

u2

v1

v2

G , 0,x,1, t.0. ~15!

The reflection relation atx51, according to~6!, ~7!, and~14!, is

Fu1~1,t !

u2~1,t !G5R1,abS Fv1~1,t !

v2~1,t !G D[F v1~1,t !

Fa,b~v2~1,t !!
G , ~16!

where for each givenvPR the functionu5Fa,b(v) is well defined through the following implicit
cubic equation,2

b~u2v !31~12a!~u2v !12v50. ~17!

Thus ~16! constitutes the right-end boundary condition for~15!. In what follows, we often write
R1,ab simply asR1 , in case no ambiguities should occur.

Remark I.1:In ~17!, for given fixeda, 0,a<1, there exists a uniqueuPR satisfying~17! for
each givenvPR. Contrarily, if a¹(0,1#, i.e., 12a¹@0,1), for each givenvPR, then there may
exist one, two, or three real solution~s! uPR, and thusFa,b is no longer a well-defined function
See more in~31!–~33! below. h

The reflection~i.e., transmission! relation atx50, according to~8!, ~88!, and~14!, is, respec-
tively,

Fv1~0,t !

v2~0,t !G5R0,hS Fu1~0,t !

u2~0,t !G D[F h

22h

2

22h

2

22h

h

22h

G Fu1~0,t !

u2~0,t !G for ~8!; ~18!

Fv1~0,t !

v2~0,t !G52R0,hS Fu1~0,t !

u2~0,t !G D , for ~88 !. ~188!

The above@~18! or ~188!! constitutes the left-end boundary condition for~15!. From now on, we
often abbreviateR0,h asR0 . By abuse of notation, we will make no distinction betweenR0,h and
the matrix on the rhs of~18!.

The original initial conditions~9! now lead to

F u1~x,0!

u2~x,0!

v1~x,0!

v2~x,0!

G5F u1,0~x!

u2,0~x!

v1,0~x!

v2,0~x!

G , 0,x,1, ~19!

for some functionsui ,0(x),v i ,0(x),xP(0,1),i 51,2, according to~14!. In summary,~15!–~19!
constitute the complete set of a well-posed initial-boundary value problem. This system
unique solution (u1 ,u2 ,v1 ,v2): for t52k1t, k50,1,2, . . . ,0<t,2 and 0<x<1,
 21 Jan 2002 to 144.214.5.217. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Fu1~x,t !

u2~x,t !G55
~R1+R0!kS Fu1,0~x1t!

u2,0~x1t!
G D , t<12x,

R 0
21+~R0+R1!k11S Fv1,0~22x2t!

v2,0~22x2t!
G D , 12x,t<22x,

~R1+R0!k11S Fu1,0~t1x22!

u2,0~t1x22!
G D , 22x,t<2;

~20!

Fv1~x,t !

v2~x,t !G55
~R0+R1!kS Fv1,0~x2t!

v2,0~x,t!
G D , t<x,

R0+~R0+R1!kS Fu1,0~t2x!

u2,0~t2x!
G D , x,t<11x,

~R0+R1!k11S Fv1,0~21x2t!

v2,0~21x2t!
G D , 11x,t<2,

which has the same form as Ref. 2,~13! and~14!. In the above, all theR0’s may be replaced by
2R0’s if ~188! @or, equivalently,~88!!# takes place in lieu of~18!.

Naturally, from the explicit representation~20! of the solution, the system~15!–~19! manifests
chaotic behavior if and only if~the iterates of! the composite map~s! R0R1 and/orR1R0 is/are
chaotic. Actually,R0R1 andR1R0 have identical dynamical behavior. This is seen in the fo
lowing.

Proposition I.1: For each givena, 0,a<1, b.0, andh.0, hÞ2, the mapsR0,hR1,ab and
R1,abR0,h are topologically conjugate.

Proof: First, we note thatR0,h is an invertible 232 matrix. The rest is then obvious from the
following commutative diagram:

h

Therefore, investigation of the periodic and chaotic behavior of onlyR0R1 suffices, because
it implies that ofR1R0 , and vice versa.

If the transmission conditions~88! take effect rather than~8!, then we need to use~188! and,
consequently,~20!, but with all R0’s therein substituted by2R0’s. This means that we must
investigate the chaotic behavior of2R0R1 rather thanR0R1 . From the mathematical analysis
point of view, we have found that the treatment of2R0R1 is qualitatively the same as that o
R0R1 . Henceforth, we will therefore only consider~8!, ~18!, and the ensuingR0R1 .

The main objective of this paper is to study the occurrence of chaos for the wave equ
system as described. Recall from our earlier studies in Refs. 2–4 that the parameterb plays the
role of scaling. Therefore, we may just fixb to be a positive constant, sayb51. By varyinga and
h increasingly from zero, either separately or jointly, we have observed through computer s
lations at least the following three routes/sources of chaos for the mapR0,h R1,ab :

A. Period doubling

For positivea and h close to zero, the mapR0,hR1,ab has a stable period-4 orbit in two
dimensions~2D!. ~It does not have any period-2 orbit, according to Proposition III.5 in Sec.
below.! Let us, say, fixa51/2 ~and b51), for example. By increasingh, at h'0.6725, we
observe that this period-4 orbit loses stability, and a new stable period-8 orbit supersedes
ratios of successive differences of parametrical valuesh where period doublings occur have bee
verified to tend to Feigenbaum’s constant. So the numerical evidence in support of period
bling is strong and beyond doubt. Nevertheless, at this moment, the authors are only pa
successful in establishing a period-doubling bifurcation theorem in 2D and in carrying o
computer-aided verification of the theorem. We hope to be able to defer a complete presen
of this to a sequel.
 21 Jan 2002 to 144.214.5.217. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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B. Snapback repellers

These are repelling fixed points or periodic points in whose neighborhoods a homoclinic
originates. For example~see Example V.1 in Sec. V!, the origin inR2, as a repelling fixed point
is a snapback repeller for a restricted range ofa and h values. So far, this is the only case fo
which we have sufficient understanding; its discussion will be the focus of the study in this
~see more in Secs. IV and V!.

C. Nondiffeomorphic horseshoes

The Smale horseshoe is a powerful technique for proving chaos of multidimensional
However, the powerful Smale–Birkhoff homoclinic theorem~Ref. 7, pp. 482–483! requires that
the map be adiffeomorphism; so it must at least beinvertible. Ours is not the case here becau
R1,ab is not invertible for anya, 0,a<1, b.0; see Remark I.1 and~31!–~33! below. The lack
of invertibility of R1 and, consequently, ofR0R1 is related to the prevalentirreversiblebehavior
of time-dependent nonlinear PDEs; see Sec. II. Numerical evidence strongly suggests that t
R0R1 has many periodic points ofsaddle nodetype in whose neighborhoods homoclinic orb
originate and, thus, we speculate that they cause chaos.~For lack of a better term, we call this
‘‘non-diffeomorphic horseshoe’’ for the time being.! See some details in Example V.2. Notwith
standing, we must concede that before a rigorous proof is given, this remains just a specu
For general non-invertible maps in two- or higher-dimensional spaces, as pointed out by
et al.8 there arenot many optionaltheoretical methods available to rigorously prove the occ
rence of chaos. More dedicated cultivation of this area is very desirable.

The organization of the paper proceeds as follows. In Sec. II, we discuss the time irr
ibility of our PDE system. In Sec. III, elementary properties of the map, including fixed po
stability, and invariant domains, are studied. In Sec. IV, we study chaos caused by sna
repellers. We point out an error in an earlier work by Marotto9 and give a refined proof. In Sec. V
we present examples and illustrations of chaotic vibrations.

II. IRREVERSIBILITY FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS: THE
LACK OF DIFFEOMORPHISM TO FORM A SMALE HORSESHOE

Recall from Ref. 2 that for 0,a<1, b.0, the implicit relation~17! determines a unique
function u5F(v)5Fa,b(v), where

u5F~v !5v1F2
v
b

1A 1

27S 12a

b D 3

1
v2

b2G 1/3

1F2
v
b

2A 1

27S 12a

b D 3

1
v2

b2G 1/3

, ~21!

by Cardan’s formula. The functionF is odd, with two critical points—one maximum and on
minimum—at, respectively2vc* and vc* , wherevc* 5@(22a)/3#A(11a)/3b. We also know
that F satisfies the following properties:

~i! F8~0!52
11a

12a
, ~22!

~ii ! 0,F8~v !,1 for uvu.vc* ; ~23!

~iii ! F has three intercepts atv52v I , 0, v I , where v I[A11a

b
. ~24!

Also, recall from Ref. 3 that forh, 0,h,1, the mapu5G+F(v)5Gh+Fa,b(v), where
Gh[(11h)/(12h) , has exactly three fixed points

v5G+F~v !, for v52v* , 0, v* ; v* [
11h

2h
A11ah

bh
. ~25!

Now, let us consider the question whether the system~15!–~19! is time reversible. We make
a change of variablet°2t and considert>0; we obtain the time-reversed system
 21 Jan 2002 to 144.214.5.217. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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]

]tF ũ1

ũ2

ṽ1

ṽ2

G5F 1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 21

G ]

]xF ũ1

ũ2

ṽ1

ṽ2

G , 0,x,1, t.0, ~26!

with boundary conditions

at x50F ṽ1~0,t !

ṽ2~0,t !
G5R̃0S F ũ1~0,t !

ũ2~0,t !
G D 5F 2

h

21h

2

21h

2

21h
2

h

21h

G F ũ1~0,t !

ũ2~0,t !
G , t.0, ~h.0!,

~27!

at x51Fu1~1,t !

u2~1,t !G5R̃1S F ṽ1~1,t !

ṽ2~1,t !
G D 5F ṽ1~1,t !

F̃a,b~ ṽ2~1,t !
G , t.0, ~28!

and certain initial conditions

ũi~x,0!5ũi ,0~x!, ṽ i~x,0!5 ṽ i ,0~x!, i 51,2, xP@0,1#, ~29!

where, in~28!, the relationũ5F̃a,b( ṽ) is defined through the following cubic equation:

b~ ũ2 ṽ !32~11a!~ ũ2 ṽ !22ṽ50, 0,a<1, b.0. ~30!

Note thatũ andṽ are restricted to be reals in~30!. The relationF̃a,b is not a function, as Cardan’s
formula for cubic algebraic equations gives the solutions of~30! as follows: let

D~ ṽ ![2
1

27

~11a!3

b3
1

ṽ2

b2

be the discriminant for~30!. Then
~i! if D( ṽ).0, thenũ is uniquely determined byṽ:

ũ5F̃a,b~ ṽ !5 ṽ1F2
ṽ
b

1AD~ ṽ !G1/3

1F2
ṽ
b

2AD~ ṽ !G1/3

, ~31!

~ii ! If D( ṽ),0, then~30! yields three real solutions:

ũk52S cos
f12kp

3
; S[A1

3

11a

b
, f[cos21F 3A3ṽ

~11a!
A b

11a
G , k51,2,3. ~32!

~iii ! If D( ṽ)50, then~30! yields two distinct real solutions:

ũ152A3 ṽ
b

, ũ25A3 2
ṽ
b

~with multiplicity 2!. ~33!

The multiplicity of solutions given in~32! and ~33! spells trouble for the system~26!–~29!.
We have the following.

Theorem II.1 †Lack of global irreversibility of the system „15…–„19…‡: Let (26)–(29) be the

time-reversed system of (15)–(19). Assume that the initial conditions u˜
i ,0(x),ṽ i ,0(x), i51,2, in

(29) are continuous functions on [0,1] such that not all of these functions are identically
Then there exists an«.0 such that if
 21 Jan 2002 to 144.214.5.217. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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0< inf
xP[0,1]

uũi ,0~x!u,«, or 0< inf
xP[0,1]

uṽ i ,0~x!u,«, for some i 51 or 2,

then the solution of the system (26)–(29) is not unique for t.T, for some T.0.
Proof: If ṽ2,0(x)[” 0, and if there exists somejP(0,1) such that

uṽ2,0~j!u<
11a

3A3
A11a

b
, ~34!

then D( ṽ2,0(j))<0. By ~32! or ~33!, after the reflection atx51 takes place at timet512j

through the relation~28!, we see that theũ2-component lacks uniqueness. Therefore the solu
of the system~26!–~29! loses uniqueness afterT512j.

If ṽ2,0(x)[0 or if ~34! does not hold for anyjP(0,1), then there exists somejP(0,1) such
that one of the following,

0,uũ1,0~j!u,«, 0,uũ2,0~j!u,«, 0,uṽ1,0~j!u,«, ~35!

is true. We note that atx50 the reflection matrixR̃0 has two eigenvalues:21 and~22h!/~21h!,
both with magnitudes not larger than 1. ThusR̃0 is nonexpansive. By choosing« sufficiently
small and tracing reflections along characteristics, by using the nonexpansiveness ofR̃0 plus some
detailed arguments~which are omitted!, we obtain from~20! that at somet0.0, we will gain

uṽ2~ j̃,t0!u<
11a

3A3
A11a

b
, for some j̃P~0,1!.

Therefore again~32! or ~33! applies, and, by~28!, the solution loses uniqueness. h

The above irreversible behavior has all but ruled out the direct applicability of Sm
horseshoe to our problem.

III. ELEMENTARY PROPERTIES OF THE MAP R0R1

In this section, we perform an elementary stability analysis of fixed points ofR0R1 and
determine some invariant regions.

Proposition III.1: Let0,a<1, b>1, and h.0,hÞ2. Then the mapR0R1 has exactly three
fixed points:

~0,0!,~v1* ,v2* ![S 1

2h
A11ah

bh
,
11h

2h
A11ah

bh D , ~2v1* ,2v2* !. ~36!

Proof: We determine the fixed points by solving

Fv1

v2
G5R0R1S Fv1

v2
G D 5F h

22h
v11

2

22h
F~v2!

2

22h
v11

h

22h
F~v2!

G . ~37!

From the first component equation in~37!, we obtain

v15
F~v2!

12h
, hÞ1, ~38a!

F~v2!50, h51. ~38b!

For hÞ1, substituting~38a!1 into the second component equation of~37!, we obtain
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v25
11h

12h
F~v2!. ~39!

However, in the notation of Ref. 3,~2.1!, ~39! says exactly thatv25G+F(v2), i.e., v2 is a fixed
point of the 1D mapG+F, which according to~25! and ~39! gives three values ofv2:

v250,
11h

2h
A11ah

bh
, 2

11h

2h
A11ah

bh
. ~40!

Substituting these values first into~39! to obtainF(v2) and next into~38a!, we obtain~36!.
For h51, ~38b! says thatv2 is a v-axis intercept ofF. By ~24!, there are three intercepts:

v250, A11a

b
, 2A11a

b
. ~41!

Using these values and~38b! in the second component equation of~37!, we obtainv15v2/2. Thus
we again have~36! with h being set to 1 therein. h

For any differentiable mapF: RN→RN, we letDF(x) denote the Jacobian matrix ofF at x.
For our mapR0R1 , we have

D~R0R1!~v1 ,v2!5F h

22h

2

22h
F8~v2!

2

22h

h

22h
F8~v2!

G . ~42!

The stability analysis of fixed points and periodic points is well known to be important in
understanding of the dynamics of the mapR0R1 . We perform such an analysis for the three fix
points given in Proposition III.1.

Proposition III.2: Let 0,a<1,b.0, and 0,h,2. The fixed point~0,0! is a repelling fixed
point ofR0R1 .

Proof: First, note from Ref. 2, Sec. III,~P. 3!, thatF8(0)52 (11a)/(12a). From~42!, we
get

J[D~R0R1!~0,0!5F h

22h
2

2

22h

11a

12a

2

22h
2

h

22h

11a

12a

G . ~43!

The eigenvalues ofJ are computed from

05det~lI 22J! ~det[determinant!5l22S 12
11a

12a D h

22h
l2

11a

12a F S h

22h D 2

2S 2

22h D 2G ,
which are

l1 ,l25
1

2 F2
2a

12a

h

22h
6AS 2a

12a

h

22h D 2

2
4~11a!

12a

21h

22hG ,
~44!

~ ‘ ‘ 1 ’ ’ for l1 ,‘ ‘ 2 ’ ’ for l2!.

If the discriminantD is negative,

D[S 2a

12a

h

22h D 2

2
4~11a!

12a

21h

22h
,0, ~45!

which happens if
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h224~12a2!,0, ~46!

thenl1 andl2 are complex conjugates of each other and, for 0,h,2,

ul1u25ul2u25l1l252
11a

12a F S h

22h D 2

2S 2

22h D 2G5
11a

12a

21h

22h
.1.

Therefore the origin is a repellingspiral point.
On the other hand, ifD>0, thenl2,l1,0. We now show thatl1,21, or, from ~44!,

2
2a

12a

h

22h
1AS 2a

12a

h

22h D 2

2
4~11a!

12a

21h

22h
,22,

or

AS 2a

12a

h

22h D 2

2
4~11a!

12a

21h

22h
,221

2a

12a

h

22h
. ~47!

Note that the rhs of the inequality above is non-negative because

D>0⇒a21
h2

22
>1⇒a1

h

2
>S a21

h2

22 D 1/2

>1 for a.0, h.0

⇒2a1h22>0⇒221
2a

12a

h

22h
>0 for 0,a,1, 0,h,2.

Squaring both sides of~47!, we see thatl1,21 if and only if

2
4~11a!

12a
•

2

22h
,8, for 0,a,1, 0,h,2,

which is always valid. Thereforel2,l1,21. h

Corollary III.1: Let 0,a<1,b.0, and 0,h,2. Then
(i) if h224(12a2),0, then ~0,0! is a repelling spiral point ofR0R1 .
(ii) if h224(12a2)>0, then ~0,0! is a repelling (star) nodal point ofR0R1 . h

Proposition III.3: Let 0,a<1,b.1, and 0,h,2. Then the fixed points(v1* ,v2* ) and
(2v1* ,2v2* ) are unstable saddle nodes ofR0R1 .

Proof: We need only consider the stability of (v1* ,v2* ); that of (2v1* ,2v2* ) follows from a
symmetry argument.

The Jacobian matrix at (v1* ,v2* ), by ~42!, is

J[F h

22h

2

22h
F8~v2* !

2

22h

h

22h
F8~v2* !

G .

The eigenvaluesl1 andl2 of J satisfy

05det~lI 22B!5l22
h

22h
~11F8~v2* !!2

21h

22h
F8~v2* !,

~48!

l1 ,l25
1

2F h

22h
~11F8~v2* !!6AS h

22h D 2

~11F8~v2* !!214•
21h

22h
F8~v2* !G ,

~ ‘ ‘ 1 ’ ’ for l1 , ‘ ‘ 2 ’ ’ for l2!.
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From ~22!, ~23!, and Ref. 3, Lemma 2.4, we have

0,F8~v2* !,1,
11h

12h
F8~v2* !.1. ~49!

Therefore we havel1.0, l2.0. We want to show further that

l1.1, 21,l2,0. ~50!

From ~48!, we see thatl1.1 holds if and only if

AS h

22h D 2

~11F8~v2* !!214•
21h

22h
F8~v* !.22

h

22h
~11F8~v2* !!. ~51!

If 2 2 @h/(22h)# (11F8(v2* ))<0, then ~51! automatically holds. So we consider 22 @h/(2
2h)# (11F8(v2* )).0. Squaring both sides of~51! and simplifying yields

l1.0⇔4•
21h

22h
F8~v2* !.42

4h

22h
~11F8~v2* !!,

⇔F8~v2* !.
12h

11h
,

which holds by~49!.
Next, we show that 0.l2.21. From~48!,

l2.21⇔21
h

22h
~11F8~v2* !!.AS h

22h D 2

~11F8~v2* !!214•
21h

22h
F8~v2* !. ~52!

Squaring both sides of~52! and simplifying yields

4h

22h
~11F8~v2* !!14.4•

21h

22h
F8~v2* !,

F8~v2* !,1.

The above again is true by~23!. Thereforel2.21. h

We now determine an elementary invariant rectangle, for positiveh which is close to 0.
Proposition III.4: Assume0,a<1,b.0, and0,h,1. Let G5Gh ,F5Fa,b , v* ,v I andvc*

be defined as in~22!–~25!. Assume thatha,b* satisfies

Gh
a,b* Fa,b~2vc* !<v* . ~53!

Then forh, 0,h,ha,b* ,

D5$~v1 ,v2!PR2uuv1u<v1* ,uv2u<v2* % ~54!

is invariant underR0R1 , i.e.,R0R1(D),D, where

v1* [
v*

11h
, v2* [v* . ~55!

Proof: Let (v1 ,v2)PD and
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Fu1

u2
G5R0R1S Fv1

v2
G D 5F h

22h
v11

2

22h
F~v2!

2

22h
v11

h

22h
F~v2!

G . ~56!

We want to show that (u1 ,u2)PD.
By ~25! and ~53!, using Ref. 3, Lemma 2.5, we first note thatI[@2v* ,v* # is an invariant

interval of G+F. So we have

2v2* <
11h

12h
F~v2!<v2* , for all v2 ,uv2u<v2* 5v* . ~57!

Thus, forv1 ,uv1u<v1* ,

u15
h

22h
v11

2

22h
F~v2!<

h

22h
v1* 1

2

22h
F~v2!.

However,

h

22h
v1* 1

2

22h
F~v2!<v1* ⇔ 2

22h
F~v2!<

2~12h!

22h
v1* ⇔ 11h

12h
F~v2!<v2* . ~58!

By ~57! we know that the last inequality in~58! holds. Therefore

u2<v1* . ~59!

Next,

u15
h

22h
v11

2

22h
F~v2!>2

h

22h
v1* 1

2

22h
F~v2!.

We have

2
h

22h
v1* 1

2

22h
F~v2!>2v1* ⇔ 2

22h
F~v2!

>
~22!~12h!

22h
v1* ⇔ 11h

12h
F~v2!

>2~11h!v1*

52v2* ⇔ 11h

12h
F~v2!>2v2* . ~60!

By ~57!, we again know that the last inequality in~60! holds. Henceu1>2v1* , which, incorpo-
rated with~59!, givesuu1u<v1* .

The proof thatu2 satisfiesuu2u<v2* is similar and therefore omitted. h

Example III.1:
By Ref. 3, ~2.20!, and~25!, we can determineha,b* from the equality

Gh
a,b* Fa,b~2vc* !5

11ha,b*

12ha,b*

11a

3
A11a

3b
5v* 5

11ha,b*

2ha,b*
A11aha,b*

bha,b*
.

Let a51/2, b51, for example; we have
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vc* '0.3536, v* '1.7678 andha,b* 52/3'0.6667,

v1* '1.0607, v2* 5v* '1.7678.

For these values ofa, b, andha,b* , we use the computer to plot the orbit (R0R1)kP0 , with P0

5(0.005,0.005) and 104<k<105. What we obtain is just an attracting period-4 orbit as shown
Fig. 1. There is another attracting period-4 orbit which is symmetric with respect to the orig
the one shown in Fig. 1 but not plotted there. h

The following can be verified in a straightforward way; its proof is omitted.
Proposition III.5: For givena,0,a<1, b.0, andh.0,hÞ2, the mapR0R1 does not have

any prime period-2 points. h

The following theorem gives two unbounded invariant domains whereupon all traject
grow unbounded.

Theorem III.1: Let0,a<1, b.0, and 0,h,1. Then the following two sets,

U15$~v1 ,v2!PR2uv1>v1* ,v2>v2* %,

U252U15$~v1 ,v2!PR2u~2v1 ,2v2!PU1%,

are invariant underR0R1 . Furthermore, for each point(v1 ,v2)PU1\$(v1* ,v2* )% we have

lim
n→`

u~R0R1!n~v1 ,v2!u25`, ~61!

whereuu2 is the Euclidean norm inR2. Same forU2 .
Proof: Let (v1 ,v2)PU1 and (u1 ,u2)PR0R1(v1 ,v2). Then

FIG. 1. An attracting period-4 orbit for Example III.1, wherea51/2, b51, andh52/3 are used. The square is a
invariant region guaranteed by Proposition III.4.
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u15
h

22h
v11

2

22h
F~v2!

>
h

22h
v1* 1

2

22h
F~v2* !

5
h

22h
v1* 1

2

22h
•

12h

11h
v2* @by ~25!,~55!#

5F h

22h
1

2

22h
•

12h

11h
•~11h!Gv1* 5v1* , @by ~55!#;

u25
2

22h
v11

h

22h
F~v2!

>
2

22h
v1* 1

h

22h
F~v2* !

5F 2

22h
•

1

11h
1

h

22h

12h

11hGv2* 5v2* @by ~25!,~55!#.

ThereforeU1 is invariant underR0R1 . The invariance ofU2 follows immediately from the
oddness of the mapR0R1 .

For any initial state (v1
(0) ,v2

(0))PU1 , let (v1
(n) ,v2

(n))5(R0R1)n(v1
(0) ,v2

(0)) be thenth iterate.
Define the following Liapunov function onU1:

W~v1 ,v2!5dv11v2 , for some d.0.

Then

D1W[W~v1
~1! ,v2

~1!!2W~v1
~0! ,v2

~0!!

5~dv1
~1!1v2

~1!!2~dv1
~0!1v2

~0!!

5dF h

22h
v1

~0!1
2

22h
F~v2

~0!!G
1F 2

22h
v1

~0!1
h

22h
F~v2

~0!!G2~dv1
~0!1v2

~0!!

5S dh12

22h
2d D v11S 2d1h

22h
F~v2!2v2D . ~62!

Now choosed5 1/(12h). Then (dh12)/(22h) 2d50, and

2d1h

22h
5

11h

12h
.

Continuing from~62!, we get

D1W5
11h

12h
F~v2

~0!!2v2
~0!>0, for v2>v2* . ~63!

Note that equality in~63! holds when and only whenv25v2* . However, if v1
(0).v1* , v2

(0)

5v2* , then
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v2
~1!5

2

22h
v1

~0!1
h

22h
F~v2* !.

h

22h
v1* 1

h

22h

12h

11h
v2*

5S 2

22h

1

11h
1

h

22h

12h

11h D v2* 5v2* .

ThereforeD1W.0 for (v1
(0) ,v2

(0))PU1\$(v1* ,v2* )%. A little more elaborate argument furthe
shows thatW(v1

(n) ,v2
(n))→` asn→`. Details are omitted. We therefore have~61!. h

Remark III.1:By Theorem III.1, clearly chaos will not occur inU1 andU2 because trajecto
ries originating or passing therein grow unbounded. This information is rather useful in elim
ing nonchaotic cases.

Then, will chaos occur in the bounded invariant rectangleD in ~53! for h in the range 0
,h,ha,b* ? Through numerical experiments, we have found that the answer is also negativ
mapR0R1 displays only periodic behavior with periods 2n, i.e., for the parameter rangeh,0
,h,ha,b* , all orbits are asymptotically periodic; see Example III.1. What we have found
pirically is that strange attractors~invariant regions! for chaoticR0R1 consist mainly of points in
D, plus a small portion of points lyingoutside DøU1øU2 ~see Figs. 3 and 14, for example!.

Also, even though in Proposition III.4 and Theorem III.1 the range ofh is restricted to 0
,h,1 ~rather thanh.0, hÞ2), numerical experiments indicate that onceh approaches 12,
then trajectories become unbounded. Thus, it appears that no chaotic cases are lost if we reh,
0,h,1.

Graphical methods, such as Lienard’s~Ref. 10, pp. 31–33!, have been found effective an
useful in studying systems of nonlinear differential equations in 2D. To conclude this sectio
describe a graphical method for the mapR0R1 . For any given point (v1 ,v2), we rewrite the
relation ~56! as

Fu1

u2
G5

21h

22h H h

21h F v1

F~v2!
G1

2

21h FF~v2!

v1
G J . ~64!

Note that in~64!, the terms inside the curly parentheses are a convex combination of two p
(v1 ,F(v2)) and (F(v2),v1). Thus such a sum of terms corresponds to a point on the line seg
with endpoints (v1 ,F(v2)) and (v2 ,F(v1)). Using ~64!, we show the graphical construction i
Fig. 2 whereC is the curve representing the functionv15Fa,b(v2), I is the point (0,v I), L0 is the
straight line v15v2 , P0 is the point (v1 ,v2), P1 is the point (F(v2),v2), P2 is the point

FIG. 2. Graphical construction of (u1 ,u2)5R0R1(v1 ,v2).
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(F(v2),F(v2)), P3 is the point (v1 ,F(v2)), P4 is the point (F(v2),v1), L1 is the line segment
joining P3 with P4 , P5 is a point onL1 satisfyingP5P3:P5P45h:2, andP6 is the image point
(u1 ,u2) satisfyingOP6:OP55(21h)/(22h).

IV. SNAPBACK REPELLERS AS A CAUSE OF CHAOS

Difficulties associated with proving chaos for noninvertible maps in two- or high
dimensional spaces have been described itemwise in Secs. I A, B and C. As promised, w
focus our study on Sec. I B, the snapback repellers.

Snapback repellers for~noninvertible! one-dimensional maps are repelling fixed points w
homoclinic orbits. The proof that they cause chaos may be found in Devaney~Ref. 11, Theorem
1.16.5, p. 124!. We have found that that theorem can be properly generalized toN-dimensional
noninvertible maps, and that for our 2D model problems under study here, such snapback re
actually exist and, thus, they cause chaos. However, we are alerted by Ref. 9, p. 63,
reference citation for snapback repellers by Marotto9 already exists in the literature. It turns ou
that, however, by comparing Marotto’s proof with ours, we are surprised that there is an er
Ref. 9. The error is not grievous; at his writing Marotto might think that it was just a simple
~by changing to an equivalent norm to make things work! not worth mentioning at all. We
nevertheless feel that the situation is confusing at least, leading us to clarify it below. We wil
present a somewhat refined theorem in the spirit of Ref. 11, Theorem 1.16.5,loc. cit. ~Even though
the authors seem to have independently rediscovered such snapback repellers here, the
priority clearly goes to Marotto.9!

First, recall the definition of a snapback repeller based on Marotto~Ref. 9, Def. 2.3, p. 203!.
Definition IV.1: Let F:RN→RN be C1. Let Z be a fixed point ofF such that all of the

eigenvalues ofDF(Z) have absolute values larger than 1. We say thatZ is a snapback repeller i
there exists a pointX0 in Wloc

u (Z), the local unstable set ofZ, and some integerM , such that
FM(X0)5Z and detDFM(X0)Þ0. h

Now, let us restate the main theorem in Ref. 9.
Theorem IV.1: [Marotto (Ref. 9, Theorem 3.1, pp. 204–205)] LetF:RN→RN be C1. If F

possesses a snapback repeller, thenF is chaotic. That is, there exists
(i) a positive integer n such that for each integer p>n,F has a point of period p;
(ii) a ‘‘scrambled set’’ ofF, i.e., an uncountable set S containing no periodic points ofF such

that:
(a) F(S),S,
(b) for every X,YPS with XÞY,

lim
k→`

uF k~X!2F k~Y!u.0,

(c) for every XPS and any periodic point Y ofF,

lim
k→`

uF k~X!2F k~Y!u.0;

(iii) an uncountable subset S0 of S such that for every X,YPS0 ,

lim

k→`
uF k~X!2F k~Y!u50.

h

The statements in Theorem IV.1 are all correct without question. However, an error was
in the proof: in Ref. 9, p. 202, line 34, Marotto first states that inRN that the usual Euclidean norm
is to be used. Let us write it as

uxu25S (
i 51

N

xi
2D 1/2

, for x5~x1 , . . . ,xN!PRN,

where the subscript 2 denotes thel 2-norm. Then in Ref. 9, p. 203, lines 15–17, he writes:
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‘‘If all eigenvalues ofDF(Z) are greater than 1 in norm, thenF displays the following local
behavior atZ. For somes.1 andr .0:

iF~X!2F~Y!i.siX2Yi for all X,YPBr~Z!. ’ ’ ~65!

(Br(Z) is the ball with radiusr centered atZ.!
There, Marotto obviously was using the following property:
‘‘Let A be anN3N real constant matrix such that all of its eigenvalues are larger than
absolute value. ThenA satisfies

uAxu>muxu, for some m.1, for all xPRN. ’ ’ ~66!

Since in~65!, the norm of Marotto’s choice for the underlying space is thel 2-norm, he must be
interpreted to mean that in~66!, there is am.1 such that

uAxu2>muxu2 , for all xPRN. ~67!

But it is well known that~67! is false. The following is a simple counterexample.
Example IV.1:Let« and d be positive. The matrix

A5F 11e1
d

2

1

2d

d3

2
11e1

d

2

G
has two eigenvalues 11e and 11e1 d/2, with respective corresponding eigenvectors

F 1

2d2G ,F 1

d2G .
Choose a unit vector

x5
1

A2
F 1

21G .
Then

Ax5
1

A2 F 11e1
d

2
2

1

2d

d3

2
212e2

d

2

G .

Taked51/2. Then

uAxu25
1

A2
F S e1

1

4D 2

1S 11e1
3

16D
2G1/2

5
1

A2
F377

256
1eS 27

8
12e D G1/2

,0.9,1,

if e is small. h

All norms in RN or CN are equivalent. What we need is a certain norm inRN or CN making
~66! valid. We show, step by step, how to do this in the following.

Lemma IV 1: Let A be an invertible N3N real (resp. complex) constant matrix and letu u be
a norm inRN ~resp.CN). Then there exists am.0 such thatuAxu>muxu holds for all xPRN (resp.
CN) if and only if iA21i<m21, whereiA21i is the operator norm of A21 corresponding to the
norm u u of the underlyingRN (resp.CN).

Proof: For anyxPRN or CN, xÞ0, we have
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m215iA21i5sup
yÞ0

uA21yu
uyu

>
uA21wu

uwu
5

uxu
uAxu ~x5A21w!.

ThereforeuAxu>muxu for all xPRN or CN, xÞ0, if and only if iA21i<m21. When x50, the
proof is trivial. h

Lemma IV.2: Let D5diag(l1 , . . . ,lN) be an N3N diagonal matrix with diagonal entries
l1 , . . . ,lNPCN. Let CN be the N-dimensional complex Euclidean space withl 2-norm

uzu25S (
j 51

N

uzj u2D 1/2

, z5~z1 , . . . ,zN!PCN.

TheniDi2 , the operator norm of D corresponding tou u2 , satisfies

iDi25 max
1< j <N

ul j u.

Proof: Just expand any vectorzPCN in terms of the basis eigenvectorse1 ,e2 , . . . ,en , where
ej is the unit vector pointing in thej th axial direction. h

Lemma IV.3: Let J be an m3m Jordan matrix with eigenvaluel of Riesz index m:

J5F l 1 0 . . . 0

0 l 1 A

A � �

A � 1

0 . . . 0 l

G . ~68!

Then for any given«, J has a similarity matrix J˜5D21JD, where D is an invertible diagona
matrix, such that

J̃5F l « 0

l «

� �

� «

0 l.

G . ~69!

Proof: This can be found in Devaney~Ref. 11, Proposition 2.1.12, p. 168! or Franklin ~Ref.
12, Exercise 13, p. 174!. Its proof can be easily illustrated through the following 333 similarity
matrix:

D21JD5F a21 0 0

0 a2
21 0

0 0 a3
21
G F l 1 0

0 l 1

0 0 l
GF a1 0 0

0 a2 0

0 0 a3

G5F l a1
21a2 0

0 l a2
21a3

0 0 l
G .

Therefore, if we choosea1 ,a2, and a3 , the diagonal entries ofD, to satisfy a1
21a25a2

21a3

5«, we obtain the desired form~69!. h

Theorem IV.2: Let A be an N3N (real or complex) constant matrix such that all of i
eigenvalues have absolute values larger thanm. Then there exists a normu•u in CN such that the
associated operator-norm of A21, iA21i , satisfiesiA21i<m21. Consequently, A satisfiesuAxu
>muxu for all xPRN or CN.

Proof: We first perform a similarity transformation to obtainA215PJP21, whereJ is a
Jordan canonical form ofA21; J consists of submatricesJk diagonally, fork51,2, . . . ,l , where
eachJk has the form~68!. Applying Lemma IV.3, we may now assume that eachJk has the form
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~69!. Therefore,J is an «-perturbation of a diagonal matrix; call that diagonal matrixD. The
diagonal entries ofD consist ofl j

21 , the multiplicative inverses of the eigenvaluesl j of A. By
Lemma IV.2 and the assumption thatul j u.m for all l j , we have

iDi25max
j

ul j
21u,m21.

SinceJ is an«-perturbation ofD, for « sufficiently small we obtain

iJi2<iDi21«8<m21, ~70!

because«8.0 depends only on« and can thus be made as small as we wish.
In CN, we now define aP-norm by

uzuP5uP21zu2 .

Then, for azPCN,

uA21zuP5uP21A21zu25uJP21zu2<iJi2uP21zu2<m21uzuP , by ~70!.

Therefore

iA21iP5sup
uA21zuP

uzuP
<m21.

By Lemma IV.1, we have

uAxuP>muxuP , for all xPRN or CN.

By incorporating Theorem IV.2 into its proof, Theorem IV.1 is now true. However, in w
follows, let us provide a somewhat refined version of Theorem IV.1. Let

F:RN→RN, F~x!5~ f 1~x!, f 2~x!, . . . ,f N~x!!, xPRN,

be aC1 map. Then forx(1),x(2)PRN, by applying the mean value theorem to the scalar-val
functions f 1 , . . . ,f N , we have

F~x~1!!2F~x~2!!5~¹ f 1~y1!•~x~1!2x~2!!,¹ f 2~y2!•~x~1!2x~2!!, . . . ,¹ f N~yN!•~x~1!2x~2!!!,

~71!

for somey1, . . . ,yNPRN, where eachyj lies on the open line segmentL5$yPRNuy5ax(1)

1(12a)x(2),aP(0,1)%. We write ~71! as

F~x~1!!2F~x~2!!5DF•@x~1!2x~2!#, ~72!

whereDF5DF(Y), with Y5(y1, . . . ,yn)PRN3N, is anN3N matrix whosei th row vector is
¹ f i(yi), where¹ f i(yi) makes~71! satisfied.

Theorem IV.3: LetF:RN→RN be C1, and p be a snapback repeller ofF. Then for each
neighborhood U of p, there is an integer n.0 such thatF n has a hyperbolic invariant subset i
U on whichF n is topologically conjugate to the shift map on the binary symbol space(2 .

Proof: The argument goes the same way as that in Ref. 11, Theorem 1.16.5, p. 124. Sp
is a snapback repeller, all of the eigenvalues ofDF(p) have absolute values larger than 1. B
Theorem IV.2, we can define a normu•u onRN such thati@DF(p)#21i<m21, for somem.1. By
continuity, we can find an open neighborhoodW of p in U and somem̃,1,m̃,m, such that

i@DF~Y!#21i<m̃21, for all Y5~y1, . . . ,yN!PWN. ~73!

By the assumption of a snapback repeller, we can take a pointqPW such thatF n(q)5p and
det(D(F n)(q))Þ0. Since the orbit ofq contains only a finite number of points that do not lie
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W, and since det(DF n(q))Þ0, by continuity we can find a neighborhoodV of q in W such that
DF n(Y) is invertible for allY5(y1, . . . ,yN)PVN. Therefore there exists some«.0 such that

i@DF n~Y!#21i,«21, for all Y5~y1, . . . ,yN!PVN. ~74!

From the invertibility ofDF n(Y), we see thatF n mapsV diffeomorphically onto an open se
F n(V) containingp in its interior.

We now choosej so that (m̃ j«)21,1. We chooseV sufficiently small so thatF n1 i(V),W,
but F n1 i(V)ùV5B, for i 51,2, . . . ,j . SinceV,W, from ~72!, ~73!, and Lemma IV.1, fork
. j and for any two pointsx1,x2PV, we have

uF n1k~x1!2F n1k~x2!u5uF n1k~x1!2F n1k~x2!u

5uDF~Y1!•~F n1k21~x1!2F n1k21~x2!!u

>m̃uF n1k21~x1!2F n1k21~x2!u ~where Y1PWN)

5m̃uDF~Y2!•~F n1k22~x1!2F n1k22~x2!!u ~where Y2PWN)

>m̃2uF n1k22~x1!2F n1k22~x2!u

>•••

>m̃kuF n~x1!2F n~x2!u5m̃kuDF n~Yk!•~x12x2!u ~where YkPVN)

>m̃k«ux12x2u>m̃k2 j ux12x2u.

ThereforeF n1k expandsV and fork sufficiently large,F n1k(V) coversV. We have a diffeomor-
phismF n1k:V→F n1k(V) such thatpPF n1k(V) andV,F n1k(V).

Let us choose a sufficiently small open subsetV8 containing (F n1k)21(V). By choosingV
sufficiently small andk large, we can makeV8 satisfy

~i! VùV85B;
~ii ! F n1k(V).VøV8;
~iii ! F n1k(V8).V;
~iv! F n1k(V8),W;
~v! F n1k is a strict expansion onV8.

Therefore the mapF n1k has a shift sequence

V8→V→V8øV,

where each member~except the leader! of the sequence is covered by the image of the prede
sor. ThereforeF n1k(V8øV).V8øV, andV8øV has an invariant subset

L[$xPV8øVu~F n1k! j~x!PV8øV, j 50,1,2, . . .%.

For anyxPL we define its binary~itinerary! symbol as

s~x!5~s0s1s2 . . . sj . . . !, sj50 if ~F n1k! j xPV8, sj51 if ~F n1k! j xPV.

Then it is a standard procedure to show thatF n1k is topologically conjugate to the shift automo
phism on(2 , the space of all binary symbols. The proof is complete. h

Note that all consequences~i!, ~ii !, and~iii ! in Marotto’s Theorem IV.1 can be deduced fro
the symbolic dynamics implied by Theorem IV.3.

Remark IV.1:In verifying the snapback repeller assumption in order to be able to a
Theorem IV.3, one needs to check the following conditions according to Definition IV.1:

~i! p is a fixed point ofF such that all eigenvalues ofDF(p) have absolute values large
than 1; ~75!

~ii ! there exists aqPWloc
u (p) such thatFM(q)5p for some positive integerM; ~76!

~iii ! detDFM(q)Þ0. ~77!
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In most cases, the verification work must be done through the aid of a computer, w
automatically involves numerical errors. The verification of~i! is easiest, and the computer resu
can be trusted with total confidence. To verify~ii !, one needs to do computer-aided search
preimagesof p and then check whether such preimages can wind up inWloc

u (p). This kind of
reverse search can easily accumulate large numerical errors. Therefore, the value ofM , even if
computable in principle, wouldnot be entirely trustworthy. Nevertheless, using thecontinuity
property ofF, one can still conclude whether such anM ~and, consequently, a homoclinic orbi!
exists or not.

The verification of~iii ! is themost difficultin general, because as we just pointed out in
above paragraph, it is very difficult to pin down an accurate value ofM . Even if M is firmly
determined, checking whether detDFM(q)Þ0 is still generallyimpossiblebecause the evaluatio
of DFM(q) usually involves computer roundoff errors. On the one hand, using the holomo
property of the mapF with respect to the parameter~s!, one may claim that there exist at lea
some parameter values such that~4.13! holds for some snapback homoclinic orbit. On the oth
hand, we can expect, ‘‘almost beyond reasonable doubt,’’ that even if~77! fails, i.e.,
det DFM(q)50, there should still be chaos. The situation detDFM(q)50 signifiesdegeneracy
and leads us to believe that what we have is adegenerate (snapback) homoclinic orbit. According
to our knowledge of 1D maps, degenerate homoclinic orbits actually causes perhaps thestrongest
chaos.11 This leads us to pose a conjecture below:

Conjecture:Let F:RN→RN be C1 satisfying ~75! and ~76!. Then there exists a hyperboli
invariant subset ofWloc

u (p) on whichF n on L is topologically conjugate to the shift map on(2 .
h

V. NUMERICAL EXAMPLES

We provide two examples in this section. Throughout, we fixb51.
Example V.1: The origin as a snapback repeller ofR0R1 . For a, 0,a<1, we know that the

origin ~0,0! is a repelling fixed point by Proposition III.2.

FIG. 3. The strange attractor for Example V.1, wherea50.9980,b51, andh50.7570 are used.D represents the region
defined by~54!. The origin lies inside the ‘‘cloud’’ and, thus, is a snapback repeller.
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FIG. 4. The spatiotemporal profile ofu1 for initial time duration@0, 2#.

FIG. 5. The spatiotemporal profile ofu2 for initial time duration@0, 2#.
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FIG. 6. The spatiotemporal profile ofv1 for initial time duration@0, 2#.

FIG. 7. The spatiotemporal profile ofv2 for initial time duration@0, 2#.
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FIG. 8. The spatiotemporal profile ofu1 for time duration@100, 102#.

FIG. 9. The spatiotemporal profile ofu2 for time duration@100, 102#.
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FIG. 10. The spatiotemporal profile ofv1 for time duration@100, 102#.

FIG. 11. The spatiotemporal profile ofv2 for time duration@100, 102#.
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Through many numerical experiments, we have found that the origin will not be a snap
repeller unlessa is close to 1.

We choosea50.9980,b51, andh50.7570. To see whether there is a strange attractor,
plot the iterates

~R0R1!kP0 , P05~0.005,0.005!, 104<k<105.

What we obtain is a ‘‘cloud,’’ the strange attractor, as shown in Fig. 3. Note that the poI
5(0,v I) ~cf. Fig. 2! is mapped into the origin:

~R0R1!I 5~0,0!,

and in Fig. 3,I is ‘‘hidden in the cloud.’’ Therefore, by Remark IV.1, the continuity ofR0R1

implies that the origin is a snapback repeller, i.e.,~76! is satisfied. The verification of~77! is
difficult, however, as noted in Remark IV.1. We have made no attempts to verify it.

To see chaotic vibration, we consider the system~15!–~18!, with the initial data

u1,0~x!5
1

12
•5

~x2x1!3/h3, x1<x<x2 ,

11
3~x2x2!

h
1

3~x2x2!2

h2
2

3~x2x2!3

h3
, x2<x<x3 ,

12
3~x2x4!

h
1

3~x2x4!2

h2
1

3~x2x4!3

h3
, x3<x<x4 ,

~x52x!3/h3, x4<x<x5

0, elsewhere,

~78!

FIG. 12. The snapshot ofv1 at time t5101.
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h51/6, xj5 j /6, for j 51,2,3,4,5;
~79!

u2,0~x!5v1,0~x!5v2,0~x![0, 0<x<1.

Note that the function given in~78! is a C2-continuous smoothest spline of degree 3. The ini
data~78! and ~79! satisfy the boundary conditions~16! and ~18!. It is not difficult to show~by
mimicking the proof in Ref. 3, Theorem 6.1 that the system has a uniqueC2-solution
(u1 ,u2 ,v1 ,v2) on (x,t)P@0,1#3@0,̀ ).

The spatiotemporal profiles ofu1 ,u2 ,v1 ,v2 are displayed, respectively, in Figs. 4, 5, 6, and
for the first two time units, i.e.,tP@0,2#.

For time tP@100,102#, the spatiotemporal profiles ofu1 ,u2 ,v1 ,v2 are displayed, respec
tively, in Figs. 8, 9, 10, and 11.

The snapshots att5101 of v1 andv2 are displayed, respectively, in Figs. 12 and 13. We
not need to displayu1 andu2 at t5101 becauseu1 andu2 are identically zero.

These profiles are computed by using the explicit representation formulas~20!. Note that
because of thenondispersiveeffects of wave propagation, all componentsu1 ,u2 ,v1 , andv2 of the
system can display a ‘‘totally serene’’~i.e., zero or no disturbance! zone right next to the chaotic
spatiotemporal region. h

Example V.2: A period-4 point as a snapback repeller of(R0R1)4. Let us choosea50.6,
b51, andh50.8200.

The mapR0R1 has a strange attractor as shown in Fig. 10, suggesting thatR0R1 is chaotic.
Note in Fig. 14 that neither the pointI nor the origin lies inside the strange attractor ‘‘cloud;’’
this case, we can easily rule out the origin as a snapback repeller.

The mapR0R1 has many period-4 orbits. So let us compute the fixed points of (R0R1)4 by
Newton’s method. We have obtained three sets of such orbits~80!, ~82!, and ~84! and other
relevant data as given below:

FIG. 13. The snapshot ofv2 at time t5101.
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FIG. 14. The strange attractor for Example V.2, wherea50.6, b51, andh50.82 are used.D is the rectangle defined by
~54!. Note that the origin is not inside the ‘‘cloud’’ of the strange attractor.

FIG. 15. This is a zoom-in of the vicinity of the period-4 pointP1
(1)5(0.7582, 0.6762), cf.~80!, from Fig. 14. Note that

P1
(1)is highlighted as the intersection of the horizontal and vertical lines near the center of the figure. Chaos

immediate vicinity ofP1
(1) is not strong.
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~i! H P1
~1!5~0.7582, 0.6762!, P1

~2!5~2.1507, 1.0699!,

P1
~3!5~20.1942, 27.6573!, P1

~4!5~0.2591, 20.1675!;
~80!

D~~R0R1!4!~P1
~1!!5F24.4737 21.9625

28.2024 25.7953G , with eigenvalues29.2007 and21.0683.

~81!

~ii ! H P2
~1!5~20.5988, 20.5229!, P2

~2!5~0.1968, 20.7636!,

P2
~3!5~0.5988, 0.5229!, P2

~4!5~20.1968, 0.7636!;
~82!

D~~R0R1!4~P2
~1!!!5F3.9208 1.2102

4.4494 1.4967G , with eigenvalues 0.0908 and 5.3267.~83!

~iii ! H P3
~1!5~20.4492, 20.0324!, P3

~2!5~20.1076, 20.6774!,

P3
~3!5~0.4492, 0.0324!, P3

~4!5~0.1076, 0.6774!.
~84!

D~~R0R1!4~P3
~1!!!5F26.1730 44.6753

213.7347 90.5629G , with eigenvalues 0.6515, 83.7384.~85!

Note thatPi
( j ) satisfies

~R0R1!k~Pi
~ j !!5Pi

~~k1 j !mod 4! , i 51,2,3.

Let us now zoom in on Fig. 10 about these period-4 pointsP1
(1) ,P2

(1) , andP3
(1) ~see Figs. 15, 16,

and 17, respectively.!

FIG. 16. This is a zoom-in of the vicinity of the period-4 pointP2
(1)5(20.5988, 20.5229), cf.~81!, from Fig. 14. Note

that P2
(1) is highlighted as the intersection of the horizontal and vertical lines near the center of the figure. Chaos is

in the immediate vicinity ofP2
(1) .
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From ~81! and Fig. 15, by the continuity argument as given in Remark IV.1, it is quite c
that withF5(R0R1)4, the pointP1

(1) satisfies~75! and~76!. Thus,P1
(1) ‘‘should be’’ a snapback

repeller. However, we observe in Fig. 15 thatchaos is not strong in the immediate vicinity of P1
(1) .

From ~83! and Fig. 16, we see thatP2
(1) is a saddle node fixed point (R0R1)4 with a ho-

moclinic orbit.Chaos is very strong in the immediate vicinity of P2
(1) .

From ~85!, we note thatP3
(1) is again a saddle node fixed point of (R0R1)4. However,P3

(1) is
not on the strange attractor, as can be seen from Fig. 17, suggesting thatP3

(1) does not have a
homoclinic orbit.There is no chaos at all in the immediate vicinity of P3

(1) .
This example suggests the following:

~1! Snapback repellers imply chaos, but its strength may not be strong when other sour
chaos are present.

~2! A saddle node fixed point having a~forward! homoclinic orbit seems to cause strong cha
even without the diffeomorphism assumption.

Point ~2! above appears particularly important. We hope to be able to report some results
future. h
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