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Abstract

A model of competition for two complementary nutrients between plasmid-bearing and plasmid-free
organisms in a chemostat is proposed. A rigorous mathematical analysis of the global asymptotic behavior
of the model is presented. The work extends the model of competition for a single-limited nutrient studied
by Stephanopoulos and Lapidus [Chem. Engng. Sci. 443 (1988) 49] and Hsu, Waltman and Wolkowicz
[J. Math. Biol. 32 (1994) 731].
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1. Introduction

Genetically altered organisms are used in industry to manufacture a desired product, for
example, a pharmaceutical. The alteration is accomplished by introducing DNA into the cell,
frequently in the form of a plasmid. Plasmids contain bits of DNA which exist separately from
the chromosome and replicate independently; the plasmid codes for the added production. The
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burden imposed on the cell by the task of production can result in the genetically altered (the
plasmid-bearing) organism being a less able competitor than the plasmid-free organism. Un-
fortunately, the plasmid can be lost in the reproductive process; that is, it may not be passed to
the daughter cells, producing a plasmid-free organism (the ‘wild’ type). Since commercial pro-
duction can take place on a scale of many generations, it is important to understand the as-
ymptotic behavior of this system. A model of competition for a single-limit nutrient between
plasmid-bearing and plasmid-free organisms in a chemostat was proposed by Stephanopoulos
and Lapidus [9], who give a local analysis of various cases. A global analysis of the behavior of
system trajectories was presented in [4]. There are other models of plasmid loss (and conjuga-
tion), for example, Levin and Stewart [7] and Macken et al. [8]. In this paper, we consider the
competition for two complementary nutrients between plasmid-bearing and plasmid-free or-
ganisms in the chemostat. Complementary nutrients are those of different essential substances
which are metabolically independent requirements for growth, such as a carbon source and a
nitrogen source for bacterium, or silica and phosphorus for a diatom. Leon and Tumpson [6]
proposed a mathematical model of two species competing for two complementary resources in a
chemostat. Cheng et al. [1] gave a complete mathematical analysis for the model. It was shown
that, as in the classical Lotka–Volterra two species competition model, there are four possible
outcomes, including the case in which winning depends on the initial abundance of the com-
petitors. In [5] Li et al. extend the model to the distributed delay. Hsu and Waltman studied the
inhibition effects on plasmid populations in [3].

In Section 2 we present the model. The principal differences from the model in [1] center on
the parameter q, 0 < q < 1, the fraction of plasmid-bearing organism converting into plasmid-
free organism. As in the paper [4], biologically it is reasonable to assume for the nutrients S and
R, plasmid-bearing and plasmid-free organisms have the same yield constants ys and yr res-
pectively. In Section 3, we reduce the system of four equations to a system of two equations by
using the theory of asymptotically autonomous systems [11] (or Appendix F in [10]). Then we
apply Green’s Theorem to show the two dimensional system has no periodic orbits (The proof is
deferred to Appendix A). The difference between the proof in this paper and that in [4] is the
equations in this paper is not differentiable everywhere. We need to apply Dulac’s criterion with
care. In Section 4, we classify all the rest points of the four dimensional system by a local
stability analysis. In Section 5 we combine the results in Sections 3 and 4 to give a complete
classification of the global asymptotic behavior of the solutions of governing equations. Section
6 is the discussion section where we give the biological interpretations for the mathematical
results. Some operating diagrams are shown for practical uses. We also discuss the experiment
and the mathematical model in [2]. The more demanding proofs and computations are deferred
to Appendix A.

2. The model

We use the standard chemostat notations in [1,10]. In [1] we consider species x1 and
x2 competing exploitatively for two complementary nutrients S and R. The model took the
form
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dS
dt

¼ ðSð0Þ � SÞD� x1
ys1

f1ðS;RÞ �
x2
ys2

f2ðS;RÞ;

dR
dt

¼ ðRð0Þ � RÞD� x1
yr1

f1ðS;RÞ �
x2
yr2

f2ðS;RÞ;

dx1
dt

¼ ðf1ðS;RÞ � DÞx1;

dx2
dt

¼ ðf2ðS;RÞ � DÞx2;

Sð0ÞP 0; Rð0ÞP 0; x1ð0ÞP 0; x2ð0ÞP 0;

ð2:1Þ

where

f1ðS;RÞ ¼ min
ms1S

Ks1 þ S
;

mr1R
Kr1 þ R

� �
;

f2ðS;RÞ ¼ min
ms2S

Ks2 þ S
;

mr2R
Kr2 þ R

� �
:

ð2:2Þ

The constants Sð0Þ and Rð0Þ are the input concentration for the nutrients S and R respectively. D is
the dilution rate of the chemostat. msi, mri, Ksi, Kri, i ¼ 1; 2 are the maximal growth of ith com-
petitor and the Michaelis–Menten (or half-saturation) constants with respect to nutrients S and R
alone. ysi, yri, i ¼ 1, 2 are the yield constants with respect to nutrients S and R. The growth rate
fiðS;RÞ, i ¼ 1; 2, takes the form (2.2). For complementary nutrients S and R, the per capita
consumption rate of whichever nutrient is currently limiting growth is identical to the one-nutrient
per capita consumption rate for the appropriate nutrient. The per capita consumption rate of the
non-limiting nutrient is proportional to the per capita consumption rate of the limiting nutrient.
We note that when a species is S-limited, its per capita consumption rate of R is independent of
the concentration of R; whereas, when the species is R-limited, its per capita consumption rate of
S is independent of the concentration of S.

In [4] we consider the case plasmid-bearing organism x1 and plasmid-free organism x2 compete
exploitatively for a single-limit nutrient S. The equations took the form

dS
dt

¼ ðSð0Þ � SÞD� x1
ys1

g1ðSÞ �
x2
ys2

g2ðSÞ;

dx1
dt

¼ ðð1� qÞg1ðSÞ � DÞx1;

dx2
dt

¼ ðg2ðSÞ � DÞx2 þ qg1ðSÞx1;

Sð0ÞP 0; x1ð0ÞP 0; x2ð0ÞP 0;

ð2:3Þ

where

g1ðSÞ ¼
ms1S

Ks1 þ S
; g2ðSÞ ¼

ms2S
Ks2 þ S

:

q, 0 < q < 1 is the fraction constant of plasmid-bearing population converting into plasmid-free
population during the replication. Biologically we may assume ys1 ¼ ys2 ¼ ys. Now we combine the
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models (2.1) and (2.3) for the competition of plasmid-bearing and plasmid-free organisms for two
complementary nutrients. The equations take the form

dS
dt

¼ ðSð0Þ � SÞD� x1
ys
f1ðS;RÞ �

x2
ys
f2ðS;RÞ;

dR
dt

¼ ðRð0Þ � RÞ � x1
yr
f1ðS;RÞ �

x2
yr
f2ðS;RÞ;

dx1
dt

¼ ðð1� qÞf1ðS;RÞ � DÞx1;

dx2
dt

¼ ðf2ðS;RÞ � DÞx2 þ qf1ðS;RÞx1;

Sð0ÞP 0; Rð0ÞP 0; x1ð0ÞP 0; x2ð0ÞP 0;

ð2:4Þ

where f1ðS;RÞ, f2ðS;RÞ satisfy (2.2) and both organisms x1 and x2 have the same yield constants
with respect to nutrient S and R.

We shall analyze the behavior of solutions of (2.4) in order to answer the biological question,
under what conditions will neither, one or both species survive or die out? We also seek to de-
termine the limiting behavior of the surviving organisms and the nutrients.

3. Reduction to a two dimensional system

Let R1ðtÞ ¼ Sð0Þ � SðtÞ � x1ðtÞ=ys � x2ðtÞ=ys and R2ðtÞ ¼ Rð0Þ � RðtÞ � x1ðtÞ=yr � x2ðtÞ=yr. Then
the system (2.4) may be written equivalently as

dR1

dt
¼ �DR1;

dR2

dt
¼ �DR2;

dx1
dt

¼ ð1
�

� qÞf1 Sð0Þ
�

� R1 �
x1
ys
� x2

ys
;Rð0Þ � R2 �

x1
yr
� x2

yr

�
� D

�
x1;

dx2
dt

¼ f2 Sð0Þ
��

� R1 �
x1
ys
� x2

ys
;Rð0Þ � R2 �

x1
yr
� x2

yr

�
� D

�
x2

þ qf1 Sð0Þ
�

� R1 �
x1
ys
� x2

ys
;Rð0Þ � R2 �

x1
yr
� x2

yr

�
x1;

ð3:1Þ

Sð0Þ � R1ð0Þ �
x1ð0Þ
ys

� x2ð0Þ
ys

P 0; Rð0Þ � R2ð0Þ �
x1ð0Þ
yr

� x2ð0Þ
yr

P 0;

x1ð0ÞP 0; x2ð0ÞP 0; 0 < q < 1:

Clearly limt!1 R1ðtÞ ¼ 0; limt!1 R2ðtÞ ¼ 0, and so the omega limit set of any solution of (2.4) is
contained in the set

X4 ¼ fðS;R; x1; x2ÞjS P 0;RP 0; x1 P 0; x2 P 0;R1 ¼ 0;R2 ¼ 0g: ð3:2Þ
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The limiting system, obtained by restricting the initial conditions to the set X4, is

dx1
dt

¼ ð1
�

� qÞf1 Sð0Þ
�

� x1
ys
� x2

ys
;Rð0Þ � x1

yr
� x1

yr

�
� D

�
x1;

dx2
dt

¼ f2 Sð0Þ
��

� x1
ys
� x2

ys
;Rð0Þ � x1

yr
� x2

yr

�
� D

�
x2

þ qf1 Sð0Þ
�

� x1
ys
� x2

ys
;Rð0Þ � x1

yr
� x2

yr

�
x1:

ð3:3Þ

These equations, of course, are restricted to the region

X ¼ fðx1; x2Þjx1 P 0; x2 P 0; x1 þ x2 6 minðysSð0Þ; yrRð0ÞÞg:
The boundary of X satisfies the following properties

ðx1 þ x2ÞðsÞ ¼ minðysSð0Þ; yrRð0ÞÞ
for some s P 0 ) ðx1 þ x2Þ0ðsÞ ¼ �Dðx1 þ x2ÞðsÞ6 0; ð3:4Þ

x1ðsÞ ¼ 0 for some s P 0 ) x01ðsÞ ¼ 0; ð3:5Þ

x2ðsÞ ¼ 0 for some s P 0 ) x02ðsÞ ¼ qx1ðsÞf1 Sð0Þ
�

� x1
ys
;Rð0Þ � x1

yr

�
P 0: ð3:6Þ

Therefore, X is a positively invariant region. Similar arguments show that X4 defined in (3.2) is
positively invariant.

We shall proceed by first to determine the dynamics on the two dimensional globally attracting
set X. To justify our conclusions for arbitrary initial conditions for the full four dimensional
system (2.4), we will use the theory of asymptotically autonomous systems (see Appendix F in [10]
or [11]).

First for simplicity we rewrite the system (3.3) in equivalent form:

dx1
dt

¼ x1ðð1� qÞminðp1ðSÞ; q1ðRÞÞ � DÞ ¼ g1ðx1; x2Þ;

dx2
dt

¼ x2ðminðp2ðSÞ; q2ðRÞÞ � DÞ þ qx1 minðp1ðSÞ; q1ðRÞÞ ¼ g2ðx1; x2Þ;
ð3:7Þ

where

piðSÞ ¼
msiS

Ksi þ S
; qiðRÞ ¼

mriR
Kri þ R

; i ¼ 1; 2; ð3:8Þ

S ¼ Sð0Þ � 1

ys
ðx1 þ x2Þ; R ¼ Rð0Þ � 1

yr
ðx1 þ x2Þ: ð3:9Þ

From (3.9) we have the following relations between x1 þ x2 and S and R,

x1 þ x2 ¼ ysðSð0Þ � SÞ ¼ yrðRð0Þ � RÞ;

R ¼ ys
yr
ðS � Sð0ÞÞ þ Rð0Þ  hðSÞ: ð3:10Þ
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Set

Q1ðSÞ ¼ q1ðhðSÞÞ ¼ q1ðRÞ; Q2ðSÞ ¼ q2ðhðSÞÞ ¼ q2ðRÞ: ð3:11Þ
Obviously, we have p0iðSÞ > 0, p00i ðSÞ < 0, Q0

iðSÞ > 0, Q00
i ðSÞ < 0, for i ¼ 1, 2.

Remark 3.1. We note that from (3.8), (3.10) and (3.11), it follows that for i ¼ 1, 2

piðSÞ � QiðSÞ ¼
msiS

Ksi þ S
� mriR
Kri þ R

¼ 0

if and only if

msiKriS � mriKsiRþ ðmsi � mriÞRS ¼ 0: ð3:12Þ
Obviously, from (3.10) and (3.12) the equation piðSÞ ¼ QiðSÞ has at most two roots.

The main result of this section can be stated in the following. The proof is deferred to
Appendix A.

Theorem 3.1. System (3.7) has no periodic solutions.

4. Rest points of X4 and their local stability

We use the following notation for the relevant rest points of system (2.4). We say that a rest
point of (2.4) does not exist if any one of its components is negative. Since limt!1 R1ðtÞ ¼ 0, and
limt!1 R2ðtÞ ¼ 0, any rest point �EE ¼ ð�SS; �RR;�xx1;�xx2Þ of (2.4) must satisfy

ys�SS þ �xx1 þ �xx2 ¼ ysSð0Þ; ð4:1Þ

yr�RRþ �xx1 þ �xx2 ¼ yrRð0Þ; ð4:2Þ
or

�SS ¼ ysSð0Þ � ð�xx1 þ �xx2Þ
ys

;

�RR ¼ yrRð0Þ � ð�xx1 þ �xx2Þ
yr

:

The washout rest point is denoted by E0 ¼ ðSð0Þ;Rð0Þ; 0; 0Þ and it always exists. There are two
possible rest points involving plasmid-free organisms but no plasmid-bearing organisms. In order
to describe these two rest points, we introduce the following important parameters:

ks1 ¼
Ks1D

ð1� qÞms1 � D
; kr1 ¼

Kr1D
ð1� qÞmr1 � D

;

ks2 ¼
Ks2D

ms2 � D
; kr2 ¼

Kr2D
mr2 � D

;

C ¼ ys
yr
; Ti ¼

Rð0Þ � kri

Sð0Þ � ksi
; i ¼ 1; 2:
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Note that p1ðks1Þ ¼ 0, p2ðks2Þ ¼ 0, q1ðkr1Þ ¼ 0, q2ðkr2Þ ¼ 0. In order to present the biological
meaning of parameters Ti, and C, we assume x1ðtÞ  0 and rewrite T2, C as

C ¼ 1=yr
1=ys

; T2 ¼
ðRð0Þ � kr2ÞD
ðSð0Þ � ks2ÞD

:

When only species 2 is present, T2 represents the ratio of the steady-state nutrient regeneration
rates at equilibrium under consumption by species 2. ks2 and kr2 are the equilibrium concentra-
tions of resources S and R, respectively, under steady-state consumption by species 2. The pa-
rameter C represents the fixed yield ratio for species 2 growing on resources S and R. The units of
(1=yr) are (units R consumed/unit species 2 produced); thus C is the ratio (units R consumed/units
S consumed) per unit of species 2 produced.

By comparing T2 with C, we can determine whether species 2 is S-limited or R-limited. This is
because C represents the invariant ratio in which the essential nutrients R and S are consumed by
species 2, whereas T2 represents the ratio in which these same resources are being externally re-
generated under steady-state consumption pressure from species 2. Therefore, if T2 > C, the
growth rate of species 2 is S-limited because S is regenerating at a steady-state rate slower than R
with respect to the required consumption ratio for species 2. Similarly, if T2 < C, the growth rate
of species 2 will be R-limited (see [1]).

Definition 4.1. For i ¼ 1; 2, if Ti > C, we say that species xi is S-limited. Similarly, if Ti < C, we say
that species xi is R-limited.

From the fourth equation of (2.4), it is obvious that there is no rest point with plasmid-bearing
organisms and zero plasmid-free organism. Let E2 ¼ ðbSS ; bRR; 0; x̂x2Þ, be a rest point without plasmid-
bearing organisms. There are two possible such rest points, namely, E2s ¼ ðks2; bRR; 0; x̂x2Þ, bSS ¼ ks2,bRR > kr2 and E2r ¼ ðbSS ; kr2; 0; x̂x2Þ, bSS > ks2, bRR ¼ kr2.

Lemma 4.1. Assume 0 < ks2 < Sð0Þ; 0 < kr2 < Rð0Þ.

(i) T2 > C (i.e., species x2 is S-limited) if and only if E2s exists,
(ii) T2 < C (i.e., species x2 is R-limited) if and only if E2r exists.

Proof. Obviously from (4.1) and (4.2), the positive component of (E2), x̂x2 and bSS , bRR satisfy

ysbSS þ x̂x2 ¼ ysSð0Þ; yrbRR þ x̂x2 ¼ yrRð0Þ:

Hence we have the relation

bRR ¼ ys
yr
ðbSS � Sð0ÞÞ þ Rð0Þ; ð4:3Þ

or bSS ¼ yr
ys
ðbRR � Rð0ÞÞ þ Sð0Þ: ð4:4Þ
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Then it follows that

ðiÞ T2 > C () Rð0Þ � kr2

Sð0Þ � ks2

>
ys
yr

() ys
yr
ðSð0Þ � ks2Þ < Rð0Þ � kr2 ()

R̂R ¼ ys
yr
ðks2 � Sð0ÞÞ þ Rð0Þ > kr2 () E2s

exists, and

ðiiÞ T2 < C () Rð0Þ � kr2

Sð0Þ � ks2

<
ys
yr

() ys
yr
ðks2 � Sð0ÞÞ < kr2 � Rð0Þ ()

ŜS ¼ yr
ys
ðkr2 � Rð0ÞÞ þ Sð0Þ > ks2 () E2r

exists. �

Next we consider the existence and uniqueness of positive rest point. Let Ec ¼ ðSc;Rcx1c; x2cÞ be
a positive equilibrium (i.e., Sc;Rc; x1c; x2c > 0). Then Ec satisfies

ð1� qÞf1ðSc;RcÞ ¼ D;

f2ðSc;RcÞ½ � D� x2c
x1c

� �
þ qf1ðSc;RcÞ ¼ 0;

ysSc þ x1c þ x2c ¼ ysSð0Þ;

yrRc þ x1c þ x2c ¼ yrRð0Þ:

ð4:5Þ

Let n ¼ x1c þ x2c and g ¼ x2c=x1c. Then we have

f1
ysSð0Þ � n

ys
;
yrRð0Þ � n

yr

� �
¼ D

1� q
; ð4:6Þ

and

f2
ysSð0Þ � n

ys
;
yrRð0Þ � n

yr

� ��
� D

�
g þ q

1� q
D ¼ 0: ð4:7Þ

From (4.7) we have

g ¼
� q

1�q D
� �

f2
ysSð0Þ�n

ys
; yrR

ð0Þ�n
yr

� �
� D

: ð4:8Þ

The necessary and sufficient condition for the existence and uniqueness of positive rest point Ec is
that there exists a unique n, 0 < n < minfysSð0Þ; yrRð0Þg satisfying (4.6) and the g defined in (4.8) is
positive. Obviously from (4.8), g > 0 if and only if

f2
ysSð0Þ � n

ys
;
yrRð0Þ � n

yr

� �
� D < 0: ð4:9Þ

From (2.2), the LHS of (4.6) is a positive, monotonically decreasing of n for 0 < n <
minðysSð0Þ; yrRð0ÞÞ. Eq. (4.6) has a unique positive solution n if 0 < ks1 < Sð0Þ, 0 < kr1 < Rð0Þ. To
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find the positive rest point Ec ¼ ðSc;Rc; x1c; x2cÞ, from the first equation of (4.5), there are two
cases:
Case 1: Sc ¼ ks1;Rc > kr1.
Then ks1 ¼ ðysSð0Þ � nÞ=ys and Rc ¼ ðyrRð0Þ � nÞ=yr > kr1 imply C ¼ ys=yr < T1 ¼ ðRð0Þ � kr1Þ=

ðSð0Þ � ks1Þ or x1 is S-limited. Then condition (4.9) implies

ks1 < ks2 or Rc < kr2: ð4:10Þ

Case 2: Sc > ks1;Rc ¼ kr1

Then kr1 ¼ ðyrRð0Þ � nÞ=yr and Sc ¼ ðysSð0Þ � nÞ=ys > ks1 imply C > T1 or x1 is R-limited. Then
condition (4.9) implies:

kr1 < kr2 or Sc < ks2: ð4:11Þ

In Appendix A, we introduce the variational matrices of the system (2.4) at equilibria E0, E2s, E2r

and Ec and analyze their local stability. The reason we do the stability analysis of the original
system (2.4) instead of the limiting system (3.3) is that it is easier to obtain stability criteria making
more biological sense for various cases. The results of stability analysis are following:

(i) E0 ¼ ðSð0Þ;Rð0Þ; 0; 0Þ is asymptotically stable if

ð1� qÞf1ðSð0Þ;Rð0ÞÞ � D < 0; and f2ðSð0Þ;Rð0ÞÞ � D < 0: ð4:12Þ

(ii) E2s ¼ ðks2; bRR; 0; x̂x2sÞ is asymptotically stable if

ð1� qÞf1ðks2; bRRÞ � D < 0; ð4:13Þ

or equivalently,

ks2 < ks1 or bRR < kr1:

(iii) E2r ¼ ðbSS ; kr2; 0; x̂x2rÞ is asymptotically stable if

ð1� qÞf1ðbSS ; kr2Þ � D < 0; ð4:14Þ
or equivalently,bSS < ks1 or kr2 < kr1:

(iv) Ec ¼ ðSc;Rc; x1c; x2cÞ is asymptotically stable if

f2ðSc;RcÞ � D < 0; ð4:15Þ
i.e.,

Sc < ks2 or Rc < kr2:

Since (4.15) is precisely (4.9), we conclude that if (Ec) exists then (Ec) is asymptotically stable. In
the following lemma, we relate the existence of coexistence state (Ec) to the instability of (E2). The
proof is deferred to Appendix A.

Lemma 4.2. Ec exists if and only if E2 is unstable.
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5. Global analysis of (2.4)

As we note in Section 3, the governing system (2.4) of four equations can be reduced to the
limiting system (3.3) of two equations by the theory of asymptotic autonomous system. We have
shown that there is no periodic orbit for the system (3.3) in global attracting region X. Thus from
Poinca�rre–Bendixson Theorem any trajectory converges to the unique locally asymptotic rest
point. In Section 4, we find all possible rest points for the governing system (2.4) and classify them
by local stability analysis. The asymptotic stability of the rest points of (2.4) automatically implies
that of the corresponding rest points of the limiting system (3.3). In the following we state and
prove our main results.

Theorem 5.1. Let ðSðtÞ;RðtÞ; x1ðtÞ; x2ðtÞÞ be a solution of (2.4) with x1ð0Þ > 0; x2ð0Þ > 0. Then

ii(i) if f1ðSð0Þ;Rð0ÞÞ < D=ð1� qÞ and f2ðSð0Þ;Rð0ÞÞ < D, then

lim
t!1

ðSRðtÞ;RðtÞ; x1RðtÞ; x2RðtÞÞ ¼ E0 ¼ ðSð0Þ;Rð0Þ; 0; 0Þ;

i(ii) if f1ðSð0Þ;Rð0ÞÞ < D=ð1� qÞ and f2ðSð0Þ;Rð0ÞÞ > D, then

(a) limt!1ðSðtÞ;RðtÞ; x1ðtÞ; x2ðtÞÞ ¼ E2s ¼ ðks2; bRR; 0; x̂x2sÞ if T2 > C i.e., x2 is S-limited,

(b) limt!1ðSðtÞ;RðtÞ; x1ðtÞ; x2ðtÞÞ ¼ E2r ¼ ðbSS ; kr2; 0; x̂x2rÞ if T2 < C i.e., x2 is R-limited,

(iii) if f1ðSð0Þ;Rð0ÞÞ > D=ð1� qÞ and f2ðSð0Þ;Rð0ÞÞ < D, then

lim
t!1

ðSðtÞ;RðtÞ; x1ðtÞ; x2ðtÞÞ ¼ Ec;

(iv) if f1ðSð0Þ;Rð0ÞÞ > D=ð1� qÞ and f2ðSð0Þ;Rð0ÞÞ > D then
(a) limt!1ðSðtÞ;RðtÞ; x1ðtÞ; x2ðtÞÞ ¼ E2s or E2r, depending on x2 is S-limited or R-limited, if
f2ðSc;RcÞ � D > 0 where Sc ¼ ks1;Rc ¼ ðys=yrÞðks1 � Sð0ÞÞ þ Rð0Þ or Rc ¼ kr1; Sc ¼ ðyr=ysÞ
ðkr1 � Rð0ÞÞ þ Sð0Þ,
(b) limt!1ðSðtÞ;RðtÞ; x1ðtÞ; x2ðtÞÞ ¼ Ec if f2ðSc;RcÞ � D < 0.

Proof. From the first two equations of (2.4) and differential inequalities, we have for any e > 0,
SðtÞ6 Sð0Þ þ e, RðtÞ6Rð0Þ þ e, for tP Te for some Te > 0. Since ð1� qÞf1ðSð0Þ;Rð0ÞÞ � D < 0, there
exists e > 0 sufficiently small such that ð1� qÞf1ðSð0Þ þ e;Rð0Þ þ eÞ � D < 0. From the third
equation of (2.4), it follows that

x1ðtÞ ¼ x1ðTeÞ exp
Z t

Te

½ð1
�

� qÞf1ðSðsÞ;RðsÞÞ � D�ds

�
6 x1ðTeÞ exp½ðð1� qÞf1ðSð0Þ þ e;Rð0Þ þ eÞ � DÞðt � TeÞ�:

Hence limt!1 x1ðtÞ ¼ 0. By the boundedness of the solutions, we will have limt!1 qf1ðSðtÞ;
RðtÞÞx1ðtÞ ¼ 0. Since f2ðSð0Þ;Rð0ÞÞ � D < 0 from the fourth equation of (2.4), it follows that
limt!1 x2ðtÞ ¼ 0. From (3.1) limt!1 SðtÞ ¼ Sð0Þ and limt!1 RðtÞ ¼ Rð0Þ. Thus we complete the
proof of (i).

For part (ii), ð1� qÞf1ðSð0Þ;Rð0ÞÞ � D < 0, implies limt!1 x1ðtÞ ¼ 0. We claim that
lim supt!1 x2ðtÞ > 0. If on the contrary, limt!1 x2ðtÞ ¼ 0, then it follows that limt!1 SðtÞ ¼ Sð0Þ
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and limt!1 RðtÞ ¼ Rð0Þ. Then from the fourth equation of (2.4), we have x02ðtÞP ðf2ðS;RÞ � DÞx2
and the hypothesis f2ðSð0Þ;Rð0ÞÞ > D implies x2ðtÞ becomes unbounded as t ! 1. This is a con-
tradiction to the boundedness of the solutions. Since lim supt!1 x2ðtÞ > 0, there exists ftng such
that ðSðtnÞ;RðtnÞ; x1ðtnÞ; x2ðtnÞÞ ! ð~SS; ~RR; 0;~xx2Þ, ~SS P 0, ~RRP 0, ~xx2 P 0. The solution ðSðtÞ;RðtÞ; x2ðtÞÞ
of the subsystem obtained by setting x1ðtÞ  0 in (2.4) with initial condition Sð0Þ ¼ ~SS;Rð0Þ ¼
~RR; x2ð0Þ ¼ ~xx2 satisfies limt!1ðSðtÞ;RðtÞ; x2ðtÞÞ ¼ ðks2; bRR; x̂x2sÞ if x2 is S-limited and limt!1ðSðtÞ;RðtÞ;
x2ðtÞÞ ¼ ðbSS ; kr2; x̂x2rÞ if x2 is R-limited. From the invariance of x-limit set, the asymptotic stability
of E2ðE2 ¼ E2s or E2 ¼ E2rÞ implies the global stability of E2. Thus we complete the proof of part
(ii).

For part (iii), we note that lim supt!1 x1ðtÞ > 0. Otherwise, if limt!1 x1ðtÞ ¼ 0, then f2ðSð0Þ;
Rð0ÞÞ < D implies limt!1 x2ðtÞ ¼ 0, limt!1 SðtÞ ¼ Sð0Þ and limt!1 RðtÞ ¼ Rð0Þ. From f1ðSð0Þ;Rð0ÞÞ >
D=ð1� qÞ, x1ðtÞ becomes unbounded as t ! 1. This is a contradiction. From the fourth equation
of (2.4) and lim supt!1 x1ðtÞ > 0, it follows that lim supt!1 x2ðtÞ > 0. By the theory of asymptotic
autonomous system and the limiting system (3.3), we obtain limt!1ðSðtÞ;RðtÞ; x1ðtÞ; x2ðtÞÞ ¼ Ec.

For part (iv), the hypothesis f1ðSð0Þ;Rð0ÞÞ > D=ð1� qÞ, and f2ðSð0Þ;Rð0ÞÞ > D imply 0 < ks1; ks2 <
Sð0Þ, and 0 < kr1; kr2 < Rð0Þ. If f2ðSc;RcÞ � D > 0, then from Lemma 4.2, E2 is asymptotically stable
and the positive rest point Ec does not exist. Then limt!1ðSðtÞ;RðtÞ; x1ðtÞ; x2ðtÞÞ ¼ E2. Thus
we complete the proof of (a). Similarly if f2ðSc;RcÞ � D < 0, then the rest point E2 is unstable and
the positive rest point Ec exists and is asymptotically stable. Hence limt!1ðSðtÞ;RðtÞ; x1ðtÞ;
x2ðtÞÞ ¼ Ec. �

6. Discussion

We have considered competition for two complementary nutrients between plasmid-bearing
and plasmid-free organisms in a chemostat. This problem is important in biotechnology for the
study of plasmid stability where the effects of plasmid loss in genetically altered organisms
(the plasmid-free organism is presumably the better competitor) is studied. We have established
the global asymptotic stability of the solutions of (2.4) in Theorem 5.1. Every solution of (2.4)
tends as t ! 1 to one of the three steady states, the washout state E0 ¼ ðSð0Þ;Rð0Þ; 0; 0Þ, the
plasmid-bearing extinction state E2 ¼ ðbSS2; bRR2; 0; x̂x2Þ and the coexistence state Ec ¼ ðSc;Rc; x1c; x2cÞ.
The state E2 ¼ E2s ¼ ðks2; bRR; 0; x̂x2sÞ if x2 is S-limited and E2 ¼ E2r ¼ ðbSS ; kr2; 0; x̂x2rÞ if x2 is R-limited.
In the following Table 1 we list the existence conditions for the rest points and indicate their
global stability by enclosing them in a box.

In [2] the authors did the experiment for the competition of plasmid-bearing and plasmid-free
organisms for two complementary nutrients. They also formulated a mathematical model and did
computer simulation to explain the experimental data. They used a leucine auxotroph strain of
Saccharomyces cerevisiae (plasmid-free organism) and its recombinants (plasmid-bearing organ-
ism) competing for two complementary nutrients, sucrose and yeast extract. Sucrose is a carbon
resource and yeast extract is a nitrogen resource. Since the recombinants enjoyed a growth rate
advantage over the plasmid-free cell at critically low yeast extract concentration, a two-stage
cultivation strategy was design in order to create a yeast extract limited environment so that
plasmid-free cells could not grow and overtake the recombinants. The cells were cultivated in
selected media (i.e. sucrose) in the first stage, and then transferred continuously to the second
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stage where the media was enriched by feeding yeast extract. This strategy resulted in a stable
existence of recombinant cells, which stabilized around 60% at steady stable during the tested
period of cultivation. Their mathematical model can be written as follows:

Stage I: In first reactor, we have following equations:

dS1
dt

¼ ðSð0Þ
1 � S1ÞD1 �

x1
gS1

g1ðS1Þ �
y1
gS1

g2ðS1Þ;

dx1
dt

¼ ½ð1� q1Þg1ðS1Þ � D1�x1;

dy1
dt

¼ ½g2ðS1Þ � D1�y1 þ q1g1ðS1Þx1;

ð6:1Þ

where S1ðtÞ is the concentration of sucrose; g1ðS1Þ ¼ m1S1=ðK1 þ S1Þ, g2ðS1Þ ¼ m2S1=ðK2 þ S1Þ are
the specific growth rate of plasmid-bearing and plasmid-free cells respectively; x1ðtÞ, y1ðtÞ are the
concentration of plasmid-bearing, plasmid-free organisms respectively; 0 < q1 < 1 is the proba-
bility of plasmid-free cell emergence; D1 ¼ f1=V1 is the dilution rate where f1 is the flow rate, V1 is
the volume of the first reactor; gS1 is the yield constant.

Stage II: In the second reactor, we have following equations:

dS
dt

¼ f1S1ðtÞ
V2

þ f2Sð0Þ

V2
� ðf1 þ f2ÞSðtÞ

V2
� x2

gS
l1ðS;RÞ �

y2
gS

l2ðS;RÞ;

dR
dt

¼ f2Rð0Þ

V2
� ðf1 þ f2ÞRðtÞ

V2
� x2

gR
l1ðS;RÞ �

y2
gR

l2ðS;RÞ;

dx2
dt

¼ f1x1ðtÞ
V2

þ ½ð1� q2Þl1ðS;RÞ � D2�x2;

dy2
dt

¼ f1y1ðtÞ
V2

þ ½l2ðS;RÞ � D2�y2 þ q2l1ðS;RÞx2;

ð6:2Þ

Table 1

Case Criteria for existence of rest points and global stability of

boxed rest point

Rest Points

1 f1ðSð0Þ;Rð0ÞÞð1� qÞ < D, f2ðSð0Þ;Rð0ÞÞ < D f E0 g

2 f1ðSð0Þ;Rð0ÞÞð1� qÞ > D, f2ðSð0Þ;Rð0ÞÞ < D fE0; Ec g

3a f1ðSð0Þ;Rð0ÞÞð1� qÞ < D, f2ðSð0Þ;Rð0ÞÞ > D T2 > C fE0; E2s g

3b f1ðSð0Þ;Rð0ÞÞð1� qÞ < D, f2ðSð0Þ;Rð0ÞÞ > D T2 < C fE0; E2r g

4a f1ðSð0Þ;Rð0ÞÞð1� qÞ > D, f2ðSð0Þ;Rð0ÞÞ > D f2ðSc;RcÞ > D fE0; E2 g

4b f1ðSð0Þ;Rð0ÞÞð1� qÞ > D, f2ðSð0Þ;Rð0ÞÞ > D f2ðSc;RcÞ < D fE0;E2; Ec g
In Cases 4a, 4b, E2 is either E2s or E2r depending on that x2 is S-limited or R-limited. We note that in Cases 4a, 4b,

Sc ¼ ks1, Rc ¼ ðys=yrÞðks1 � Sð0ÞÞ if x1 is S-limited and Rc ¼ kr1, Sc ¼ ðyr=ysÞðkr1 � Rð0ÞÞ þ Sð0Þ if x1 is R-limited.
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where SðtÞ, RðtÞ are the concentration of sucrose and yeast extract respectively; x2ðtÞ, y2ðtÞ are the
concentration of plasmid-bearing and plasmid-free organisms respectively; f2, V2, D2 ¼ f2=V2 are
the flow rate, volume and dilution rate; 0 < q2 < 1 is the probability of plasmid-free cell emer-
gence; l1ðS;RÞ and l2ðS;RÞ are the specific growth rate of plasmid-bearing and plasmid-free
organisms respectively.

We note that in [2] l1ðS;RÞ and l2ðS;RÞ take the form

l1ðS;RÞ ¼ 0:25

�
þ mrR
Kr þ R

�
S

KS þ S

� �
and

l2ðS;RÞ ¼
mrR

Kr þ R

� �
S

KS þ S

� �
instead of the form we gave in (2.2).

Obviously the mathematical model (6.1) and (6.2) is different from our model (2.4). It is an
interesting problem and we shall study it in the near future.

In the governing system (2.4) we have three operating parameters Sð0Þ, Rð0Þ and D. In the fol-
lowing operation diagram, we vary the input concentrations Sð0Þ, Rð0Þ as operating parameters and
fix the dilution rate D and other parameters with ks1, ks2, kr1, kr2 > 0. We note that the conditions
in Table 1 can be listed as follows:

f1ðSð0Þ;Rð0ÞÞð1� qÞ < D iff Sð0Þ < ks1 or Rð0Þ < kr1;

f1ðSð0Þ;Rð0ÞÞð1� qÞ > D iff Sð0Þ > ks1 or Rð0Þ > kr1;

f2ðSð0Þ;Rð0ÞÞ < D iff Sð0Þ < ks2 or Rð0Þ < kr2;

f2ðSð0Þ;Rð0ÞÞ > D iff Sð0Þ > ks2 or Rð0Þ > kr2;

f2ðSc;RcÞ < D iff Sc < ks2 or Rc < kr2:

ð6:3Þ

There are four possible cases and from (6.3) their operating diagrams can be ploted as follows.
Here I is the region of washout states. IIs, IIr are the regions of S-limited and R-limited pla-

smid-free state respectively. III is the coexistence region. The lines Li, i ¼ 1, 2, 3, 4 have same slope
C ¼ ys=yr.

For Case A: ks2 < ks1, kr2 < kr1, the plasmid-free organism has a smaller break-even concen-
trations for both of the nutrients S and R and it is a better competitor for both nutrients and wins
the competition over the plasmid-bearing organism. Hence in Fig. 1(A) we have two regions I and
II in the Sð0Þ � Rð0Þ parameter space.

For Case B: ks1 < ks2, kr1 < kr2, the plasmid-bearing organism has a smaller break-even con-
centrations for both of the nutrients S and R and hence it survives in the competition. Since there
is a fraction q, 0 < q < 1 of plasmid-bearing organisms converting into plasmid-free organisms
during the replication, for Sð0Þ > ks1, Rð0Þ > kr1 we have a coexistence region III in Sð0Þ � Rð0Þ

parameter space (operating diagram see Fig. 1(B)).
For Case C: ks1 < ks2, kr2 < kr1, plasmid-bearing organism x1 is a better competitor with respect

to nutrient S while plasmid-free organism x2 is a better competitor with respect to nutrient R. In
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the coexistence region III1, organisms x1 and x2 are both S-limited. If there is no plasmid loss i.e.,
q ¼ 0, then from [1] organism x1 should win the competition. Since a fraction q > 0 of organism
x1 converts into organism x2, it follows that organism x1 and x2 coexists. In coexistence region
III2, and plasmid free region IIs, organism x1 is R-limited and organism x2 is S-limited. If q ¼ 0,
then from [1] the competition outcomes should depend on initial populations. Since 0 < q < 1, the
coexistence equilibrium Ec exists in the region III2 while Ec does not exist in the region IIs. In the
region IIr organism x1 and x2 are R-limited. Then organism x1 goes to extinction because or-
ganism x2 is a better competitor for nutrient R (operating diagram see Fig. 1(C)).

For Case D: ks2 < ks1, kr1 < kr2, organism x1 is a better competitor with respect to nutrient R
and organism x2 is a better competitor with respect to nutrient S. In the coexistence region III1,
organism x1 and x2 are both R-limited. Organism x1 is S-limited and organism x2 is R-limited in
the region III2 and IIr. In the region IIs, organism x1 and x2 are both S-limited. Similar biological
interpretations as in Case C can be given in Case D (operating diagram see Fig. 1(D)).

Fig. 1.
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Appendix A. Proofs and computations

Proof of Theorem 3.1. First we note that if p1ðSÞ ¼ Q1ðSÞ or p2ðSÞ ¼ Q2ðSÞ for some 0 < S < Sð0Þ,
then the right hand side of the system (3.7) is continuous but not differentiable at the line
x1 þ x2 ¼ ysðSð0Þ � SÞ. From Remark 3.1, for i ¼ 1, 2 the curves z ¼ piðSÞ and z ¼ QiðSÞ may not
intersect or intersects at one point or intersects at two points. Hence there are nine possible cases.
In Case A, for i ¼ 1, 2, we assume piðSÞ and QiðSÞ do not intersect in the interval (0, Sð0Þ). In case B
we assume piðSÞ and QiðSÞ intersect at some point in (0, Sð0Þ) for some i ¼ 1, 2. There are eight
cases in case B; however their proofs are similar and for simplicity we only consider the case where
for i ¼ 1, 2, piðSÞ and QiðSÞ intersect at one point in (0, Sð0Þ).
Case A:We assume piðSÞ ¼ QiðSÞ, has no intersection points, for i ¼ 1, 2. As in [4] we apply the

Dulac criterion with the auxiliary function

Bðx1; x2Þ ¼
1

x1x2
;

to the vector field given by (3.7). In this case, There are four possible cases for the system (3.7).
For simplicity, we only consider the case p1ðSÞ < Q1ðSÞ, Q2ðSÞ < p2ðSÞ on ð0; Sð0ÞÞ. Then the
system (3.7) becomes

dx1
dt

¼ x1ðð1� qÞp1ðSÞ � DÞ; dx2
dt

¼ x2ðQ2ðSÞ � DÞ þ qx1p1ðSÞ;

where

S ¼ S0 � 1

ys
ðx1 þ x2Þ:

An easy computation yields

oðBðx1; x2Þg1ðx1; x2ÞÞ
ox1

þ oðBðx1; x2Þg2ðx1; x2ÞÞ
ox2

¼ � q
x22
p1ðSÞ �

1

x2

1

ys
p01ðSÞ �

1

x1

1

ys
Q0

2ðSÞ < 0:

We complete the proof of the Case A and hence there are no non-trivial periodic solutions.
Case B:We assume that for i ¼ 1, 2, piðSÞ and QiðSÞ intersect exactly at one point bSSi 2 ð0; Sð0ÞÞ.

Depending on qiðhð0ÞÞ ¼ qiðRð0Þ � ðys=yrÞSð0ÞÞ > 0 or qiðhð0ÞÞ < 0, we have either QiðSÞ > piðSÞ for
0 < S < bSSi, QiðSÞ < piðSÞ for S > bSSi, i ¼ 1, 2 or piðSÞ > QiðSÞ for 0 < S < bSSi, piðSÞ < QiðSÞ for
S > bSSi, i ¼ 1, 2. (See Fig. 2.)

Without loss of generality we assume bSS1 < bSS2 and qiðhð0ÞÞ > 0. We shall prove by contradic-
tion. Suppose on the contrary there exists a periodic orbit C in the first quadrant of x1 � x2 plane.
Since qiðhð0ÞÞ > 0 (see Fig. 2(a)) and bSS1 < bSS2, if S < bSS1, then Q1ðSÞ > p1ðSÞ and Q2ðSÞ > p2ðSÞ; if

S.-B. Hsu, Y.-H. Tzeng / Mathematical Biosciences 179 (2002) 183–206 197



bSS1 < S < bSS2, then p1ðSÞ > Q1ðSÞ and Q2ðSÞ > p2ðSÞ; if S > bSS2 then p1ðSÞ > Q1ðSÞ and p2ðSÞ >
Q2ðSÞ. In x1 � x2 plane, from (3.10) S < bSSi is equivalent to x1 þ x2 > ysðSð0Þ � bSSiÞ, i ¼ 1, 2. Define
the regions

I1 ¼ fðx1; x2Þ : x1 P 0; x2 P 0; x1 þ x2 > ysðSð0Þ � bSS1Þg;
I2 ¼ fðx1; x2Þ : x1 P 0; x2 P 0; ysðSð0Þ � bSS1Þ > x1 þ x2 > ysðSð0Þ � bSS2Þg;
I3 ¼ fðx1; x2Þ : x1 P 0; x2 P 0; x1 þ x2 < ysðSð0Þ � bSS2Þg:

On the region I1, the system (3.7) becomes

x01 ¼ x1ðð1� qÞp1ðSÞ � DÞ;
x02 ¼ x2ðp2ðSÞ � DÞ þ qp1ðSÞx1:

ðA:1Þ

On the region I2, the system (3.7) becomes

x01 ¼ x1ðð1� qÞQ1ðSÞ � DÞ;
x02 ¼ x2ðp2ðSÞ � DÞ þ qQ1ðSÞx1:

ðA:2Þ

On the region I3, the system (3.7) becomes

x01 ¼ x1ðð1� qÞQ1ðSÞ � DÞ;
x02 ¼ x2ðQ2ðSÞ � DÞ þ qQ2ðSÞx1:

ðA:3Þ

If the periodic orbit C lies entirely in the region Ii for some i ¼ 1, 2, 3, then from (A.1)–(A.3), it is
easy to show as we did in Case A,

oðBðx1; x2Þg1ðx1; x2ÞÞ
ox1

þ oðBðx1; x2Þg1ðx1; x2ÞÞ
ox2

¼

� q
x22
p1ðSÞ �

1

x2

1

ys
p01ðSÞ �

1

x1

1

ys
p02ðSÞ; on I1

� q
x22
Q1ðSÞ �

1

x2

1

ys
Q0

1ðSÞ �
1

x1

1

ys
p02ðSÞ; on I2

� q
x22
Q1ðSÞ �

1

x2

1

ys
Q0

1ðSÞ �
1

x1

1

ys
Q0

2ðSÞ; on I3

8>>>>>>>><>>>>>>>>:
< 0: ðA:4Þ

Fig. 2.
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Then Dulac criterion leads to a contradiction. Now for simplicity we first consider a ‘typical’ case
that the periodic orbit C satisfying C � I1 [ I2 (see Fig. 3).

The other cases will be discussed and proved by similar arguments. Let e > 0 be arbitrary small
and consider the lines

L1 : S ¼ bSS1; and L�e
1 : S ¼ bSS1 � e:

Since g1ðx1; x2Þ and g2ðx1; x2Þ are smooth at each point of C except point A and B, it follows
that I

C
Bðx1; x2Þg1ðx1; x2Þdx2 � Bðx1; x2Þg2ðx1; x2Þdx1 ¼

Z
cBEABEA

þ
Z
cAFBAFB

:

ObviouslyZ
cBEABEA

þ
Z
cAFBAFB

¼ 0:

HenceI
C
¼ 0:

On the other hand

0 ¼
I
C
¼
Z
dH1EG1H1EG1

þ
Z
dG1G2G1G2

þ
Z
dG2FH2G2FH2

þ
Z
dH2H1H2H1

¼
Z
dH1EG1H1EG1

�
þ
Z
G1H1

�
þ

Z
dG2FH2G2FH2

�
þ
Z
H2G2

�
þ
Z
dG1G2G1G2

þ
Z
dH2H1H2H1

þ
�
�
Z
G1H1

þ
Z
G2H2

�
: ðA:5Þ

Fig. 3.
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From Green’s Theorem and (A.4), we have

lim
e!0

Z
dH1EG1H1EG1

�
þ
Z
G1H1

�
ðBg1 dx2 � Bg2 dx1Þ

¼ lim
e!0

Z Z
D1;e

o

ox1
ðBg1Þ þ

o

ox2
ðBg2Þdx1 dx2

¼
Z Z

D1

�
� q
x22
p1ðSÞ �

1

x2

1

ys
p01ðSÞ �

1

x1

1

ys
p02ðSÞ

�
dx1 dx2 < 0;

lim
e!0

Z
dG2FH2G2FH2

�
þ
Z
H2G2

�
ðBg1 dx2 � Bg2 dx1Þ

¼ lim
e!0

Z Z
D2;e

o

ox1
ðBg1Þ þ

o

ox2
ðBg2Þdx1 dx2

¼
Z Z

D2

�
� q
x22
Q1ðSÞ �

1

x2

1

ys
Q0

1ðSÞ �
1

x1

1

ys
p0sðSÞ

�
dx1 dx2 < 0;

where D1, D2 are the regions bounded by closed curves dBEABEA and dAFBAFB respectively. Obviously

lim
e!0

Z
dG1G2G1G2

¼ lim
e!0

Z
dH2H1H2H1

¼ 0:

The equations of L�e
1 and Le

1 are x1 þ x2 ¼ ysðSð0Þ � ðbSS1 � eÞÞ and x1 þ x2 ¼ ysðSð0Þ � ðbSS1 þ eÞÞ re-
spectively. HenceZ

G1H1

Bðx1; x2Þg1ðx1; x2Þdx2 � Bðx1; x2Þg2ðx1; x2Þdx1

¼ �
Z d1

c1

Bðx1; x2Þðg1ðx1; x2Þ þ g2ðx1; x2ÞÞdx1

¼ �
Z d1

c1

ðx1p1ðSÞ þ x2p2ðSÞ � Dðx1 þ x2ÞÞBðx1; x2Þdx1

¼ �
Z d1

c1

ðx1p1ðbSS1 � eÞ þ x2p2ðbSS1 � eÞ � DðysðSð0Þ � bSS1 þ eÞÞÞBðx1; x2Þdx1:

Similarly, we haveZ
G2H2

Bðx1; x2Þg1ðx1; x2Þdx2 � Bðx1; x2Þg2ðx2; x2Þdx1

¼ �
Z d2

c2

ðx1Q1ðbSS1 þ eÞ þ x2p2ðbSS1 þ eÞ � DðysðSð0Þ � bSS1 � eÞÞÞBðx1; x2Þdx1:

Obviously

lim
e!0

Z
G2H2

�
�
Z
G1H1

�
¼ 0:

Hence as e ! 0, the right-hand side of (A.5) is negative, and we obtain a contradiction.
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Now we assume the periodic orbit C intersects each region Ii, i ¼ 1, 2, 3. The other cases can be
proved by similar arguments. We omit the proofs. Let e > 0 be arbitrary small and consider the
lines (see Fig. 4):

L�e
1 : S ¼ bSS1 � e; L1 : S ¼ bSS1;

L�e
2 : S ¼ bSS2 � e; L2 : S ¼ bSS2:

As we did in the above ‘typical’ case,

0 ¼
I
C
Bg1 dx2 � Bg2 dx1

¼
Z Z

D1[D2

�
� q
x22
p1ðSÞ �

1

x2

1

ys
p01ðSÞ �

1

x1

1

ys
p02ðSÞ

�
dx1 dx2

þ
Z Z

D3[D4

�
� q
x22
Q1ðSÞ �

1

x2

1

ys
Q0

1ðSÞ �
1

x1

1

ys
p02ðSÞ

�
dx1 dx2

þ
Z Z

D5[D6

�
� q
x22
Q1ðSÞ �

1

x2

1

ys
Q0

1ðSÞ �
1

x1

1

ys
Q0

2ðSÞ
�
dx1 dx2 < 0:

Thus obtain a contradiction and complete the proof of Theorem 3.1.

Remark A.1. The proof of Theorem 3.1 would not work if the periodic orbit shown in Fig. 4
made infinitely many crossings. It cannot because of compactness and uniqueness of solutions.

We introduce the variational matrices of the system (2.4) at equilibria E0, E2s, E2r and Ec and
analyze their local stability. The variational matrix M is

Fig. 4.
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MðEÞ ¼

�D� x1
ys

of1
oS

� x2
ys

of2
oS

� x1
ys

of1
oR

� x2
y2

of2
oR

� f1
ys

� f2
ys

� x1
yr

of1
oS

� x2
yr

of2
oS

�D� x1
yr

of1
oR

� x2
yr

of2
oR

� f1
yr

� f2
yr

ð1� qÞx1
of1
oS

ð1� qÞx1
of1
oR

ð1� qÞf1 � D 0

x2
of2
oS

þ qx1
of1
oS

x2
of2
oR

þ qx1
of1
oR

qf1 f2 � D

26666666666664

37777777777775
:

At washout state E0 ¼ ðSð0Þ;Rð0Þ; 0; 0Þ,

MðE0Þ ¼

�D 0 � f1
ys

� f2
ys

0 �D � f1
yr

� f2
yr

0 0 ð1� qÞf1 � D 0

0 0 qf1 f2 � D

266666664

377777775:

Obviously the eigenvalues of MðE0Þ are �D, �D, ð1� qÞf1ðSð0Þ;Rð0ÞÞ � D, and f2ðSð0Þ;Rð0ÞÞ � D.
Hence E0 is asymptotically stable if

ð1� qÞf1ðSð0Þ;Rð0ÞÞ � D < 0; and f2ðSð0Þ;Rð0ÞÞ � D < 0: ðA:6Þ

At E2s ¼ ðks2; bRR; 0; x̂x2sÞ, where bRR > kr2

MðE2sÞ ¼

�D� x̂x2s
ys

of2
oS

� x̂x2s
ys

of2
oR

� f1
ys

�D
ys

� x̂x2s
yr

of2
oS

�D� x̂x2s
yr

of2
oR

� f1
yr

�D
yr

0 0 ð1� qÞf1 � D 0

x̂x2s
of2
oS

x̂x2s
of2
oR

qf1 0

26666666664

37777777775
:

The characteristic polynomial of the matrix MðE2sÞ is

F ðkÞ ¼ ½ð1� qÞf1 � D� k� det

�D� x̂x2s
ys

of2
oS

� k � x̂x2s
ys

of2
oR

�D
ys

� x̂x2s
yr

of2
oS

�D� x̂x2s
yr

of2
oR

� k �D
yr

x̂x2s
of2
oS

x̂x2s
of2
oR

�k

26666666664

37777777775
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¼ ½ð1� qÞf1 � D� k� det

�D� k 0 � 1

ys
ðDþ kÞ

0 �D� k � 1

yr
ðDþ kÞ

x̂x2s
of2
oS

x̂x2s
of2
oR

�k

266666664

377777775

¼ �ðð1� qÞf1 � D� kÞðDþ kÞ2 k

 
þ x̂x2s

yr

of2
oR

 
þ x̂x2s

ys

of2
oS

!!
:

Hence the eigenvalues of MðE2sÞ are

�D; �D; ð1� qÞf1ðkS2; bRRÞ � D; � x̂x2s
yr

of2
oR

�
þ x̂x2s

ys

of2
oS

�
:

Since of2=oR > 0, and of2=oS > 0, the equilibrium E2s is locally asymptotically stable if

ð1� qÞf1ðks2; bRRÞ � D < 0; ðA:7Þ

or equivalently,

ks2 < ks1 or bRR < kr1:

Similarly, the equilibrium E2s ¼ ðbSS ; kr2; 0; x̂x2rÞ, where bSS > ks2, is locally asymptotically stable if

ð1� qÞf1ðbSS ; kr2Þ � D < 0; ðA:8Þ

or equivalently

bSS < ks1 or kr2 < kr1:

From (2.4) we have ð1� qÞf1 � D ¼ 0. The variational matrix of (2.4) at (Ec) is

MðEcÞ ¼

�D� x1c
ys

of1
oS

� x2c
ys

of2
oS

� x1c
ys

of1
oR

� x2c
ys

of2
oR

� f1
ys

� f2
ys

� x1c
yr

of1
oS

� x2c
yr

of2
oS

�D� x1c
yr

of1
oR

� x2c
yr

of2
oR

� f1
yr

� f2
yr

ð1� qÞx1c
of1
oS

ð1� qÞx1c
of1
oR

0 0

x2c
of2
oS

þ qx1c
of1
oS

x2c
of2
oR

þ qx1c
of1
oR

qf1 f2 � D

266666666664

377777777775
:
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The characteristic polynomial of the matrix MðEcÞ is

F ðkÞ ¼ det

�D� x1c
ys

of1
oS

� x2c
ys

of2
oS

� k � x1c
ys

of1
oR

� x2c
ys

of2
oR

� f1
ys

� f2
ys

� x1c
yr

of1
oS

� x2c
yr

of2
oS

�D� x1c
yr

of1
oR

� x2c
yr

of2
oR

� k � f1
yr

� f2
yr

ð1� qÞx1c
of1
oS

ð1� qÞx1c
of1
oR

�k 0

x2c
of2
oS

þ qx1c
of1
oS

x2c
of2
oR

þ qx1c
of1
oR

qf1 f2 � D� k

2666666666666664

3777777777777775
:

Multiplying fourth row by 1=ys, 1=yr and adding to the first row, second row respectively
yields

F ðkÞ ¼ det

�D� ð1� qÞ x1c
ys

of1
oS

� k �ð1� qÞ x1c
ys

of1
oR

� 1

ys
ð1� qÞf1 � 1

ys
ðDþ kÞ

�ð1� qÞ x1c
yr

of1
oS

�D� ð1� qÞ x1c
yr

of1
oR

� x2c
oR

� k � 1

yr
ð1� qÞf1 � 1

yr
ðDþ kÞ

ð1� qÞx1c
of1
oS

ð1� qÞx1c
of1
oR

�k 0

x2c
of2
oS

þ qx1c
of1
oS

x2c
of2
oR

þ qx1c
of1
oR

qf1 f2 � D� k

266666666666664

377777777777775
:

Multiplying the third row by 1=ys, 1=yr and adding to the first row, second row respectively
yields

F ðkÞ ¼ det

�ðDþ kÞ 0 � 1

ys
ðDþ kÞ � 1

ys
ðDþ kÞ

0 �ðDþ kÞ � 1

yr
ðDþ kÞ � 1

yr
ðDþ kÞ

ð1� qÞx1c
of1
oS

ð1� qÞx1c
of1
oR

�k 0

x2c
of2
oS

þ qx1c
of1
oS

x2c
of2
oR

þ qx1c
of1
oR

f1 � D f2 � D� k

266666666666664

377777777777775
:
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Adding fourth row to the third row yields

1ptF ðkÞ ¼ det

�ðDþ kÞ 0 � 1

ys
ðDþ kÞ � 1

ys
ðDþ kÞ

0 �ðDþ kÞ � 1

yr
ðDþ kÞ � 1

yr
ðDþ kÞ

x1c
of1
oS

þ x2c
of2
oS

x1c
of1
oR

þ x2c
of2
oR

f1 � D� k f2 � D� k

x2c
of2
oS

þ qx1c
of2
oS

x2c
of2
oR

þ qx1c
of1
oR

f1 � D f2 � D� k

2666666666664

3777777777775

¼ ðDþ kÞ2

ysyr
det

ys 0 1 1

0 yr 1 1

x1c
of1
oS

þ x2c
of2
oS

x1c
of1
oR

þ x2c
of2
oR

f1 � D f2 � D� k

x2c
of2
oS

þ qx1c
of1
oS

x2c
of2
oR

þ qx1c
of1
oR

f1 � D� k f2 � D� k

266666664

377777775
¼ ðDþ kÞ2

ysyr

 
ysyrk

2 þ k ys x1c
of1
oR

��
þ x2c

of2
oR

�
þyr x1c

of1
oS

�
þ x2c

of2
oS

��
� ysyrðf2 � DÞ

!
:

Since ofi=oS > 0, ofi=oR > 0, i ¼ 1, 2, from Roth–Hurwicz criterion if

f2ðSc;RcÞ � D < 0; ðA:9Þ
i.e.,

Sc < ks2 or Rc < kr2;

then (Ec) is asymptotically stable. Since (A.9) is precisely (4.9), we conclude that if (Ec) exists then
(Ec) is asymptotically stable.

From (4.1) and (4.2), Ec ¼ ðSc;Rc; x1c; x2cÞ and E2 ¼ ðbSS ; bRR; 0; x̂x2Þ satisfybRR ¼ ys
yr
ðbSS � Sð0ÞÞ þ Rð0Þ;

Rc ¼
ys
yr
ðSc � Sð0ÞÞ þ Rð0Þ;

bSS ¼ yr
ys
ðbRR � Rð0ÞÞ þ Sð0Þ;

Sc ¼
yr
ys
ðRc � Rð0ÞÞ þ Sð0Þ:

ðA:10Þ

Obviously from (A.10) it follows that

if bSS > Sc; then bRR > Rc; ðA:11Þ
and

if bRR > Rc; then bSS > Sc: ðA:12Þ
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Proof of Lemma 4.2. Assume Ec exists from (A.9) we have Sc < ks2 or Rc < kr2. Since bSS P ks2 andbRR P kr2, it follows that bSS > Sc or bRR > Rc. Then from bRR > Rc if Sc ¼ ks1, Rc > kr1, then we havebSS > ks1 and bRR > kr1. Similarly we have bSS > ks1 and bRR > kr1 if Sc > ks1, Rc ¼ kr1. If
E2 ¼ E2s ¼ ðks2; bRR; 0; x̂x2sÞ, then we have ks2 > ks1 and bRR > kr1 and hence from (A.7) E2s is unstable.
Similarly if E2 ¼ E2r ¼ ðbSS ; kr2; 0; x̂x2rÞ then we have bSS > ks1 and kr2 > kr1 and hence from (A.8) E2r

is unstable.
Assume E2 is unstable. Then from (A.7) we have ks2 > ks1 and bRR > kr1 if E2 ¼ E2s ¼

ðks2; bRR; 0; x̂x2sÞ and from (A.8) we have bSS > ks1 and kr2 > kr1 if E2 ¼ E2r ¼ ðbSS ; kr2; 0; x̂x2rÞ. For sim-
plicity we only consider the case E2 ¼ E2s. The proof for the case E2 ¼ E2r follows by similar
arguments. To show the existence of positive rest point Ec ¼ ðSc;Rc; x1c; x2cÞ we need to prove
Sc < ks2 or Rc > kr2. There are two possible cases. Case 1: Sc ¼ ks1 and Rc < kr1. Then obviously we
have ks2 > ks1 ¼ Sc and hence Ec exists. Case 2: Sc > ks1 and Rc ¼ kr1. In this case we havebRR > kr1 ¼ Rc and by (A.12) it follows that ks2 ¼ bSS > Sc and hence Ec exists.
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