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The imbalance of the boundary energy flow due to energy injection at one end and a nonlinear
van der Pol boundary condition at the other end of the spatial one-dimensional interval can
cause chaotic vibration of the linear wave equation [Chen et al., 1998b, 1998c]. However, such
chaotic vibration is isotropic with respect to space and time because the two associated families
of characteristics both propagate with the same speed and, thus, the “strength of chaos” is the
same along both x and t directions. In this paper, we show that by including a mixed partial
derivative linear energy transport term in the wave equation, nonlinearity in the van der Pol
boundary condition can also cause chaotic vibration (without energy injection from the other
end). Two new families of characteristics now travel with different speeds, leading to strong
mixing of waves and nonisotropic spatiotemporal chaos. Parameter range for the route to
chaos, including period-doubling, homoclinic orbits and Cantor-like invariant sets is classified.
Numerical simulations of chaotic space-time profiles are also illustrated.
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1. Introduction and Model
Formulation

Earlier, in a series of papers [Chen et al., 1998a–
1998d], we studied nonlinear vibration of the one-
dimensional (1D) wave equation on a bounded
interval with a van der Pol boundary condition.
Chaos occurs, for example, when there is energy
injection either from the other end of the in-
terval [Chen et al., 1998b] or at the middle-of-

the-span point [Chen et al., 1998d]. Related stud-

ies have been done in [Sharkovsky et al., 1993,

1994] and [Shimura et al., 1967], for example.

A major reason that has motivated us to study

such problems is that the 1D wave equation is a

rather basic distributed parameter model for me-

chanical vibration, such as vibrating strings and

acoustic wave propagation. With given or de-

signed nonlinear boundary conditions/controllers,
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the solution is amenable to a thoroughly rigor-
ous mathematical analysis, revealing immensely
rich dynamical behavior suitable for possible fu-
ture technological applications. On the one hand,
we have tried to explore the useful, microscosmic
nature of spatiotemporal chaos in 1D wave prop-
agation, in particular, in acoustics; on the other
hand, the knowledge gained will improve our under-
standing of macrocosmic chaos in complex, general
distributed parameter systems, which will be the
ultimate objective for investigation.

Elsewhere, in engineering, as far as acoustic
chaos is concerned, there has been a sharp surge
of interest in recent years. A good number of pa-
pers [Herzel, 1993; Holzfuss & Lauterborn, 1989;
Idogawa et al., 1993; Katz, 1996; Lauterborn et al.,
1996; Lauterborn & Cramer, 1981; Lauterborn &
Holzfuss, 1986; Mcintyre et al., 1983; Mende et al.,
1990; Shigesada et al., 1979; Smith et al., 1982;
Stinecke & Herzel, 1995; Swift, 1988, 1995;
Tufilaro, 1989; Yazaki, 1993], have been published.
We may mention, for example, the following re-
search and applications:

(i) In [Lauterborn et al., 1996], the collaborative
German and Russian scientists studied chaotic
motions in acoustic cavitation, which under-
standably is important for the detection of a
submarine’s underwater acoustic signature;

(ii) the development of musical instruments that
play new types of sounds generated by chaotic
acoustics, along with the corresponding mu-
sical notes to be composed by musicians
[Idogawa et al., 1993; Swift, 1988, 1995];

(iii) study of sounds made by the vocal cords in the
speech production process has revealed bifur-
cation and chaotic dynamics that could be used
for personal (voice) identification and health
diagnosis (for newborn infants from their cries
[Mende et al., 1990]);

(iv) the design of thermoacoustic oscillators as pos-
sible musical instruments playing both ordi-
nary and chaotic musical notes, and cooling/
heating thermoacoustic engines whose con-
trol is achieved by boundary heating/cooling
[Swift, 1988, 1995].

Most of the above-mentioned references empha-
size experimental and/or modeling work with real-
world applications, but did not provide rigorous
mathematical analysis. Nevertheless, some of their
physical motivations are quite inspiring; see the
discussion below.

Return to our work [Chen et al., 1998a–1998d].
The study of the chaotic vibration of the 1D wave
equation therein, although spatiotemporal in na-
ture, is essentially isotropic with respect to space
and time. There are at least two reasons for this:
first, the wave equation wxx − wtt = 0 is invariant
under the changes of variables

(x, t)→ (−x, t), (x, t)→ (x, −t), (x, t)→ (t, x)
(1)

and, thus, the symmetry structure between x and
±t of the equation itself is extremely strong. (In-
deed, if there were no boundary conditions, then
x and ±t may be regarded as “identical”.) Sec-
ond, the two families of characteristics belong to
the wave equation both travel with the same speed,
again making x and ±t indiscernible and, thus, we
may say that “the strength of chaos” is the same in
both the x and t directions. The spatiotemporal-
isotropic nature of the solutions studied in [Chen
et al., 1998a–1998d] is evident in explicit repre-
sentations like [Chen et al., 1998b, p. 425, (13),
(14)], and in the many graphics of solution profiles
displayed in [Chen et al., 1998b, 1998c]. For an
immediate comparison, see the graphics in Sec. 6
below.

Obviously, for nonisotropic spatiotemporal
chaos to happen, a key element is to have a medium
which is not spatially homogeneous. Thus, for the
wave equation, we need something else in the equa-
tion that is not invariant with respect to the change
of variables (1). One might attempt to add a vari-
able coefficient term (say, a(x)w(x, t)) to the wave
equation. However, this makes the mathematical
treatment rather difficult. Here we have found a
sufficiently simple medium in which waves travel-
ing to the left and the right have different speeds.
The model equation in this paper is the following
hyperbolic equation

wxx(x, t)− νwxt(x, t)− wtt(x, t) = 0 ,

0 < x < 1 , t > 0 , (2)

where ν is a positive constant and where, for the
mere sake of convenience, we have set the coeffi-
cient for the −wtt term in (7) to be 1 as well, be-
cause the mathematical analysis in this paper goes
through with only straightforward modifications as
long as −wtt is multiplied by a positive constant.
Equation (2) differs from the standard wave equa-
tion wxx − wtt = 0 by the presence of the “mixed
term” −νwxt. Let us now make precise the physical
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origin of this term. Consider acoustic waves trav-
eling in a pipe filled with a gas moving with speed
c : 0 < c < 1 to the left, such as air blown into
a clarinet in the aforementioned papers [Idogawa
et al., 1993; Swift, 1988, 1995] on chaotic musical
instruments. Assume that an observer travels with
the gas, measures the acoustic pressure field and
finds that it satisfies the wave equation

∂2w(x, t)

∂x2
− ∂2w(x, t)

∂t2
= 0 . (3)

A stationary observer is also making measurements
of the same acoustic wave propagation. His coordi-
nate system is therefore

x′ = x+ ct , t′ = t . (4)

He will find that the equation for the acoustic pres-
sure field is necessarily

(1− c2)
∂2w(x′, t′)

∂x′2
− 2c

∂2w(x′, t′)

∂x′∂t′

− ∂
2w(x′, t′)

∂t′2
= 0 , (5)

i.e. the equation derived from (3) by the change
of variables (4). If we normalize the coefficient
of ∂2w/∂x′2 in (5) to 1 by another change of
variables

x =
1√

1− c2
x′ , t = t′ , (6)

we obtain (2), with ν ≡ 2c/
√

1− c2.
Assume that the boundary conditions (B.C.)

associated with (2) are homogeneous Dirichlet:

w(0, t) = 0 , w(1, t) = 0 , t > 0 . (7)

Also, let

w(x, 0) = w0(x) , wt(x, 0) = w1(x) ,

0 < x < 1 ,
(8)

be two given initial conditions (I.C.) that are suf-
ficiently smooth. The energy of vibration of the
system at time t is defined to be

E(t) =
1

2

∫ 1

0
[w2
x(x, t) + w2

t (x, t)]dx .

(This is not the original energy seminorm associ-
ated with (3) or (5) according to the changes of
variables (4) or (6). However, it is equivalent to

that.) Differentiating:

d

dt
E(t) =

∫ 1

0
[wxwxt + wtwtt]dx

=

∫ 1

0

∂

∂x

[
wxwt −

ν

2
w2
t

]
dx

=

[
wx(x, t)wt(x, t)−

ν

2
w2
t (x, t)

] ∣∣∣∣x=1

x=0

= 0 , (9)

and, therefore, we see that the presence of the term
−νwxt does not change the total energy of the sys-
tem, i.e. energy is conserved all the time. However,
there is no question that the term −νwxt is capable
of energy transport within the system. Indeed, as
we can expect from the treatment below (cf. (17)–
(24)), the term −νwxt will change the speeds of
wave propagation by way of which energy transport
is achieved. For this reason, we give the term −νwxt
a moniker LMET: linear mixing energy transport.
Note that Eq. (2) is no longer invariant under the
transformation (1).

Remark 1.1. There is a certain similarity between
the LMET −νwxt and the convection term in un-
steady fluid motions. Consider the 3D incom-
pressible flow satisfying the Navier–Stokes equation
without external forcing:

∂

∂t
u + u · ∇u− µ∆u

+∇p = 0, on Ω, for t > 0,

∇ · u = 0 on Ω

u|∂Ω = 0,

u(x, 0) = u0(x), x ∈ Ω,

(10)

where u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t))
is the velocity function at point x = (x1, x2, x3) ∈
Ω ⊂ R3 at time t, on a bounded domain Ω with
boundary ∂Ω; p = p(x, t) is the pressure func-
tion and µ > 0 is a constant related to Reynold’s
number. The terms u · ∇u and −µ∆u in (10)1

are called, respectively, the convection and diffu-
sion terms. The total energy of the fluid at time
t is

E(t) ≡ 1

2

∫
Ω
|u(x, t)|2dx, (dx = dx1dx2dx3) .
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Assume that the solution is sufficiently smooth.
Then the rate of change of energy is

d

dt
E(t)=

∫
Ω

u · ∂u

∂t
dx

=

∫
Ω

u · [−u · ∇u+µ∆u−∇p]dx

(integration by parts⇒)

=
1

2

{
−
∫
∂Ω

(u · n)|u|2dσ+

∫
Ω

(∇ · u)|u|2dx
}

−µ
∫

Ω
|∇u|2dx+µ

∫
∂Ω

∂u

∂n
· udσ

+

∫
∂Ω

(u · n)pdσ−
∫

Ω
(∇ · u)pdx , (11)

where n is the unit outward normal on ∂Ω. The
terms inside {. . .} above, contributed by the convec-
tion term u ·∇u, are equal to zero because u|∂Ω = 0
and ∇ · u = 0 on Ω. Therefore convection “trans-
ports energy around in Ω”, but does not contribute
to the growth or decay of the total energy. (Never-
theless, the final outcome of (11) is

d

dt
E(t) = −µ

∫
Ω
|∇u|2dx ≤ 0

and thus, there is net energy loss due to diffusion,
but not due to convection.)

The similarity between the LMET −νwxt and
the convection term u · ∇u is thence obvious as far
as energy transport and conservation are concerned.
This is an additional physical interpretation and
motivation to our discussion in (2)–(9) above.

Remark 1.2. If the boundary condition (10)3 is
changed from stationary (i.e. u|∂Ω = 0, the RHS of
(10)3) to no-slip (i.e. u(x, t)|∂Ω = U(x, t), where
U(x, t) is the velocity of the moving boundary),
then the convection term u · ∇u in (10)1 will no
longer maintain a neutral role in the growth or de-
cay of energy of fluid motion because the first term
on the RHS of (11) now becomes

−1

2

∫
∂Ω

(u · n)|u|2dσ = −1

2

∫
∂Ω

(U · n)|u|2dσ ,

which is generally indefinite in sign.
Return to the study of the wave equation.

We now consider the following system of initial-
boundary value problem

wxx(x, t)− νwxt(x, t)− wtt(x, t) = 0, 0 < x < 1, t > 0,

wx(0, t) = 0, t > 0

wx(1, t) = αwt(1, t)− βw3
t (1, t); α, β > 0; t > 0,

w(x, 0) = w0(x), wt(x, 0) = w1(x), 0 < x < 1.

(12)

In comparing the above with (2)–(8), we
note that the two boundary conditions have been
changed: (12)2 is the homogeneous Neumann con-
dition instead of the homogeneous Dirichlet (7)1;
(12)3 is the self-exciting (or self-regulating) van
der Pol boundary condition as we have studied in
[Chen et al., 1998a–1998d], which is analogous to
the van der Pol ODE; see [Stoker, 1950, Chap. V.A].
Equation (12)3 is the only place where nonlinearity
makes its appearance. This is significant. It is also
noteworthy that we need the Neumann (i.e. (12)2)
condition instead of the Dirichlet (i.e. (7)1) in order
for chaos to happen; see the explanation in Sec. 7.
For now we only require α and β to be positive
constants. As we make progress we will specify the
range of α so that the “hysteresis” situation as in
[Chen et al., 1998c] can be avoided and, therefore,
uniqueness of solutions of (12) is ensured.

Once again, let us examine the rate of change of
energy for (12):

d

dt
E(t) =

d

dt

[
1

2

∫ 1

0
(w2

x + w2
t )dx

]
(integration by parts ⇒)

=

[
wx(x, t)wt(x, t)−

ν

2
w2
t (x, t)

] ∣∣∣∣x=1

x=0

= T1 + T2 , (13)

where

T1 ≡
ν

2
w2
t (0, t) ;

T2 ≡ w2
t (1, t)

[(
α− ν

2

)
− βw2

t (1, t)

]
.

(14)
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Remark 1.3. The positivity or negativity of T1 and

T2 in (14) signifies the following:

(i) T1 ≥ 0 if ν > 0, i.e. there is energy injection

into the system indirectly through the LMET

term −νwxt. This T1 term would have dis-

appeared if the homogeneous Dirichlet condi-

tion w(0, t) = 0 were imposed at x = 0; cf.

Remark 1.2.

(ii) T2 is “regulating” if α− (ν/2) > 0, i.e.

T2 ≥ 0 if |wt(1, t)| ≤

√√√√α− ν

2
β

;

T2 < 0 if |wt(1, t)| >

√√√√α− ν

2
β

.

Thus energy is increasing if velocity is small,

and decreasing if velocity is large.

(iii) T2 is dissipative, i.e. T2 ≤ 0, if α− (ν/2) ≤ 0.

To study (12), we now convert it into an equiv-

alent first-order hyperbolic system: letting

(U, V ) = (wx, wt) , (15)

from (12)1 we have

∂

∂t

[
U

V

]
=

[
0 1

1 −ν

]
∂

∂x

[
U

V

]

≡ A ∂

∂x

[
U

V

]
. (16)

The above hyperbolic system is not yet diagonal-

ized. We first determine the two eigenvalues λ1 and

λ2 and corresponding eigenvectors:

λ1 = ρ1(ν) ≡ −ν +
√

4 + ν2

2
> 0 ,

[
1

ρ1(ν)

]
;

λ2 = −ρ2(ν) ≡ −ν +
√

4 + ν2

2
< 0 ,

[
1

−ρ2(ν)

]
.

(17)

Note that

ρ1(ν)ρ2(ν) = 1 , ρ2(ν)− ρ1(ν) = ν > 0 ,

ρ1(ν) + ρ2(ν) =
√
ν2 + 4 .

(18)

Let

P (ν) =

[
1 1

ρ1(ν) −ρ2(ν)

]
. (19)

Then

P (ν)−1 =
1

ρ1(ν) + ρ2(ν)

[
ρ2(ν) 1

ρ1(ν) −1

]
. (20)

Define [
u(x, t)

v(x, t)

]
= P−1

[
U(x, t)

V (x, t)

]
. (21)

Then from (16) and (19)–(21),[
u

v

]
t

= P−1

[
U

V

]
t

= P−1

(
A

[
U

V

]
x

)

= P−1AP

[
u

v

]
x

, (22)

[
u

v

]
t

=

[
ρ1(ν) 0

0 −ρ2(ν)

] [
u

v

]
x

,

and thus (16) is diagonalized to (23). Note that

ρ1(ν) and ρ2(ν) are the speeds of two families of

characteristics, and they are unequal (if ν 6= 0).

Relations (15) and (21), written in long hand,

give

u =
1

ρ1(ν) + ρ2(ν)
[ρ2(ν)wx + wt] ,

v =
1

ρ1(ν) + ρ2(ν)
[ρ1(ν)wx − wt] .

(23)

The inverse relations are

wx = u+ v ,

wt = ρ1(ν)u− ρ2(ν)v ,
(24)

From (23), we can apply the method of charac-

teristics to get

u(x, t) = φ(x+ ρ1(ν)t) ,

v(x, t) = ψ(x− ρ2(ν)t) ,
(25)

for some functions φ and ψ (of a single variable).

The above is valid for all (x, t) ∈ R2 if there were

no boundary conditions imposed at x = 0 and

x = 1. But we do have boundary conditions here,

so (25) is not valid for all (x, t) ∈ R2 and we need

to take boundary conditions into account, as given

below.
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The initial conditions for u and v, from (12)4 and (23), are

u(x, 0) = u0(x) =
1

ρ1(ν) + ρ2(ν)
[ρ2(ν)w′0(x) + w1(x)],

v(x, 0) = v0(x) =
1

ρ1(ν) + ρ2(ν)
[ρ1(ν)w′0(x)− w1(x)],

0 < x < 1 . (26)

The boundary condition at x = 0, i.e. (12)2,
follows from (24)1:

u(0, t) + v(0, t) = 0 , t > 0 ,

or

v(0, t) = −u(0, t) ≡ G(u(0, t)) , t > 0 . (27)

Even though G(u) = −u is a simple function as de-
fined in (27), let us stick with this seemingly more
general notation G so that it may also represent
other maps in Sec. 7; see (69) and (71).

The boundary condition at x = 1, i.e. (12)3,
gives

u+ v = α(ρ1u− ρ2v)− β(ρ1u− ρ2v)3 . (28)

Denote
X = ρ1u− ρ2v . (29)

Then (29) gives

u+ v =
1

ρ1
X +

ρ2

ρ1
v + v = ρ2X + (ρ2

2 + 1)v , (30)

and from (28) we obtain

βX3 + (ρ2 − α)X + (ρ2
2 + 1)v = 0 . (31)

Under the condition

ρ2(ν)− α =

√
4 + ν2 + ν

2
− α ≥ 0 , (32)

it is known (see [Chen et al., 1998a, (2.1)–(2.8)])
from Cardan’s formula that for each given v ∈ R,
there exists a unique real solution gν(v) (a single-
valued function of v) such that

βgν(v)3 + (ρ2 − α)gν(v) + (ρ2
2 + 1)v = 0 ;

(X = gν(v)) . (33)

On the other hand, if (32) is violated, then gν(v) is
multivalued: for each given real v, there will exist
at least one, but as many as three, real values gν(v)
satisfying (33).

Remark 1.4. In (33), the parameter β plays the role
of “scaling”. This can be seen as follows. Express
explicitly the dependence of gν(v) on β as

gν(v) = gν(v, β) . (34)

We try to see if the dependence on β in (34) can
somehow be “eliminated”. Let us try βµ1gν(β

µ2v,
β) for gν(v) in (33):

β · [βµ1gν(β
µ2v, β)]3 + (ρ2 − α)βµ1gν(βµ2v, β)

+ (ρ2
2 + 1)βµ2v = 0 ,

by setting µ1 = µ2 = −1/2, the above becomes

β−1/2[g3
ν + (ρ2 − α)gν + (ρ2

2 + 1)v] = 0 ,

i.e.
β−1/2gν(β

−1/2v, β) = gν(v, 1) ,

where gν(v, 1) is independent of β. The factor β−
1
2

will appear in many expressions (cf. Lemma 2.1,
Lemmas 2.3–2.6, etc.) in Sec. 2. It is useful to rec-

ognize here first that β−
1
2 is just a scaling factor.

From (30), we therefore obtain an implicit represen-
tation of u in terms of v:

u = ρ2[ρ2v + gν(v)] = Fν(v) , v ∈ R . (35)

From now on, without further mention, we will al-
ways assume that α, β, ν > 0 also satisfy condition
(32). Since ν > 0, we have ρ2(ν) > 1. From (32),

0 < α ≤ ρ2 . (36)

Therefore α is allowed to take values larger than
one. (In contrast, the range of α in papers [Chen
et al., 1998a–1998d] was restricted to 0 < α ≤ 1
in order to have the uniqueness of real solutions of
cubic equations analogous to (33) therein.)

Remark 1.5. For 0 < ν < 2, we have

ρ1(ν) = 1− ν

2
+O(ν2) , ρ2(ν) = 1 +

ν

2
+O(ν2) .

For ν > 2, we have

ρ1(ν) =
1

ν
+O(ν−2) , ρ2(ν) = ν +O(1) .

Return to (23). The u-component remains con-
stant on each characteristic x+ ρ1(ν)t = c = a pos-
itive constant, which moves leftward as t increases
because ρ1(ν) > 0 by (17)1. Each characteristic
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Fig. 1. Characteristics and reflection relations for the diagonalized first-order hyperbolic system (23).

as such will intersect the left boundary x = 0 at
time t = c/ρ1(ν), thereafter a reflection at x = 0
takes place. The reflection relation is precisely (27).
Thus, the incoming characteristic x+ρ1(ν)t = c and
the u-component are reflected to yield an outgoing
characteristic x − ρ2(ν)t = −ρ2

2(ν)c moving right-
ward with increasing t; on this characteristic the

v-component remains constant. The same can be
said about reflection taking place at the right end
x = 1, where the reflection relation is given by (35).
Graphically, this is illustrated in Fig. 1.

From these reflection relations, by ray tracing
it is straightforward to derive the following explicit
representations of u and v: for t = k(ρ1 + ρ2) + τ ,
k = 0, 1, 2, . . . , 0 ≤ τ < ρ1 + ρ2 and 0 ≤ x ≤ 1,

u(x, t) =


(Fν ◦G)k(u0(x+ ρ1τ)), τ ≤ ρ2(1− x) ,

Fν ◦ (G ◦ Fν)k(v0(1 + ρ2
2 − ρ2

2(x+ ρ1τ))), ρ2(1− x) < τ ≤ ρ2(1 + ρ2
1 − x) ,

(Fν ◦G)k+1(u0(x+ ρ1τ − 1− ρ2
1)), ρ2(1 + ρ2

1 − x) < τ < ρ1 + ρ2 ,

(37)

v(x, t) =


(G ◦ Fν)k(v0(x− ρ2τ)), τ ≤ ρ1x

G ◦ (Fν ◦G)k(u0(−ρ2
1(x− ρ2τ))) , ρ1x < τ ≤ ρ1(x+ ρ2

2) ,

(Fν ◦G)k+1(v0(x− ρ2τ + 1 + ρ2
2)) , ρ1(x+ ρ2

2) < τ < ρ1 + ρ2 .

(38)

Note that in the above, for example, (G ◦ Fν)k de-
notes the k-times iterative composition of G ◦ Fν
with itself (rather than the kth power of the func-
tion G◦Fν). From these explicit representations, we
see that the u-component and/or the v-component
show(s) chaotic behavior if and only if the map(s)
G ◦ Fν and/or Fν ◦G is/are chaotic. We will make
more precise what we mean by being chaotic or non-
chaotic of the system (12) from that of u and v

based upon certain topological conjugacy; see Sec. 5.
The organization of the paper is given as fol-

lows. In Sec. 2, we list various basic properties of
the map G◦Fν . In Sec. 3, we establish the route to

chaos: period-doubling, homoclinic orbits and bi-
furcations, and invariant Cantor sets. In Sec. 4, we
prove the topological conjugacy between (u, v) and
(wx, wt). In Sec. 5, we examine the differentiability
of the solution, from which chaotic behavior of w
itself may also be deduced. Numerical simulations
of chaotic vibration are given in Sec. 6. Additional
discussions are made in the final Sec. 7.

2. Basic Properties of the
Map G ◦ Fν

It is easy to check that Fν is odd: Fν(−v) = −Fν(v).
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Fig. 2. The graph of u = GFν(v), with α = 4/3, β = 1,
ν = 1.24.

Also, because G(v) = −v, we see that G ◦ Fν(v) =
Fν ◦ G(v) = −Fν(v). Therefore, in (37) and (38)
investigation of the periodic and chaotic behavior
of G ◦ Fν alone suffices here because Fν ◦ G is the
same function. Throughout most of the discussion
in this section, we will regard α, β as given fixed
constants, and ν as a varying parameter.

As a visual aid, we first plot a graph of G ◦ Fν
in Fig. 2, for α = 4/3, β = 1 and ν = 1.24. Let us
begin to analyze the properties of G ◦ Fν , below.

Lemma 2.1 (Fixed Points). Let ν > 0, 0 < α ≤
ρ2(ν) and β > 0. Then G ◦ Fν has exactly three
fixed points 0, v0 and −v0, where v0 = v0(ν) =
[1/(ρ1 + ρ2)]

√
α/β.

Proof. If

v0 = G ◦ Fν(v0) = −Fν(v0)

= −ρ2
2v0 − ρ2gν(v0) ,

then

gν(v0) = − 1

ρ2
(1 + ρ2

2)v0 = −(ρ1 + ρ2)v0 , (39)

and by (33),

−β(ρ1+ρ2)3v3
0−(ρ1+ρ2)(ρ2−α)v0+(ρ2

2+1)v0 = 0 ,

β(ρ1 + ρ2)3v2
0 = ρ2

2 + 1− (ρ1 + ρ2)(ρ2 − α)

= α(ρ1 + ρ2) > 0 .

Hence

v0 = ± 1

ρ1 + ρ2

√
α

β
. (40)

�

Note that the graph of u = G◦Fν (v) intersects
the diagonal u − v = 0 at exactly the three points
(−v0, −v0), (0, 0) and (v0, v0).

Lemma 2.2 (Derivative Formulas). Let ν > 0,
0 < α ≤ ρ2(ν), β > 0, where ν is a varying pa-
rameter but α and β are given and fixed (as long
as α ∈ (0, ρ2(ν)]). Define f(v, ν) = G ◦ Fν(v) =
−ρ2(ν)[ρ2(ν)v + gν(v)], where gν is defined through
(33). Then

∂

∂v
f(v, ν) = −ρ2

2 + ρ2 ·
ρ2

1 + 1

D
, (41)

∂

∂ν
f(v, ν) = −ρ′2[2ρ2v + gν(v)]

+ ρ2ρ
′
2 ·

2ρ2v + gν(v)

D
, (42)

∂2

∂ν∂v
f(v, ν) = −ρ′2

(
2ρ2 −

ρ2
2 + 1

D

)

+ ρ2ρ
′
2

[
2ρ2D − (ρ2

2 + 1)

D2

+
6β(ρ2

2 + 1)(2ρ2v + gν(v))gν(v)

D3

]
,

(43)

∂2

∂v2
f(v, ν) =

6βρ2(ρ2
2 + 1)2gν(v)

D3
, (44)

∂3

∂v3
f(v, ν) =

24βρ2(ρ2
2 + 1)4

D4
, (45)

where

D = D(v, ν, α, β) = 3βg2
ν(v) + ρ2 − α ,

ρ′2 = ρ′2(ν) =
ν +
√

4 + ν2

2
√

4 + ν2
.

Proof. We will only verify (41); the rest can be
done in a similar way. By the definition of f(v, ν),
we have

∂

∂v
f(v, ν) = −ρ2

2 − ρ2g
′
ν(v) . (46)
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By differentiating (33) with respect to v, we get

3βg2
ν(v)g′ν(v) + (ρ2 − α)g′ν(v) + (ρ2

2 + 1) = 0 ,

g′ν(v) = − ρ2
2 + 1

3βg2
ν(v) + ρ2 − α

. (47)

Substitution of (47) into (46) gives us (41). �

Corollary 2.1. The origin is a repelling fixed point
of the map G ◦ Fν .

Proof. At v = 0, we have gν(0) = 0 and g′ν(0) =
−(ρ2

2 + 1)/(ρ2 − α) < 0. By (46) and (47),

[G ◦ Fν ]′(0) = −ρ2
2 +

ρ3
2 + ρ2

ρ2 − α
=
ρ2(αρ2 + 1)

ρ2 − α

= 1 +
α(1 + ρ2

2)

ρ2 − α
> 1 . �

Lemma 2.3 (Local Maximum, Minimum and Piece-
wise Monotonicity). Let ν > 0, 0 < α ≤ ρ2(ν),
and β > 0 be given. Then G ◦Fν has local extremal
values

m = G ◦ Fν(−vc) = −2

3

1 + αρ2

ρ1 + ρ2

√
1 + αρ2

3βρ2
,

M = G ◦ Fν(vc) =
2

3

1 + αρ2

ρ1 + ρ2

√
1 + αρ2

3βρ2
= −m,

(48)
where

vc =
3ρ2

2 − 2αρ2 + 1

3ρ2(ρ2
2 + 1)

√
1 + αρ2

3βρ2
and − vc

are critical points of G ◦ Fν , and m, M are,
respectively, the local minimum and maximum of
G ◦ Fν. The function G ◦ Fν is strictly decreasing
on (−∞, −vc) and (vc, ∞), but strictly increasing
on (−vc, vc).

Proof. Use (41), (35), etc., and carry out the
computations. �

Lemma 2.4 (v-Axis Intercepts). Let ν > 0, 0 <
α ≤ ρ2(ν), and β > 0 be given. Then u = G◦Fν(v)
intersects the v-axis at abscissas ±vI , where vI =
(1/ρ2)

√
(1 + αρ2)/βρ2.

Proof. Set G ◦ Fν(vI) = 0 and solve for vI . �

Lemma 2.5 (Intersections with the Diagonal Line
u + v = 0). Let ν > 0, 0 < α ≤ ρ2(ν) and β > 0

be given. Then the graph of u = G ◦ Fν(v) inter-
sects the line u+v = 0 at exactly the following three
points:

(−ṽ, ṽ), (0, 0), (ṽ, −ṽ) ,

where

ṽ = ṽ(ν) =
1

ρ2 − ρ1

√
1 + α(ρ2 − ρ1)

β(ρ2 − ρ1)
.

Proof. Set G ◦ Fν(ṽ) = −ṽ and solve for ṽ. �

Lemma 2.6 (Bounded Invariant Interval I). Let
ν > 0, 0 < α ≤ ρ2(ν) and β > 0 be given, such that

M =
2

3

1 + αρ2

ρ1 + ρ2

√
1 + αρ2

3βρ2
≤ ṽ

=
1

ρ2 − ρ1

√
1 + α(ρ2 − ρ1)

β(ρ2 − ρ1)
. (49)

Then the iterates of every point in the set U ≡
(−∞, ṽ) ∪ (ṽ, ∞) by G ◦ Fν escape to ±∞, while
I ≡ R\U = [−ṽ, ṽ] is an invariant interval of
G ◦ Fν .

Proof. Obvious; see Fig. 2, for example. �

The set U in Lemma 2.6 is the unstable set, and
the set I is the bounded invariant set. When the
condition (49) is violated, bounded invariant inter-
val I no longer exists. Instead, we have a bounded
Cantor-like invariant set; see Sec. 3.

3. Routes to Chaos

First, we show that there is a period-doubling
cascade.

Theorem 3.1 (Period-Doubling Bifurcation Theo-
rem for the Map G ◦ Fν). Let α, β > 0 be given
such that 0 < α ≤

√
2. Define ν1,α by

ν1,α =


ε, if 0 < α < 1, where ε is any small

positive number,

r, if α ≥ 1, where r is the unique

positive solution of ρ2(r) = α .
(50)

Let ν ∈ [ν1,α, ∞) be a varying parameter. Define
f(v, ν) = GFν(v). Then
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(i) α satisfies 0 < α ≤ ρ2(ν) for all ν ∈ [ν1,α, ∞).
(ii) v0(ν) = [1/(ρ1(ν) + ρ2(ν)]

√
α/β is a curve of

fixed points of f : f(v0(ν), ν) = v0(ν).
(iii) For ν0 = 1/α, we have ν0 > ν1,α, ρ2(ν0) ≥ α,

and
∂

∂v
f(v, ν)|v=v0(ν)

ν=ν0

= −1 . (51)

(iv) For ν = ν0 = 1/α and v = v0(ν), we have

A ≡
[
∂2f

∂ν∂v
+

1

2

(
∂f

∂ν

)
∂2f

∂v2

] ∣∣∣∣∣v=v0(ν)
ν=ν0

6= 0 . (52)

(v) For ν = ν0 = 1/α and v = v0(ν), we have

B =

1

6

∂3f

∂v3
+

1

4

(
∂2f

∂v2

)2
∣∣∣∣∣∣v=v0(ν)
ν=ν0

> 0 .

Consequently, there is period-doubling bifur-

cation at (v, ν) = (v0(ν), 1/α). The sta-

bility type of the bifurcated period-2 orbit is

attracting.

Proof

(i) Since ρ2(ν) = [
√
ν2 + 4 + ν]/2 is an increasing

function of ν with range [1, ∞), we see that if

α ≥ 1, ρ2(ν) = α has a unique positive solution

ν1,α such that ρ2(ν) ≥ α if ν ≥ ν1,α.

(ii) See Lemma 2.1.

(iii) Let us find ν0 satisfying (51):

∂

∂v
f(v, ν)|v=v0(ν)

ν=ν0

= −ρ2
2 − ρ2g

′
ν0

(v0(ν0))

= −1 ,

or

g′ν0
(v0(ν0)) =

1

ρ2
(1− ρ2

2) = ρ1 − ρ2

= − ρ2
2 + 1

3βg2
ν0

(v0(ν0)) + ρ2 − α
(by (47))

= − ρ2
2 + 1

3β

[
−(ρ1 + ρ2) · 1

ρ1 + ρ2

√
α

β

]2

+ ρ2 − α
(by (39), (40))

= − ρ2
2 + 1

ρ2 + 2α
, (53)

ρ1 − ρ2 = − ρ2
2 + 1

ρ2 + 2α
= − ρ1 + ρ2

1 + 2αρ1
,

ν0 =

√
4 + ν2

0

1 + α(
√

4 + ν2
0 − ν0)

, ν0 =
1

α
.

(54)

(iv) We substitute (42)–(44) into the defining equa-
tion (52) for A. Note from (iii) above that we
have

ν0 =
1

α
, gν0(v0(ν0)) = −

√
α

β
,

v0(ν0) =

√
α

β

ρ1(ν0) + ρ2(ν0)
, (by (40))

D = 2α+

√
ν2

0 + 4 + ν0

2
= ρ2(ν0) + 2α ,

ρ′2(ν0) =
ρ2(ν0)

ρ1(ν0) + ρ2(ν0)
,

2ρ2(ν0)v0(ν0) + gν0(v0(ν0)) = ν0v0(ν0) .

We can substitute all of the above into
(42)–(44), obtaining A = A(α), i.e. A is
independent of β. We plot the graph of A(α)
against α : 0 < α ≤

√
2 in Fig. 3 and found

that A(α) < 0 for any given α > 0. (This part
of the proof is computer-assisted.)

(v) This is obvious because ∂3f/∂v3 > 0 from
(45). �
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The graph of G ◦ Fν is unimodal for
v ≥ 0. Through the renormalization argument of
[Feigenbaum, 1978] and [Collet & Tresser, 1962], we
see that once period-doubling occurs, it will repeat
as a cascade, leading to chaos.

The period-doubling cascade of G ◦ Fν can be
seen in Fig. 4 for α = 1/2 and β = 1.

If the condition 0 < α ≤
√

2 in Theorem 3.1 is
violated, then there is still period doubling, except
that the first period doubling occurs on period-2
orbits, making them into period-4 orbits, such as
shown in Fig. 5. If α keeps increasing, then the
first period doubling occurs on period-2n orbits for
some larger n.

Next, we show the existence of homoclinic
orbits.

Theorem 3.2 (Homoclinic Orbits). Define

h(ρ2(ν)) =
1

1 + αρ2

(
1 +

1

ρ2
2

)

=
1

1 + αρ2(ν)

(
1 +

1

ρ2
2(ν)

)
(55)

and let ν2,α be the unique positive solution of

h(ρ2(ν)) = 2/3
√

3. Assume that either

(i) α > 3
√

3− 1 and ν ≥ ν1,α, or

(ii) 0 < α ≤ 3
√

3−1 and ν > min(ν1,α, ν2,α), where
ν1,α is defined as in (50).

Then the repelling fixed point 0 of the map G ◦ Fν
has nondegenerate homoclinic orbits. Furthermore,
if ν = ν2,α ≥ ν1,α then the fixed point 0 has degen-
erate homoclinic orbits.

Proof. Homoclinic orbits exist near the origin if
M > vI ; cf. Lemmas 2.3 and 2.4 for notation. (The
concept of a homoclinic orbit is very much geometric
in nature. This enables an easy visual confirmation
from a graph such as Fig. 2.) Thus

M > vI if and only if

2

3

1 + αρ2

ρ1 + ρ2

√
1 + αρ2

3βρ2
>

1

ρ2

√
1 + αρ2

βρ2
,

or, after simplifying,

2

3
√

3
>

1

1 + αρ2

(
1 +

1

ρ2
2

)
. (56)

The RHS of (56) is the function h in (55) which
is a decreasing function of ρ2 and, hence, is also a

Fig. 3. The graph of A = A(α), cf. (52), as a function of α. Note that A(α) is negative for any α ≥ 0.
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Fig. 4. The orbit diagram of GFν for α = 1/2, β = 1. Note that the first period doubling occurs at ν = 2, agreeing with (54)
of Theorem 3.1.

Fig. 5. The orbit diagram of G ◦ Fν for α = 1.5, β = 1. Note that α >
√

2 here, and the first period doubling occurs on a
period-4 orbit.

decreasing function of the variable ν. On [0, ∞),
h ◦ ρ2 takes its minimum at ν = 0:

h(ρ2(0)) =
1

1 + αρ2(0)

(
1 +

1

ρ2
2(0)

)

=
2

1 + α
.

If α satisfies

2

3
√

3
>

2

1 + α
, i.e. α > 3

√
3− 1 ,

then (56) is satisfied for all ν ≥ ν1,α. There then
exist nondegenerate homoclinic orbits.
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On the other hand, if α satisfies

2

3
√

3
<

2

1 + α
,

then there exists a unique ν2,α > 0 such that

h(ρ2(ν)) = 2/3
√

3. Therefore, if ν > min(ν1,α,
ν2,α), then nondegenerate homoclinic orbits also
exist.

Degenerate homoclinic orbits (and, conse-
quently, homoclinic bifurcations) arise when M =
vI . This happens if and only if ν = ν2,α ≥ ν1,α. �

Proposition 3.1. For α, β, ν > 0, let

Mν ≡
2

3

1 + αρ2(ν)

ρ1(ν) + ρ2(ν)

√
1 + αρ2(ν)

3βρ2(ν)

be the local maximum of G ◦ Fν as given in (48),
and let

ṽ(ν) ≡ 1

ρ2(ν)ρ1(ν)

√
1 + α[ρ2(ν)− ρ1(ν)]

β[ρ2(ν)− ρ1(ν)]

be the value of intersection of G◦Fν with u+ v = 0
as given in Lemma 2.5. Then for each given
α, β > 0, there exists a unique ν̃(α), dependent on
α but independent of β, such that ρ2(ν̃(α)) > α,
ν̃(α) is strictly decreasing with respect to α, and

Mν = ṽ(ν)|ν=ν̃(α) .

Also,

Mν > ṽ(ν) for ν > ν̃(α) .

Proof. It is easy to verify that as a function of
ν, ṽ(ν) is strictly decreasing, for fixed α and β.
However, as a function of ν, Mν is not monotonic
with respect to ν in general. This makes the math-
ematical analysis more involved. Here, we simply
provide a computer-assisted proof by numerically
solving Mν = ṽ(ν) to determine the dependence of
ν on α. The graph of ν = ν̃(α) is plotted in Fig. 6.
The conclusion follows. �

Corollary 3.1 (Homoclinic Orbits and Ensuing
Chaos on the Bounded Invariant Interval I).
Given α, β > 0, let ν > 0 satisfy

(i) α > 3
√

3− 1 and ν ≥ ν1,α or 0 < α ≤ 3
√

3− 1
and ν > min(ν1,α, ν2,α), where ν1,α and ν2,α

are given in Theorems 3.1 and 3.2;
(ii) ν ≤ ν̃(α), where ν̃(α) is given in Proposi-

tion 3.1.

Let I = [−ṽ, ṽ] be the bounded invariant interval
corresponding to ν as given in Lemma 2.6. Then
G ◦ Fν : I → I is chaotic.

When ν > ν̃(α), G ◦ Fν no longer has a
bounded invariant interval. An exemplar graph of

Fig. 6. The graph of ν = ν̃(α) in Proposition 3.1.
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Fig. 7. The graph of G ◦ Fν for α = 4/3, β = 1, ν = 5.

the map G ◦ Fν is illustrated in Fig. 7. The two
horizontal lines u = ±ṽ(ν) intersect the graph of
u = G ◦ Fν(v) at a total of six points, as can be
seen from Fig. 7. We denote the ordered abscissas
of these six points by

−ṽ0 ≡ −ṽ(ν), −ṽ1, −ṽ2, ṽ2, ṽ1, ṽ0 ,

where ṽ1 and ṽ2 are defined uniquely through

0 < ṽ2 < ṽ1 < ṽ0

= ṽ(ν) =
1

ρ2(ν)− ρ1(ν)

√
1 + α · (ρ2(ν)− ρ1(ν))

β · (ρ2(ν)− ρ1(ν))
,

G ◦ Fν(ṽ1)

= G ◦ Fν(ṽ2)

=
1

ρ2(ν)− ρ1(ν)

√
1 + α · (ρ2(ν)− ρ1(ν))

β · (ρ2(ν)− ρ1(ν))
.

We then define five intervals

I0 = [−ṽ0, −ṽ1] , I1 = [−ṽ2, ṽ2] , I2 = −I0 ,

A0 = (−ṽ1, −ṽ2) , A1 = −A0 .

It is easy to see that

v ∈ I = [−ṽ0, ṽ0], (G ◦ Fν)n(v) ∈ A0 ∪A1

for some n ∈ {0, 1, 2, . . .}

⇒ lim
k→∞

|(G ◦ Fν)n(v)| =∞ .

The set

Λ =
∞⋂
n=0

(G ◦ Fν)−nI (57)

is a closed bounded invariant subset of the map
G ◦Fν . For every v ∈ Λ, we can assign an itinerary
s(v) of v by

s(v) = (s0 s1s2 · · · sn · · · )

sn =


0

1

2

 if (G ◦ Fν)nv ∈


I0

I1

I2

, n = 0, 1, 2, . . . .

Then s(v) is a ternary number. We have s(v) ∈∑3,
where∑

3

= {s = (s0 s1s2 · · · sn · · · )|sj = 0, 1 or 2,

for j = 0, 1, 2, . . .} .∑
3 is endowed with a natural metric for ternary

numbers. Then standard techniques in symbolic
dynamics (see [Devaney, 1989; Robinson, 1995,
pp. 33–37], e.g.) give us the following.

Theorem 3.3 (Chaos on Cantor-Like Invariant Set
Λ). For given α, β > 0, let ν > ν̃(α). Then Λ
defined in (57) is a Cantor set with measure zero,
and the map G ◦ Fν on Λ is topologically conjugate
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to the shift map on
∑

3. Consequently, G ◦ Fν is
chaotic on Λ.

4. Topological Conjugacy Between
(u, v) and (wx, wt)

In Sec. 3, we have determined the parameter ranges

in which u and v components display several types
of chaotic behavior. In this section, we show that
the gradient (wx, wt) is topologically conjugate to
(u, v) and, therefore, is chaotic if and only if (u, v)
is. The proof given below is a generalization of the
one in [Chen et al., 1998a, Sec. 5].

From the reflection of characteristics as shown
in Fig. 2 and from (24), for any t ≥ 0, we have

wx(1, t+ (ρ1 + ρ2)) = u(1, t+ (ρ1 + ρ2)) + v(1, t+ (ρ1 + ρ2))

= Fν(v(1, t+ (ρ1 + ρ2))− u(0, t+ ρ2)

= Fν(−u(0, t+ ρ2))− u(0, t+ ρ2)

= Fν(−u(1, t))− u(1, t)

=

[
− ρ2

ρ1 + ρ2
wx(1, t)− 1

ρ1 + ρ2
wt(1, t)

]

+Fν

(
− ρ2

ρ1 + ρ2
wx(1, t)− 1

ρ1 + ρ2
wt(1, t)

)
.

Similarly,

wt(1, t+ (ρ1 + ρ2)) = ρ1u(1, t+ (ρ1 + ρ2))− ρ2v(1, t+ (ρ1 + ρ2))

= ρ2

[
ρ2

ρ1 + ρ2
wx(1, t) +

1

ρ1 + ρ2
wt(1, t)

]

+ρ1Fν

(
− ρ2

ρ1 + ρ2
wx(1, t)− 1

ρ1 + ρ2
wt(1, t)

)
.

Write the above as a 2× 2 iterative system

[
ξn+1

ηn+1

]
=


−
(

ρ2

ρ1 + ρ2
ξn +

1

ρ1 + ρ2
ηn

)
+GFν

(
ρ2

ρ1 + ρ2
ξn +

1

ρ1 + ρ2
ηn

)
ρ2

(
ρ2

ρ1 + ρ2
ξn +

1

ρ1 + ρ2
ηn

)
+ ρ1GFν

(
ρ2

ρ1 + ρ2
ξn +

1

ρ1 + ρ2
ηn

)
 , (58)

where

ξn = wx(1, t0 + n(ρ1 + ρ2)) ,

ηn = wt(1, t0 + n(ρ1 + ρ2)) ,

n ≥ 0, t0 ∈ [0, ρ1 + ρ2) .

We now show that (58) is topologically conjugate to
the one-dimensional iterative map vn+1 = GFν(vn).

Define a set

C = {(ξ, η) ∈ R2|ξ = −c+GFν(c),

η = ρ2c+ ρ1GFν(c), ∀ c ∈ R} .

Then C is a curve in R2 which is, of course, one
dimensional.

Next, define a map

F : R2 → R2, F
[
ξ

η

]
=


−
(

ρ2

ρ1 + ρ2
ξ +

1

ρ1 + ρ2
η

)
+GFν

(
ρ2

ρ1 + ρ2
ξ +

1

ρ1 + ρ2
η

)
ρ2

(
ρ2

ρ1 + ρ2
ξ +

1

ρ1 + ρ2
η

)
+ ρ1GFν

(
ρ2

ρ1 + ρ2
ξ +

1

ρ1 + ρ2
η

)
 .
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Then the iteration in (58) can be written as

(ξn+1, ηn+1) = F(ξn, ηn) , n = 0, 1, 2, . . . .

It is trivial to see that F : R2 → C and, therefore F
has a restriction

F̃ ≡ F|C : C → C . (59)

Let G be the graph of GFν :

G ≡ {(v, GFν(v)) ∈ R2|v ∈ R} .

Define

H : G → G , H

[
v

GFν(v)

]
=

[
GFν(v)

(GFν)2(v)

]
,

i.e. H is the diagonal operator

H =

[
GFν(·) 0

0 GFν(·)

]
.

Let Q : R2 → R2 be given by

Q

[
ξ

η

]
=

[
−ξ + η

ρ2ξ + ρ1η

]
.

Then Q is invertible and

Q̃ ≡ Q|G : G → C homeomorphically.

Using the above, we easily verify that we have the
commutative diagram

G
H

−−→ G
| |

Q̃ Q̃↓ ↓
C

F̃
−−→ C

F̃ = Q̃HQ̃−1 (60)

Therefore F̃ is topologically conjugate to a diagonal
map H both of whose diagonal entries are the same
map GFν , which is chaotic for ν and α, β lying in a
certain parameter range. It is in the sense of topo-
logical conjugacy (59) that the gradient (wx(1, t),
wt(1, t)) map (59), a Poincaré section of (wx(x, t),
wt(x, t)) at x = 1, is chaotic.

Note that in general the state variable w(x, t)
does not display chaotic behavior. It only has
a fractal outlook. In order to have chaotic pro-
file of w(x, t) itself, the boundary conditions must
be differentiated. See the discussion in the next
section.

5. Differentiability of Solutions

The smoothness of solutions to linear or nonlinear
PDEs is always a major issue. Here, let us exam-
ine the questions of continuity and differentiability
of the solutions u, v and consequently, w. We will
follow [Chen et al., 1998b, Sec. 6].

First, note from the explicit representations in
(37) and (38) that u and v are obtained by patch-
ing up different expressions along the following
characteristics:

ρ2x+ t = k(ρ1 + ρ2),

ρ2x+ t = k(ρ1 + ρ2) + ρ2,

ρ1x− t = −k(ρ1 + ρ2),

ρ1x− t = −k(ρ1 + ρ2)− ρ2,

k = 0, 1, 2, . . . , n, . . . ; x ∈ [0, 1], t ≥ 0 .

(61)

Only along these characteristics can discontinu-
ities propagate [Courant & Hilbert, 1962, Sec. V.1].
Therefore, we need to study how smooth the patch-
ing in (37) and (38) is across the characteristic line
segments in (61).

Theorem 5.1. Let (u, v) be the solution of the sys-
tem (23), (26)–(28) in the sense of the method of
characteristics as represented by (37) and (38). As-
sume that the initial conditions u0, v0 ∈ Cm([0, 1])
for some m ∈ {0, 1, 2, . . .}. In addition, assume
that at the left end x = 0, we have

v
(j)
0 (0) = (−1)j+1ρ2j

1 u
(j)
0 (0) , j = 0, 1, . . . , m .

(62)

Also at the right end x = 1, assume that we have

u
(j)
0 (1) = (−1)jρ2j

2 · Fj(Fν , F ′ν , . . . , F (j)
ν , v0(1),

v′0(1), . . . , v
(j)
0 (1)), j = 0, 1, 2, . . . , m ,

(63)

where

F0 =Fν(v0(1)), F1 =F ′ν(v0(1))v′0(1),

F2 =F ′′ν (v0(1))v′0(1)2+F ′ν(v0(1))v′′0 (1) ,

F3 =F ′′′ν (v0(1))[v′0(1)]3+3F ′′ν (v0(1))v′′0 (1)v′0(1)

+F ′ν(v0(1))v′′′0 (1) ,

...

Fm=F (m)
ν (v0(1))[v′0(1)]m+· · ·+F ′ν(v0(1))v

(m)
0 (1).

Then the solution (u, v) is Cm-continuous on the
space-time domain {(x, t)|0 ≤ x ≤ 1, 0 ≤ t ≤ T}
for any T > 0.
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Proof. Choose any unit vector a = (a1, a2) on the
(x, t)-plane, and let Da be the directional deriva-
tive along a. We need to show that (Da)ju and
(Da)jv are continuous across the characteristics

line segments in (61), for any k = 0, 1, 2, . . . , for
j = 0, 1, 2, . . . , m.

Take, for example, (38)1 and (38)2 across the
characteristic segment t− ρ1x = k(ρ1 + ρ2):

v(x, t) =


(G ◦ Fν)k(v0(x− ρ2τ)) = (G ◦ Fν)k(v0(x− ρ2(t− k(ρ1 + ρ2)))) ,

t− k(ρ1 + ρ2) ≤ ρ1x ≤ ρ1 ,

G ◦ (Fν ◦G)k(u0(−ρ2
1(x− ρ2τ))) = (G ◦ Fν)k(−u0(−ρ2

1x+ ρ1(t− k(ρ1 + ρ2)))) ,

ρ1x < t− k(ρ1 + ρ2) ≤ ρ1x+ ρ2 .

In order to have v(x, t) Cm-continuous across t− ρ1x = k(ρ1 + ρ2), we must have

Dj
a[(G ◦ Fν)k(v0(x− ρ2t+ kρ2(ρ1 + ρ2)))] = Dj

a[(G ◦ Fν)k(−u0(−ρ2
1x+ ρ1t− kρ1(ρ1 + ρ2)))]

on t− ρ1x = k(ρ1 + ρ2), for k = 0, 1, 2, . . . .

This leads to (62).
Similarly, we obtain (63) by the j-times differ-

entiation Dj
a of (37)1 and (37)2 along the character-

istic segments t+ ρ2x = ρ2 + k(ρ1 + ρ2).
All the other cases in (37) and (38) lead to the

same compatibility conditions (62) and (63). �

Corollary 5.1. Let w be the solution of (12) such
that the initial conditions (w0, w1) satisfy w0 ∈

Cm+1([0, 1]) and w1 ∈ Cm([0, 1]) for some non-
negative integer m. Let (u0, v0) be defined as in
(26) and assume that (u0, v0) satisfy (37) and (38).
Then w is Cm+1-continuous on [0, 1] × [0, T ] for
any T > 0.

Now, assume that the solution w of (12) is C1-
continuous. Take ∂/∂t of (12)1–(12)3. We see that
W (x, t) ≡ wt(x, t) satisfies the following system


Wxx(x, t)− νWxt(x, t)−Wtt(x, t) = 0, 0 < x < 1, t > 0,

Wx(0, t) = 0, t > 0,

Wx(1, t) = [α− 3βW 2(1, t)]Wt(1, t), t > 0,

W (x, 0) = w1(x), Wt(x, 0) = w′′0(x)− νw′1(x), 0 < x < 1 .

(64)

Note that the right end boundary condition (64)3 is
also a self-excitation boundary condition, analogous
to the van der Pol ODE

ẍ+ (α− 3βx2)ẋ+ ω2
0x = 0 .

The boundary condition (64)3 involves W itself and
thus causes significant complexity if the method of
characteristics were to be applied to (64). Here,
we bypass such a technical difficulty by regarding
(64) as a differentiated solution of (12). For (64),
chaotic behavior of the state variable or displace-
ment W (x, t) itself can be observed (while for (12)
only the chaotic behavior of the gradient (wx, wt)
may happen).

Theorem 5.2. Let W be a Cm-continuous solution
of (64) for some m ≥ 0. Then W is unique. As-
sume that α, β, ν > 0 and α ≤ ρ2(ν) such that the

map G ◦ Fν is chaotic. Then W displays chaotic
behavior.

Proof. The uniqueness of W follows from the fact
that

w(x, t) ≡
∫ t

0
W (x, τ)dτ + f0(x) , 0 ≤ x ≤ 1 ,

where f0(x) is a Cm+1-continuous function satisfy-
ing f ′′0 = w′′0 for w′′0 given in (64)4 and appropriate
compatibility conditions, is the unique solution of
(12).

The reason that W (x, t) can display chaotic be-
havior is that W (x, t) = wt(x, t) for w satisfying
(12), and by Sec. 4, wt displays chaotic behavior if
the map G ◦ Fν is chaotic. �
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6. Numerical Examples

We offer numerical examples and graphics to
manifest the difference in profiles between spatio-
temporal-isotropic chaotic vibration in [Chen et al.,

1998b] and the nonisotropic chaotic vibration being
studied here.

Example 6.1 (Isotropic Chaotic Vibration).
Consider


wxx(x, t)− wtt(x, t) = 0, 0 < x < 1, t > 0 ,

wx(0, t) = −ηwt(0, t), t > 0, η > 0 is fixed,

wx(1, t) = αwt(1, t)− βw3
t (1, t), t > 0, 0 < α ≤ 1, β > 0,

w(x, 0) = w0(x), wt(x, 0) = w1(x), 0 < x < 1 .

(65)

Define

u(x, t) =
1

2
[wx(x, t) + wt(x, t)] ,

v(x, t) =
1

2
[wx(x, t)− wt(x, t)] .

Then

u(x, 0) =
1

2
[w′0(x) + w1(x)] ≡ u0(x) ,

v(x, 0) =
1

2
[w′0(x)− wt(x)] ≡ v0(x) .

Define the map

G(v) ≡ Gη(v) = −1 + η

1− ηv ,

then u(x, t) and v(x, t) satisfy (37) and (38), with
ν = 0, ρ1(0) = ρ2(0) = 1, G ≡ Gη and Fν ≡
Fν |ν=0 = F0. According to [Chen et al., 1998b, Ex-
ample 4.3], the map Gη◦F0 is chaotic when α = 0.5,
β = 1, η = 1.520, for example. Therefore both u
and v display chaotic behavior. By choosing a C2-
spline

u0(x) =
1

12



(x− x1)3

h3
, x1 ≤ x ≤ x2,

1 +
3(x− x2)

h
+

3(x− x2)2

h2
− 3(x− x2)3

h3
, x2 ≤ x ≤ x3,

1− 3(x− x4)

h
+

3(x− x4)3

h2
+

3(x− x4)3

h3
, x3 ≤ x ≤ x4,

(x5 − x)3

h3
, x4 ≤ x ≤ x5,

0, elsewhere ,

(66)

h =
1

6
, xj =

j

6
, j = 1, 2, 3, 4, 5 ,

v0(x) ≡ 0 , (67)

we have u, v ∈ C2([0, 1]× [0, T ]) for any T > 0.

The solution profiles of u and v are plotted in
Figs. 8 and 9, respectively, for t : 50 · 2 ≤ t ≤ 51 · 2.
(Note that here, each cycle of vibration which is
the time required for a wave to travel from one end
point and return, is two time units.) Even though
there is chaotic vibration, there is clearly visible
orderly patterns of wave propagation on the wave
fronts x+ t = const. and x− t = const. for u and v,
respectively.

Example 6.2 (Nonisotropic Chaotic Vibration).
Consider now (12) instead, with α = 0.5, β = 1
and ν = 3.33. Then

ρ1(ν) = 0.277 , ρ2(ν) = 3.61 .

Each cycle of vibration takes ρ1 + ρ2 ≈ 3.88 time
units. According to Theorem 3.2, for these param-
eter values, the map G ◦ Fν is chaotic.

Choosing the same initial conditions for u0 and
v0 as in (66) and (67), we note that Theorem 5.1
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Fig. 8. The spatiotemporal–isotropic chaotic profile of u(x, t), 0 ≤ x ≤ 1, 50 · 2 ≤ t ≤ 51 · 2, for Example 6.1. Note that
chaotic wave fronts propagate with x+ t = constant.

Fig. 9. The spatiotemporal–isotropic chaotic profile of v(x, t), 0 ≤ x ≤ 1, 50 · 2 ≤ t ≤ 51 · 2, for Example 6.1. Note that
chaotic wave fronts propagate with x− t = constant.

is applicable, and we again have u, v ∈ C2([0, 1] ×
[0, T ]), for any T > 0.

The solution profiles of u and v are plotted in
Figs. 10–15, for t : 0 ≤ t ≤ 3.88, 3.88 ≤ t ≤ 2 · 3.88,
and 50 · (3.88) ≤ t ≤ 51 · (3.88). The reader may

observe sharp “randomness” in every direction of
space and time. Thus, nonisotropic chaotic vibra-
tion shows strong mixing of waves.

The profiles of the gradient, wt and wx,
are plotted in Figs. 16 and 17, respectively, for
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Fig. 10. The initial spatiotemporal profile of u(x, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ 3.88, for Example 6.2.

Fig. 11. The initial spatiotemporal profile of v(x, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ 3.88, for Example 6.2.

50 · (3.88) ≤ t ≤ 51 · (3.88), according to (24). The
profile of w itself is given in Fig. 14, with initial
condition

w0(x) =

∫ x

0
u0(ξ)dξ ,

0 ≤ x ≤ 1; see (66) for u0 .

The reader may note the fractal, but nonchaotic,
pattern of w.

7. Comments on Other Types of
Boundary Conditions at x = 0

Heretofore, the boundary condition at x = 0 was
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Fig. 12. The spatiotemporal profile of u(x, t) during the second time-cycle, 0 ≤ x ≤ 1, 3.88 ≤ t ≤ 2 · (3.88), for Example 6.2.

Fig. 13. The spatiotemporal profile of v(x, t) during the second time-cycle, 0 ≤ x ≤ 1, 3.88 ≤ t ≤ 2 · (3.88), for Example 6.2.

assumed to be homogeneous Neumann as in (12)2.

But some other types of boundary conditions can

be treated as well.

First, let us consider the Dirichlet boundary

condition

w(0, t) = 0 , t > 0 , (68)

in lieu of (12)2. The above gives

wt(0, t) = 0 ,

ρ1(ν)u(0, t)− ρ2(ν)v(0, t) = 0 , (by (24)2)
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Fig. 14. The spatiotemporal–nonisotropic chaotic profile of u(x, t), 0 ≤ x ≤ 1, 50 · (3.88) ≤ t ≤ 51 · (3.88), for Example 6.2.
Note the sharp 2D randomness in the chaotic zone.

Fig. 15. The spatiotemporal–nonisotropic chaotic profile of v(x, t), 0 ≤ x ≤ 1, 50 · (3.88) ≤ t ≤ 51 · (3.88), for Example 6.2.
Note the sharp 2D randomness in the chaotic zone.

and so the reflection relation at x = 0 is

v(0, t) =
ρ1(ν)

ρ2(ν)
u(0, t) ≡ Gν(u(0, t)) . (69)

The explicit representations (37) and (38) are again
applicable, wherein Gν in (69) is now replacing G

in (27). Therefore, whether (the new) u and v dis-
play chaotic behavior depends on the orderly or
chaotic property of the map Gν ◦Fν and/or Fν ◦Gν .
But Fν ◦ Gν is topologically conjugate to Fν ◦ Gν
through the topological conjugacy

(Gν ◦ Fν) ◦Gν = Gν ◦ (Fν ◦Gν) ,
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Fig. 16. The profile of wt(x, t), 0 ≤ x ≤ 1, 50 · (3.88) ≤ t ≤ 51 · (3.88), for Example 6.2. Again note the spatiotemporal–
nonisotropic chaotic feature as well as the mixture of very chaotic, mildly chaotic, and nonchaotic zones here and in Fig. 17
next.

Fig. 17. The profile of wx(x, t), 0 ≤ x ≤ 1, 50 · (3.88) ≤ t ≤ 51 · (3.88), for Example 6.2.

therefore investigation of Gν ◦Fν alone suffices. In-
stead of repeating all the analysis work in Secs. 2–5,
we simply point out the consequence: Gν ◦Fν is not
chaotic. The reason is that the map Gν in (69) is
very strongly contracting because by Remark 1.5,

ρ1(ν)/ρ2(ν) is considerably smaller than 1 in gen-
eral. Therefore, we see that the postivity of T1 in
Remark 1.3(i) due to the Neumann boundary con-
dition is very important. For the Dirichlet condi-
tion (68), T1 ≡ 0 in (14); there is much less energy
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Fig. 18. The profile of the state variable w(x, t), 0 ≤ x ≤ 1, 50 · (3.88) ≤ t ≤ 51 · (3.88), for Example 6.2. Observe the fractal,
but nonchaotic, appearance of w.

imbalance, which thus actually fails to produce
chaos.

Second, if the boundary condition at x = 0 is
energy-injecting:

wx(0, t) = −ηwt(0, t) , η > 0, η 6= ρ1(ν) , (70)

in lieu of (12)2, then the new reflection relation at
x = 0 is

v(0, t) = −1 + ρ1(ν)η

1− ρ2(ν)η
u(0, t)

≡ Gν,η(u(0, t)) . (71)

One can use this Gν,η instead of G in (27) to ana-
lyze the behavior of Gν,η ◦Fν . Again, as the param-
eter(s) η and/or ν vary, we observe chaos. However,
(70) may actually be regarded as a “special case”
as our treatment in Secs. 2–5, where we have shown
that chaos occurs with η = 0 in (70), cf. (12)2,
i.e. we do not need extra energy injection like (70) at
x = 0.

If the boundary condition at x = 0 is homoge-
neous Robin:

w(0, t) + ηwx(0, t) = 0 , η > 0, for all t > 0 ,

then the treatment becomes much more difficult.
No analytical results are available so far.
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