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The influence of periodic perturbations to a Lotka–Volterra system, modeling a competition
between three species, is studied, provided that in the unperturbed case the system has a
unique attractor — a contour of heteroclinic orbits joining unstable equilibria. It is shown
that the perturbed system may manifest regular behavior corresponding to the existence of a
smooth invariant torus, and, as well, may have chaotic regimes depending on some parameters.
Theoretical results are confirmed by numerical simulations.

1. Introduction

In this paper we study the asymptotic behavior of
the solution for the following periodically perturbed
asymmetric May–Leonard system

ẋ1 = x1(1− x1 − α1x2 − β1x3) + εϕ1(θ) ,

ẋ2 = x2(1− β2x1 − x2 − α2x3) + εϕ2(θ) ,

ẋ3 = x3(1− α3x1 − β3x2 − x3) + εϕ3(θ) , (1)ε

θ̇ = 1 ,

x1(0) > 0, x2(0) > 0, x3(0) > 0 ,

θ(0) = 0, 0 < ε� 1 .

We shall discuss (1)ε under the assumption

0 < αi < 1 < βi, i = 1, 2, 3 . (2)

For ε = 0, the Lotka–Volterra system (1)ε mod-
els the competition between three species with the
same intrinsic growth rates and different competi-
tion coefficients [Chi et al., 1998; May, 1975]. From

the results of a two-dimensional competitive system
[Waltman, 1983], the assumption in (2) ensures that
there is an orbit O3 on the x1x2 plane connecting
the equilibrium e2 to the equilibrium e1, an orbit
O2 on the x1x3 plane connecting the equilibrium e1

to the equilibrium e3, and an orbit O1 on the x2x3

plane connecting the equilibrium e3 to the equilib-
rium e2, where e1 = (1, 0, 0), e2 = (0, 1, 0) and
e3 = (0, 0, 1). In [Chi et al., 1998], the authors
proved the global asympototic behavior of the so-
lutions for the unperturbed system (1)ε, ε = 0, as
follows: under the assumption (2), the unperturbed
system has a unique positive interior equilibrium
P = (p1, p2, p3) and P is globally asymptotically
stable provided ν11ν21ν31 < 1, while P is a saddle
point with one-dimensional stable manifold Γ pro-
vided ν11ν21ν31 > 1 where νi1 = (βi − 1)/(1 − αi),
i = 1, 2, 3. There exists no periodic solutions for
the case ν11ν21ν31 6= 1. If ν11ν21ν31 > 1, then the
ω-limit set ω(x0) = O1 ∪ O2 ∪ O3 for x0 6∈ Γ. For
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the case ν11ν21ν31 = 1, the degenerate Hopf bifurca-
tion occurs and there is a family of neutrally stable
periodic solutions.

Under the assumption (2) and ν11ν21ν31 > 1, in
Sec. 2 we construct local and global maps to derive
a model map for the periodically perturbed system
(1)ε. We shall analyze the model map and study the
behavior of the iterates of the model map in certain
parameter range in Sec. 3. When the parameter
is sufficiently small, we prove that the solution of
the model map is quite regular by annulus principle
[Afraimovich et al., 1983]. For the relatively large
parameter, we show that the model map is topo-
logically conjugate to the Bernoulli shift with two
symbols by constructing a geometric Smale horse-
shoe and checking the hyperbolic conditions for the
geometric Smale horseshoe.

2. Derivation of the Model Map

Consider the asymmetric May–Leonard system [Chi
et al., 1998]

ẋ1 = x1(1− x1 − α1x2 − β1x3) ,

ẋ2 = x2(1− β2x1 − x2 − α2x3) ,

ẋ3 = x3(1− α3x1 − β3x2 − x3) ,

x1(0) > 0, x2(0) > 0, x3(0) > 0 ,

(3)

where

0 < αi < 1 < βi < 2, i = 1, 2, 3, (H1)

and its perturbed system



ẋ1 = x1(1− x1 − α1x2 − β1x3) + εϕ1(θ) ,

ẋ2 = x2(1− β2x1 − x2 − α2x3) + εϕ2(θ) ,

ẋ3 = x3(1− α3x1 − β3x2 − x3) + εϕ3(θ) ,

θ̇ = 1 ,

x1(0) > 0, x2(0) > 0, x3(0) > 0, θ(0) = 0 ,

(4)

where ϕi are smooth, positive and periodic with
period 2π, and 0 < ε � 1. We note that the ba-
sic assumption (H1) is a special case of (2) and
(H1) will specify some “leading” directions as we
see later. We are interested in the behavior of the
solutions for the system (4). Before studying it,
some results about the system (3) which can be
found in [Chi et al., 1998] are stated as follows.
There are equilibria points e1 = (1, 0, 0), e2 =
(0, 1, 0), e3 = (0, 0, 1) and P = (p1, p2, p3) with
pi > 0 for (3). Let V (x) be the variational matrix
of the system (3). We have the following tabulated
results:

Variational Matrix Eigenvalues Eigenvectors

V (e1) =

−1 −α1 −β1

0 1− β2 0

0 0 1− α3

 1− β2 < 0

−1

1− α3 > 0

~ξ1 =

(
α1

2− β2
, −1, 0

)
~ξ2 = (1, 0, 0)

~ξ3 =

(
−β1

2− α3
, 0, 1

)

Variational Matrix Eigenvalues Eigenvectors

V (e2) =

 1− α1 0 0

−β2 −1 −α2

0 0 1− β3

 1− β3 < 0

−1

1− α1 > 0

~η1 =

(
0,

α2

2− β3
,−1

)
~η2 = (0, 1, 0)

~η3 =

(
1,
−β2

2− α1
, 0

)

Variational Matrix Eigenvalues Eigenvectors

V (e3) =

 1− β2 0 0

0 1− α2 0

α3 0 −1

 1− β1 < 0

−1

1− α2 > 0

~ζ1 =

(
−1, 0,

α3

2− β1

)
~ζ2 = (0, 0, 1)

~ζ3 =

(
0, 1,

−β2

2− α1

)
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Fig. 1. Eigenvectors of variational matrices V (ei), i =
1, 2, 3.
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Fig. 2. Constructions of transversal sections for local maps
and global maps.

Obviously, Es1 = {t1~ξ1 + t2~ξ2|t1, t2 ∈ R} and Eu1 =

{t~ξ3|t ∈ R} are the stable and unstable manifolds
of the linearized system ~x′ = V (e1)~x, respectively.

From (H1), we have −1 < 1−β2 < 0, and hence ~ξ1

corresponds to the leading direction for solutions of
(3) which is asymptotic to e1 in x1x2 plane as t→
∞ (see Fig. 1). Similarly, Es2 = {t1~η1 + t2~η2|t1, t2 ∈
R} and Eu2 = {t~η3|t ∈ R} are the stable and unsta-
ble manifolds of the linearized system ~x′ = V (e2)~x,

respectively. Es3 = {t1~ζ1 + t2~ζ2|t1, t2 ∈ R} and

Eu3 = {t~ζ3|t ∈ R} are the stable and unstable man-
ifolds of the linearized system ~x′ = V (e3)~x, respec-

tively. ~η1 and ~ζ1 are the corresponding leading di-
rections of orbits for the system (3) which approach
e2 and e3 as t→∞, respectively. Set λj1 = 1− βj ,
λj2 = −1, λj3 = 1 − αj , νj1 = −(λj1/λj3) and
νj2 = −(λj2/λj3) for j = 1, 2, 3. P is global asymp-
totically stable if ν11ν21ν31 < 1 and it is a sad-
dle point with one-dimensional stable manifold Γ if
ν11ν21ν31 > 1. Furthermore, if x0 6∈ Γ, then the
omega limit set ω(x0) = O1 ∪O2 ∪O3, where O1 is
an orbit connecting e3 and e2, O3 is an orbit con-
necting e2 and e1, and O2 is an orbit connecting e1

and e3 (see Fig. 2).
In this paper our second basic assumption is

ν := ν11ν21ν31 > 1 . (H2)

In the following we construct the Poincare map as
a composition of local maps and global maps for
system (3). Introduce a new coordinate (ξ1, ξ2, ξ3)
in the neighborhood of e1. Then, system (3) in a
small neighborhood of e1 can be written in the form

ξ̇1 = λ11ξ1 + · · · ,
ξ̇2 = λ12ξ2 + · · · ,
ξ̇3 = λ13ξ3 + · · · .

(5)

Let us choose two sections S12 and S13 tranversal
to the flow

S12 =
{
(ξ1, ξ2, ξ3) : ξ1 = d11, ξ

2
2 + ξ2

3 ≤ d12

}
,

S13 =
{
(ξ1, ξ2, ξ3) : ξ3 = d13, ξ

2
1 + ξ2

2 ≤ d12

}
.

Let (d11, ξ20, ξ30) ∈ S12. The orbit of (5) through
(d11, ξ20, ξ30) is

ξ1(t) = exp(λ11t)d11 + · · · ,
ξ2(t) = exp(λ12t)ξ20 + · · · ,
ξ3(t) = exp(λ13t)ξ30 + · · · .

(6)

Obviously, the transition time from S12 to S13, de-
noted by t1, satisfies ξ3(t1) = d13. Then t1 ≈
(1/λ13) ln(d13/ξ30), and

ξ1(t1) =: ξ̄1 = d11

(
ξ30

d13

)ν11

,

ξ2(t1) =: ξ̄2 = ξ30

(
ξ20

d13

)ν12

.
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Hence, the local map T 1
loc : S12 → S13, T

1
loc(ξ20,

ξ30) = (ξ̄1, ξ̄2) satisfies{
ξ̄1 = A11ξ

ν11
30 + · · · ,

ξ̄2 = A21ξ
ν12
30 ξ20 + · · · ,

(7)

where A11 = d11(d13)
−ν11 , A21 = (d13)

−ν12 , ν11 =
−(λ11/λ13) > 0 and ν12 = −(λ12/λ13) > 0 (see
Fig. 2).

For the system (4), let the sections be

Ŝ12 =
{
(ξ1, ξ2, ξ3, θ12) :

ξ1 = d11, ξ
2
2 + ξ2

3 ≤ d12, 0 ≤ θ12 < 2π
}
,

Ŝ13 =
{
(ξ1, ξ2, ξ3, θ13) :

ξ3 = d13, ξ
2
1 + ξ2

2 ≤ d12, 0 ≤ θ13 < 2π
}
.

Then, the local map T̂ 1
loc : (ξ20, ξ30, θ12) → (ξ̄1, ξ̄2,

θ13) from Ŝ12 to Ŝ13 is defined as
ξ̄1 = A11ξ

ν11
30 + · · · ,

ξ̄2 = A21ξ
ν12
30 ξ20 + · · · ,

θ13 = θ12 +
1

λ13
ln
d13

ξ30
+ · · · (mod 2π) .

(8)

In the same way, let us introduce new coordinates
(η1, η2, η3) and (ζ1, ζ2, ζ3) in the neighborhoods of
e2 and e3, respectively, and choose the transversal
sections

S23 =
{
(η1, η2, η3) : η1 = d21, η

2
2 + η2

3 ≤ d22

}
,

S21 =
{
(η1, η2, η3) : η3 = d23, η

2
1 + η2

2 ≤ d22

}
,

S31 =
{
(ζ1, ζ2, ζ3) : ζ1 = d31, ζ

2
2 + ζ2

3 ≤ d32

}
,

S32 =
{
(ζ1, ζ2, ζ3) : ζ3 = d33, ζ

2
1 + ζ2

2 ≤ d32

}
.

Ŝ23 =
{
(η1, η2, η3, θ23) :

η1 = d21, η
2
2 + η2

3 ≤ d22, 0 ≤ θ23 < 2π
}
,

Ŝ21 =
{
(η1, η2, η3, θ21) :

η3 = d23, η
2
1 + η2

2 ≤ d22, 0 ≤ θ21 < 2π
}
,

Ŝ31 =
{
(ζ1, ζ2, ζ3, θ31) :

ζ1 = d31, ζ
2
2 + ζ2

3 ≤ d32, 0 ≤ θ31 < 2π
}
,

Ŝ32 =
{
(ζ1, ζ2, ζ3, θ32) :

ζ3 = d33, ζ
2
2 + ζ2

3 ≤ d32, 0 ≤ θ32 < 2π
}
.

Then the local maps can be written as follows

T 2
loc : (η20, η30)→ (η̄1, η̄2) from S23 to S21 is

{
η̄1 = A12η

ν21
30 + · · · ,

η̄2 = A22η
ν22
30 η20 + · · · ;

(9)

T̂ 2
loc : (η20, η30, θ23)→ (η̄1, η̄2, θ21) from Ŝ23 to Ŝ21

is 
η̄1 = A12η

ν21
30 + · · · ,

η̄2 = A22η
ν22
30 η20 + · · · ,

θ21 = θ23 +
1

λ23
ln
d23

η30
+ · · · (mod 2π) ,

(10)

where A12 = d21(d23)
−ν21 , A22 = (d23)

−ν22 , ν21 =
−(λ21/λ23) > 0 and ν22 = −(λ22/λ23) > 0;

T 3
loc : (ζ20, ζ30)→ (ζ̄1, ζ̄2) from S31 to S32 is

 ζ̄1 = A13ζ
ν31
30 + · · · ,

ζ̄2 = A23ζ
ν32
30 ζ20 + · · · ;

(11)

T̂ 3
loc : (ζ20, ζ30, θ31) → (ζ̄1, ζ̄2, θ32) from Ŝ31 to Ŝ32

is 
ζ̄1 = A13ζ

ν31
30 + · · · ,

ζ̄2 = A23ζ
ν32
30 ζ20 + · · · ,

θ32 = θ31 +
1

λ33
ln
d33

ζ30
+ · · · (mod 2π) ,

(12)

where A13 = d31(d33)
−ν31 , A23 = (d33)

−ν32 , ν31 =
−(λ31/λ33) > 0 and ν32 = −(λ32/λ33) > 0 (see
Fig. 2).

By neglecting the nonleading terms and higher
order terms in (8), (10), (12), we have the simplified
local maps written as

T̂ 1
sloc :


ξ̄1 = A11ξ

ν11
30 , ξ̄2 = 0 ,

θ13 = θ12 +
1

λ13
ln

(
d13

ξ30

)
(mod2π) ;

(13)

T̂ 2
sloc :


η̄1 = A12η

ν21
30 , η̄2 = 0 ,

θ21 = θ23 +
1

λ23
ln

(
d23

η30

)
(mod 2π) ;

(14)
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T̂ 3
sloc :


ζ̄1 = A13ζ

ν31
30 , ζ̄2 = 0 ,

θ32 = θ31 +
1

λ33
ln

(
d33

ζ30

)
(mod 2π) .

(15)

For the system (3), we introduce a global map
T 13

gl : S13 → S31, (ξ̄1, ξ̄2, θ13) → (ζ20, ζ30, θ31) in
the neighborhood of the orbit O2 (see Fig. 2). The
transition time t13 from S13 to S31 is finite. There-
fore, the map T 13

gl is a diffeomorphism which can be
represented asζ20 = ζ?20 + a

(13)
11 ξ̄1 + a

(13)
12 ξ̄2 + · · · ,

ζ30 = ζ?30 + a
(13)
21 ξ̄1 + a

(13)
22 ξ̄2 + · · · .

(16)

If x2(0) = 0 in the system (3), then the solution
~x(t) = (x1(t), x2(t), x3(t)) has a zero component
x2(t) for all t ∈ R because of the uniqueness of the
initial value problem. Hence, ξ̄1 = 0 is mapped into
ζ30 = 0 (see Fig. 1) and then from (16) we have

ζ?30 = 0 and a
(13)
22 = 0. These imply a

(13)
12 6= 0 and

a
(13)
21 6= 0 since T 13

gl is a diffeomorphism. Hence, the

global map T 13
gl has the formζ20 = ζ?20 + a

(13)
11 ξ̄1 + a

(13)
12 ξ̄2 + · · · ,

ζ30 = a
(13)
21 ξ̄1 + · · · .

(17)

The system (4) is a perturbation of the system (3)

and it is reasonable to write T̂ 13
gl : Ŝ13 → Ŝ31, along

a neighborhood of the orbit O2 as

ζ20 = ζ?20 + a
(13)
11 ξ̄1 + a

(13)
12 ξ̄2

+ εη13(θ13, ξ̄1, ξ̄2) + · · · ,

ζ30 = a
(13)
21 ξ̄1 + εη13(θ13, ξ̄1, ξ̄2) + · · · ,

θ31 = θ13 + t13 + εψ13(θ13, ξ̄1, ξ̄2)

+ · · · (mod 2π) .

(18)

For simplicity, we assume that η13(θ13, ξ̄1, ξ̄2) =
η13(θ13), ψ13(θ13, ξ̄1, ξ̄2) = ψ13(θ13) and η13(θ13),
ψ13(θ13) are smooth and 2π-periodic. By neglect-
ing nonleading and higher order terms, the simpli-
fied global map T̂ 13

sgl: (ξ̄1, θ13) → (ζ30, θ31) can be
written asζ30 = a

(13)
21 ξ̄1 + εη13(θ13) ,

θ31 = θ13 + t13 + εψ13(θ13)(mod 2π) .
(19)

Similarly, we introduce a global map T 32
gl : S32 →

S23, (ζ̄1, ζ̄2, θ32) → (η20, η30, θ23) in the neighbor-
hood of the orbit O1. The transition time t32 from

S32 to S23 is finite. Therefore, the map T 32
gl is a

diffeomorphism which can be represented asη20 = η?20 + a
(32)
11 ζ̄1 + a

(32)
12 ζ̄2 + · · · ,

η30 = η?30 + a
(32)
21 ζ̄1 + a

(32)
22 ζ̄2 + · · · .

(20)

If x1(0) = 0 in the system (3), then the solution
~x(t) = (x1(t), x2(t), x3(t)) has a zero component
x1(t) for all t ∈ R. Hence, ζ̄1 = 0 is mapped into
η30 = 0 (see Fig. 1) and then from (20) we have

η?30 = 0 and a
(32)
22 = 0. These imply a

(32)
12 6= 0 and

a
(32)
21 6= 0 since T 32

gl is a diffeomorphism. Hence, the

global map T 32
gl has the form

η20 = η?20 + a
(32)
11 ζ̄1 + a

(32)
12 ζ̄2 + · · · ,

η30 = a
(32)
21 ζ̄1 + · · · .

(21)

It is reasonable to write T̂ 32
gl : Ŝ32 → Ŝ23, along a

neighborhood of the orbit O1 as

η20 = η?20 + a
(32)
11 ζ̄1 + a

(32)
12 ζ̄2

+ εη32(θ32, ζ̄1, ζ̄2) + · · · ,
η30 = a

(32)
21 ζ̄1 + εη32(θ32, ζ̄1, ζ̄2) + · · · ,

θ23 = θ32 + t32 + εψ32(θ32, ζ̄1, ζ̄2)

+ · · · (mod 2π) .

(22)

For simplicity, we assume that η32(θ32, ζ̄1, ζ̄2) =
η32(θ32), ψ32(θ32, ζ̄1, ζ̄2) = ψ32(θ32) and η32(θ32),
ψ32(θ32) are smooth and 2π-periodic. By neglect-
ing nonleading and higher order terms, the simpli-
fied global map T̂ 32

sgl : (ζ̄1, θ32) → (η30, θ23) can be
written as{

η30 = a
(32)
21 ζ̄1 + εη32(θ32) ,

θ23 = θ32 + t32 + εψ32(θ32)(mod 2π) .
(23)

In the same way, the simplified global map T̂ 21
sgl has

the form

T̂ 21
sgl :

{
ξ30 = a

(21)
21 η̄1 + εη21(θ21) ,

θ12 = θ21 + t21 + εψ21(θ21)(mod 2π) .
(24)

Thus, we can construct a simplified Poincaré map
T̂s : (ζ̄1, θ32) → ( ¯̄ζ1, θ̄32) as a composition T̂s =

T̂ 3
sloc ◦ T̂ 13

sgl ◦ T̂ 1
sloc ◦ T̂ 21

sgl ◦ T̂ 2
sloc ◦ T̂ 32

sgl (see Fig. 2) which
are detailed as follows.
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(a) T̂ 2
sloc ◦ T̂ 32

sgl 
η̄1 = A12(a

(32)
21 ζ̄1 + εη32(θ32))

ν21 ,

θ21 = θ32 + t32 + εψ32(θ32) +
1

λ23
ln

(
d23

a
(32)
21 ζ̄1 + εη32(θ32)

)
(mod2π) ,

(b) T̂ 21
sgl ◦ T̂ 2

sloc ◦ T̂ 32
sgl

ξ30 = a
(21)
21 A12(a

(32)
21 ζ̄1 + εη32(θ32))

ν21 + εη21(θ21),

θ12 = θ32 + t32 + t21 + εψ32(θ32) + εψ21(θ21) +
1

λ23
ln

(
d23

a
(32)
21 ζ̄1 + εη32(θ32)

)
(mod2π) ,

(c) T̂ 1
sloc ◦ T̂ 21

sgl ◦ T̂ 2
sloc ◦ T̂ 32

sgl



ξ̄1 = A11

[
a

(21)
21 A12(a

(32)
21 ζ̄1 + εη32(θ32))

ν21 + εη21(θ21)
]ν11

,

θ13 = θ32 + t32 + t21 + εψ32(θ32) + εψ21(θ21) +
1

λ23
ln

(
d23

a
(32)
21 ζ̄1 + εη32(θ32)

)

+
1

λ13
ln

(
d13

a
(21)
21 A12(a

(32)
21 ζ̄1 + εη32(θ32))ν21 + εη21(θ21)

)
(mod2π) ,

(d) T̂ 13
sgl ◦ T̂ 1

sloc ◦ T̂ 21
sgl ◦ T̂ 2

sloc ◦ T̂ 32
sgl



ζ30 = a
(13)
21 A11

[
a

(21)
21 A12(a

(32)
21 ζ̄1 + εη32(θ32))

ν21 + εη21(θ21)
]ν11

+ εη13(θ13) ,

θ31 = θ32 + t32 + t21 + t13 + εψ32(θ32) + εψ21(θ21) + εψ13(θ13) +
1

λ23
ln

(
d23

a
(32)
21 ζ̄1 + εη32(θ32)

)

+ 1
λ13

ln

(
d13

a
(21)
21 A12(a

(32)
21 ζ̄1 + εη32(θ32))ν21 + εη21(θ21)

)
(mod 2π) ,

(e) T̂s = T̂ 3
sloc ◦ T̂ 13

sgl ◦ T̂ 1
sloc ◦ T̂ 21

sgl ◦ T̂ 2
sloc ◦ T̂ 32

sgl

T̂s :



¯̄ζ1 = A13

{
a

(13)
21 A11

[
a

(21)
21 A12(a

(32)
21 ζ̄1 + εη32(θ32))

ν21 + εη21(θ21)
]ν11

+ εη13(θ13)
}ν31

:= f̂(ζ̄1, θ32) ,

θ̄32 = θ32 + t32 + t21 + t13 + εψ32(θ32) + εψ21(θ21) + εψ13(θ13)

+ 1
λ23

ln

(
d23

a
(32)
21 ζ̄1 + εη32(θ32)

)
+

1

λ13
ln

(
d13

a
(21)
21 A12(a

(32)
21 ζ̄1 + εη32(θ32))ν21 + εη21(θ21)

)

+
1

λ33
ln

(
d33

a
(13)
21 A11[a

(21)
21 A12(a

(32)
21 ζ̄1 + εη32(θ32))ν21 + εη21(θ21)]ν11 + εη13(θ13)

)
(mod 2π)

:= θ32 + ĝ(ζ̄1, θ32) (mod 2π),
(25)
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where

θ21 = θ32 + t32 + εψ32(θ32) +
1

λ23
ln

(
d23

a
(32)
21 ζ̄1 + εη32(θ32)

)
(mod2π) ,

θ13 = θ32 + t32 + t21 + εψ32(θ32) + εψ21(θ21) +
1

λ23
ln

(
d23

a
(32)
21 ζ̄1 + εη32(θ32)

)

+
1

λ13
ln

(
d13

a
(21)
21 A12(a

(32)
21 ζ̄1 + εη32(θ32))ν21 + εη21(θ21)

)
(mod2π) .

(26)

3. Analysis of the Model Map

Replace ζ̄1,
¯̄ζ1, θ32 and θ̄32 in (25) and (26) by x, x̄, θ, and θ̄, respectively. For the sake of definiteness,

let us take η32(θ) = 1 + a sin θ, η13(θ) = 1 + b sin θ and η21(θ) = 1 + c sin θ with 0 < a, b, c < 1 for

T̂s. Let

D =

{
(x, θ)

∣∣∣∣12Aεν(1− a)ν ≤ x ≤ 2Aεν(1 + a)ν , 0 ≤ θ < 2π

}
, (27)

where A = A13(a
(13)
21 A11)

ν31(a
(21)
21 A12)

ν11ν31 and ν := ν11ν21ν31 > 1.

Lemma 3.1. If ν21 < 1, ν11ν21 < 1 and 0 < ε� 1, then D is an invariant set for the model map T̂s.

Proof. For (x, θ) ∈ D, since ε� 1, we have

x̄ = A13

{
a

(13)
21 A11

[
a

(21)
21 A12(a

(32)
21 x+ εη32(θ))

ν21 + εη21(θ21)
]ν11

+ εη13(θ13)
}ν31

> A13

{
a

(13)
21 A11

[
a

(21)
21 A12(a

(32)
21 x+ εη32(θ))

ν21

]ν11

+ εη13(θ13)
}ν31

> A13(a
(13)
21 A11)

ν31(a21
(21)A12)

ν11ν31εν(1− a)ν

= Aεν(1− a)ν .

For x = O(εν), ε � 1, ν > 1 and ν21 < 1, ν11ν21 < 1, ν31 > 1, we can choose r1, r2, r3 > 1 such that
rν11ν21

1 rν31
2 r3 < 2 and

x̄ < A13

{
a

(13)
21 A11

[
a

(21)
21 A12r1(ε(1 + a))ν21 + εη21(θ21)

]ν11
+ εη13(θ13)

}ν31

< A13

{
a

(13)
21 A11r2

[
(a

(21)
21 A12r1)

ν11(ε(1 + a))ν11ν21

]
+ εη13(θ13)

}ν31

< A13r3(a
(13)
21 A11r2)

ν31(a
(21)
21 A12r1)

ν11ν31εν(1 + a)ν

= rν11ν31
1 rν31

2 r3A13(a
(13)
21 A11)

ν31(a
(21)
21 A12)

ν11ν31εν(1 + a)ν

< 2Aεν(1 + a)ν

hold.
Hence D is an invariant set for the model map T̂s. �
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Lemma 3.1 also implies that the model map T̂s
has an attractor in D. Since ε � 1, we may ne-
glect the higher order terms of ε for T̂s under the
assumptions of Lemma 3.1. Then the model map
T̂s in (25), (26) can be regarded as a perturbation
of the following reduced map F

F :


x̄ = A(Bx+ ε(1 + a sin θ))ν := f(x, θ) ,

θ̄ = θ + ω̃ − η ln(Bx+ ε(1 + a sin θ))

:= θ + g(x, θ) (mod 2π),

(28)

where

A = A13(a
(13)
21 A11)

ν31(a
(21)
21 A12)

ν11ν31 ,

B = a
(32)
21 , η =

(
1

λ23
+
ν21

λ13
+
ν11ν21

λ33

)
,

ω̃ = t32 + t21 + t13 +
1

λ23
ln d23 +

1

λ13
ln

(
d13

a
(21)
21 A12

)

+
1

λ33
ln

(
d33

a
(13)
21 A11(a

(21)
21 A12)ν11

)
.

The map F is, in fact, “the dissipative separatrix
map [Afraimovich & Hsu, 1998]”. Obviously, D is
also an invariant set for F . Consider the map F
restricted on D. Then F is a diffeomorphism from
D onto its image. The sufficient conditions under
which F has a regular behavior will be given.

Theorem 3.2. If ν > 1, ε � 1 and 0 < a <
(1/
√

1 + η2), then there is an invariant closed curve
as the maximal attractor for F.

To prove Theorem 3.2, we apply the following
“Annulus Principle”.

Proposition 3.3. (“Annulus Principle [Afraimovich

et al., 1985; Afraimovich & Hsu, 1998 ]”). Let T :
(x, θ) → (x̄, θ), x ∈ Rn, θ ∈ Rm, be a map of the
following form

x̄ = f(x, θ), θ̄ = θ + g(x, θ) (mod2π) ,

where f, g are differentiable functions which are 2π-
periodic in θ = (θ1, . . . , θm). Assume that T maps
an “annulus”

D = {(x, θ) : |x| ≤ r0}, r0 > 0 ,

into its interior. Introduce the following norms of
vectors or matrices in D : ‖ · ‖ = sup(x, θ)∈D | · |,
where | · | is an Euclidean norm. If

(a) ‖(I + gθ)
−1‖ <∞,

(b) ‖fx‖ < 1,

(c) 1− ‖(I + gθ)
−1‖ · ‖fx‖

> 2
√
‖(I + gθ)−1‖ · ‖gx‖ · ‖(I + gθ)−1‖ · ‖fθ‖,

(d) 1 + ‖(I + gθ)
−1‖ · ‖fx‖ < 2‖(I + gθ)

−1‖,

where I is the identical m × m-matrix and sub-
scripts indicate the differentiation with respect to
corresponding variables, then the maximal attractor
in D is an invariant m-dimensional torus which is
the graph of a smooth function x = h(θ), h is 2π-
periodic in θ.

Proof. See [Afraimovich et al., 1985; Afraimovich
& Hsu, 1998]. �

Now, let us come back to prove Theorem 3.2.

Proof. From Lemma 3.1, F (D) ⊂ D where D is
defined in (27). We need to check the sufficient
conditions of “Annulus Principle”. For (x, θ) ∈ D,
we have x = O(εν), ε� 1, ν > 1. Then

(i) 1 + gθ = 1− η εa cos θ

Bx+ ε(1 + a sin θ)
' 1− η a cos θ

1 + a sin θ
,

⇒ 0 < inf
(x, θ)∈D

(1 + gθ) < 1 if 0 < a <
1√

1 + η2
,

⇒ c := ‖(1 + gθ)
−1‖ <∞ ;

(ii) fx = νAB(Bx+ ε(1 + a sin θ))ν−1 := α(ε) ,

⇒ α(ε) = O(εν−1), hence ‖fx‖ < 1 ;
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(iii) gx = −η B

Bx+ ε(1 + a sin θ)
∼ O(ε−1) ,

fθ = νA(Bx+ ε(1 + a sin θ))ν−1εa cos θ ∼ O(εν) ,

⇒
√
‖(1 + gθ)−1‖2 · ‖gx‖ · ‖fθ‖ ∼ O(ε

ν−1
2 ) ,

1− ‖(1 + gθ)
−1‖ · ‖fx‖ ∼ O(1) ,

1 + ‖(1 + gθ)
−1‖ · ‖fx‖ = 1 + c · α(ε) < 2 ;

hence, conditions (c) and (d) in Theorem 3.3 are satisfied.
Therefore, the existence of an invariant closed curve for the map F is guaranteed by the Annulus

Principle. �

Corollary 3.4. If ν21 < 1, ν11ν21 < 1, ν > 1, and 0 < a < (1/
√

1 + η2), then the model map T̂s has an
invariant closed curve as the maximal attractor in D for ε� 1.

Proof

(i) 1 + ĝθ = 1− 1

λ23

εa cos θ

(a
(32)
21 x+ εη32(θ))

− 1

λ13

a
(21)
21 A12ν21(∗)ν21−1 · εa cos θ + εc cos θ21 ·

∂θ21

∂θ

a
(21)
21 A12[a

(32)
21 x+ εη32(θ)]ν21 + εη21(θ21)

− 1

λ33

a
(13)
21 A11ν11(∗∗)ν11−1

(
ν21a

(21)
21 A12(∗)ν21−1εa cos θ + εc cos θ21 ·

∂θ21

∂θ

)
+ εb cos θ13 ·

∂θ13

∂θ

a
(13)
21 A11[a

(21)
21 A12(∗)ν21 + εη21(θ21)]ν11 + εη13(θ13)

+ · · · ,

∂θ21

∂θ
= 1 + ε

∂ψ32

∂θ
− 1

λ23

εa cos θ

a
(32)
21 x+ εη32(θ)

,

∂θ13

∂θ
= 1 + ε

∂ψ32

∂θ
+ ε

∂

∂θ
ψ21(θ21)−

1

λ23

εa cos θ

a
(32)
21 x+ εη32(θ)

− 1

λ13

a
(21)
21 A12(∗)ν21−1εa cos θ + εb cos θ21 ·

∂θ21

∂θ

a
(21)
21 A12(∗)ν21 + εη21(θ21)

,

where ∗ =: a
(32)
21 x + εη32(θ), ∗∗ =: a

(21)
21

A12(∗)ν21+ εη21(θ21), and · · · denotes higher
order terms of ε. Under the assumptions, for
(x, θ) ∈ D, since ε � 1 we can neglect higher
order terms of ε in (25) and (26), then

∂θ21

∂θ
' O(1) ,

∂θ13

∂θ
' O(1) ,

1 + ĝθ ' 1− η εa cos θ

a
(32)
21 x+ ε(1 + a sin θ)

.

From straight-forward computation and the

same argument as above, we obtain

(ii) f̂x ' νAB(Bx+ ε(1 + a sin θ))ν−1,

(iii) ĝx ' −η
B

Bx+ ε(1 + a sin θ)
,

f̂θ ' νA(Bx+ ε(1 + a sin θ))ν−1εa cos θ .

Hence, the model map T̂s and the reduced map F
are C1 closed. So the Annulus Principle can be also
applied to T̂s same as we did in Theorem 3.2. Hence
we complete the proof. �

The chaotic behavior for the map F will be
characterized as follows.
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Theorem 3.5. If ν > 1 and 1 > a >

(exp
10π
η −1)/(exp

10π
η −(1/10)), then there exists a

hyperbolic invariant closed subset Λ ⊂ D such that
F |Λ is topologically conjugate to the Bernoulli shift
with two symbols for ε� 1.

To prove the hyperbolicity, we apply the following
Theorem which gives sufficient conditions of hyper-
bolicity [Afraimovich et al., 1983].

Theorem 3.6. Let F : U → Rm+n be a C1 map,
where U is an open convex subset of Rm+n, such
that F (x, y) = (x̄, ȳ), x ∈ Rm, y ∈ Rn, with the
form x̄ = f(x, y), ȳ = g(x, y). If

(a) ‖fx‖ < 1 ,

(b) ‖g−1
y ‖ < 1 ,

(c) 1− ‖fx‖ ‖g−1
y ‖ > 2

√
‖fy · g−1

y ‖ ‖gx‖ ‖g−1
y ‖ ,

(d) (1− ‖fx‖)(1− ‖g−1
y ‖) > ‖fy · g−1

y ‖ · ‖gx‖ ,

where ‖ · ‖ = sup(x,y)∈U | · |, and subscripts means
differentiation with respect to the corresponding

coordinates, then any compact invariant set Λ in U
is hyperbolic.

Proof. See [Afraimovich et al., 1983; Afraimovich
& Hsu, 1998]. �

Now, let us come back to prove Theorem 3.5.

Proof. Denote the lifting map of θ̄ by θ̂. For
(x, θ) ∈ D, consider

∂θ̂

∂θ
=

∂

∂θ
(θ + g(x, θ)) (29)

= 1− η εa cos θ

Bx+ ε(1 + a sin θ)
' 1− η a cos θ

1 + a sin θ
,

(30)

since x = O(εν), ε� 1 and ν > 1. Hence θ̂(x, θ) is
an increasing function of θ for (π/2) < θ < (3π/2).

Take θ0 = π + sin−1(1/10), π < θ0 < (3π/2).
Then for 0 ≤ δ < (3π/2)− θ0

θ̂

(
x,

3π

2
− δ

)
− θ̂(x, θ0) (31)

=

(
3π

2
− δ − θ0

)
+ η ln

Bx+ ε(1 + a sin θ0)

Bx+ ε

(
1 + a sin

(
3π

2
− δ

)) (32)

'
(

3π

2
− δ − θ0

)
+ η ln

1− a

10

1 + a sin

(
3π

2
− δ

) for ε� 1. (33)

Define P : [0, (3π/2) − θ0)× [0, 1)→ R by

P (δ, a) = η ln
1− a

10

1 + a sin

(
3π

2
− δ

) .
Then P (0, a) = η ln(1− a

10)/(1 − a). We have

P (0, a) > 10π if a >
exp

10π
η −1

exp
10π
η − 1

10

.

By continuity of P (δ, a) with respect to δ, there
exists 0 < δ0 = δ0(a) < (3π/2) − θ0 such that

P (δ0, a) > 10π if a > (exp
10π
η −1)/(exp

10π
η −(1/10)).

Hence,

θ̂

(
x,

3π

2
− δ0

)
− θ̂(x, θ0) > 10π if a >

exp
10π
η −1

exp
10π
η − 1

10

.

Then there exists two disjoint subintervals I1 =
[θ1, θ2] and I2 = [θ3, θ4] with θ0 < θ1 < θ2 < θ3 <
θ4 <

3π
2 − δ0 such that for

D1 :=

{
(x, θ)

∣∣∣∣12Aεν(1− a)ν≤x≤2Aεν(1 + a)ν , θ∈I1
}
,

D2 :=

{
(x, θ)

∣∣∣∣12Aεν(1− a)ν≤x≤2Aεν(1 + a)ν , θ∈I2
}
,



Chaotic Behavior of Three Competing Species of May–Leonard Model 445

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

 
x

θ

2/3π

π
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D 2

1

F(D2) F(D1)

Fig. 3. The images of stripes D1 and D2 under the map F .

we have F (D1) ∩ F (D2) = ∅ and both F (D1) and
F (D2) have full intersections with D1 and D2 (see
Fig. 3). Let Λ = ∩∞−∞Fn(D1 ∪D2). Λ is an invari-
ant closed subset of F . Thus, we have a “geometric
Smale horseshoe” and it can only be said [Burns,
1995] that F |Λ is topologically semi-conjugate to
the Bernoulli shift with two symbols. To achieve
our goal, we should check if Λ is a hyperbolic set
for F by Theorem 3.6. For ε � 1 and ν > 1, from
the calculation in the proof of Theorem 3.2 it fol-
lows that:

(i) ‖fx‖ < 1,
(ii) ‖(1 + gθ)

−1‖ < 1 since ‖(1 + gθ)
−1‖

' supθ∈I1∪I2 |(1− η
a cos θ

1+a sin θ )
−1|,

(iii) ‖fx‖‖(1 + gθ)
−1‖ ∼ O(εν−1),√

‖fθ · (1 + gθ)−1‖‖gx‖‖(1 + gθ)−1‖
∼ O(ε

ν−1
2 ),

⇒ the condition (c) in Theorem 3.6 holds.
(iv) (1− ‖fx‖)(1− ‖(1 + gθ)

−1‖) ∼ O(1),

‖fθ · (1 + gθ)
−1‖ · ‖gx‖ ∼ O(εν−1),

⇒ the condition (d) in Theorem 3.6 holds.

Hence, Λ is a hyperbolic set. It implies F |Λ is topo-
logically conjugate to the Bernoulli shift with two
symbols. �

Corollary 3.7. If ν21 < 1, ν11ν21 < 1, ν > 1

and 1 > a > (exp
10π
η −1)/(exp

10π
η −(1/10)), then

there exists a hyperbolic invariant closed subset Λ ⊂

D such that T̂s|Λ is topologically conjugate to the
Bernoulli shift with two symbols for ε� 1.

Proof. We have known the model map T̂s and
the reduced map F are C1 closed from the
Corollary 3.4. Therefore, we may apply general
results about structural stability of hyperbolic
locally maximal sets (see, e.g. [Katok, 1995]) to

conclude that the map T̂s has a hyperbolic locally
maximal set, as well, and its restriction to this set
is conjugate to the Bernoulli shift. We can also
prove it directly since the method that constructs
the invariant subset and the arguments which show
the hyperbolicity are still valid for T̂s. Hence, we
complete the proof. �

4. Numerical Results

In Fig. 4, L1 and L2 denote the curves a = (e
10π
η −

1)/(e
10π
η − 0.1) and a = (1/

√
1 + η2), respectively,

where 0 < a < 1 is the amplitude of perturbation
and 0 < η < ∞ is defined in (28). For the map
in (28), the region above L1 is a chaotic region for
parameters a and η. That below L2 is a regular
region where there exists an invariant closed curve
as an attractor. The behavior of F is unknown for
the parameter range between L1 and L2.

For the model map F in (28), let η = 100,
A = B = 1, ε = 10−3, ν = 2, ω̃ = 1.2, and we
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Fig. 4. Regular and chaotic regions of the map F with
respect to parameters a and η.
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Fig. 5. The bifurcation diagram of x with respect to the
parameter a. The last 100 points of 10 000 iterations for the
map F , projected to x axis, are plotted.
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Fig. 6. Part of Fig. 5 restricted to the parameter range
0 ≤ a ≤ 0.35.

iterate the map F 10 000 times with initial datas
x1 = 10−6, θ1 = 1.4π. The last 100 points are pro-
jected to x axis to plot the bifurcation diagrams
for x with respect to the parameter a (see Figs. 5
and 6). The last 3000 points are taken to plot the
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Fig. 7. Orbit of the map F for a = 0.005 for the last 3000
iterations.
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Fig. 8. Orbit of the map F for a = 0.032 for the last 3000
iterations.

orbits of F for different values of parameter a with
a = 0.005, 0.032, 0.8 in Figs. 7–9, respectively. For
a = 0.005 we obtain an invariant closed curve as the
ω-limit set. This explains why we have a triangular
region for a near 0. When a = 0.032, we obtain
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Fig. 9. Orbit of the map F for a = 0.8 for the last 3000
iterations.

period three orbit. For a = 0.8, as we predict, the
orbit is chaotic.

5. Concluding Remarks

We have shown that the behavior of the perturbed
May–Leonard system depends intimately on the
values of three parameters: ν = ν11ν21ν31, η =
((1/λ23) + (ν21/λ13) + (ν11ν21/λ33)), and a. The
parameters ν and η are defined to be some com-
binations of eigenvalues of variational matrices at
equilibrium points and reflect some relations be-
tween competing coefficients. The parameter a is
of the type of average amplitude of the external
periodic forcing. In principle, it is possible to ex-
press it as some integral of the external force over
the countour of hetroclinic orbits Oi, i = 1, 2,

3, in the spirit of the Melnikov integral. How-
ever, this problem does not enter the scope of
the paper. Anyway, it is clear now that being
periodically perturbed, the system of three species,
may behave periodically, quasiperiodially or chaot-
ically, depending on the specific character of a
perturbation.

Acknowledgments

V. Afraimovich would like to express his gratitude
to the people at the National Center of Theoretical
Science for their hospitality while he visited Taiwan
in 1999.

References
Afraimovich, V. S., Bykov, V. V. & Shil’nikov, L. P.

[1983] “On structurally unstable attracting limit sets
of Lorentz attractor type,” Trans. Moscow Math. Soc.
44, 153–216.

Afraimovich, V. S., Gavrilov, N. N., Lukyanov, V. I. &
Shil’nikov, L. P. [1985] Main Bifurcation of Dynamical
Systems (Gorky University Press, Gorky).

Afraimovich, V. S. & Hsu, S. B. [1998] Lectures
on Chaotic Dynamical Systems (National Tsing-Hua
University, Hsinchu, Taiwan).

Burns, K. & Weiss, H. [1995] “A geometric criterion for
positive topological entropy,” Commun. Math. Phys.
192, 95–118.

Chi, C. W., Hsu, S. B. & Wu, L. I. [1998] “On the
asymmetric May-Leonard model of three competing
species,” SIAM J. Appl. Math. 58, 211–226.

Katok, A. & Hasselblatt, B. [1995] Introduction to the
Modern Theory of Dynamical Systems (Cambridge
University Press).

May, R. M. & Leonard, W. J. [1975] “Nonlinear apects
of competition between three species,” SIAM J. Appl.
Math. 29, 243–253.

Waltman, P. [1983] Competition Models in Population
Biology (SIAM, PA).


