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Abstract. In this paper we extend the Lyapunov functions, constructed by
A. Ardito and P. Ricciardi for predator—prey system [1], to the three level
food chain models. We first consider a general three-level food-chain model.
A criterion for the extinction of top predator will be given. Then we restrict
our attentions to the case in which the prey is of logistic growth and predators
have Holling’s type II functional responses.
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1 Introduction

The main purpose of this paper is to establish the global stability for the case
of extinction of top-predator of the following three-level food-chain model

[13, 15, 16]:
[ dx (X mpx
i K) a; + X7
dy _(mx N\ my
& _ _ -
dt a; +x L)y a, +y

dz <m2y >
E (I _yg,):,
dt a, +y

| XO)=x0>0, y(0)=yo>0, z(0)=20>0,

(1.1)

where y, K >0, a;, m;, d; > 0, i =1,2. In (1.1) x(¢), y(t) and z(t) represent the
population density of prey, predator and top-predator at time ¢ respectively.
The prey grows with intrinsic growth rate y and carrying capacity K in the
absence of predation. The predator (top-predator) consumes the prey
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(predator) with functional response of Michaclis-Menten type, mx/
a; + x (myy/a, + y). dy, d, are the death rates for predator, top-predator
respectively.

The behavior of the solutions of three-level food-chain model (1.1) can be
very complicated. System (1.1) has been studied by many authors recently [13,
15, 16]. They performed the normal form analysis for a degenerate equilib-
rium, planar Hopf and saddle node bifurcation analysis, to study the bifurca-
tion phenomena in the absence of top-predator, and showed that the model
(1.1) in some parameter range could have chaotic behavior by numerical
simulation. Therefore it is not easy to complete the study for this three-level
food-chain model. In this paper we shall restrict our attentions to the global
stability of the equilibrium which represents the extinction of top-predator.
We prove the main result by extending the Lyapunov functions introduced by
A. Ardito and P. Ricciardi [1]. We discuss the problem for general three
species food chain models, in particular, the case of the Holling’s type III
functional response.

The rest of this paper is organized as follows. In Sect. 2 we introduce
a general three species food chain model. A criterion for the extinction of
top-predator will be given. Examples with Holling’s type III functional re-
sponse for the top-predators are given to show the global stability. In Sect. 3
we prove our main result for system (1.1).

2 General food-chain models

Consider the following three species food chain model:

[ dx

it = xg(x) — p1(x)y,

dy
q =(p1(x) —dy)y —p2())z,
i (2.1)

i (p2(y) —d3)z,

\x(0)=x0>0, yO0)=y,>0, z(0)=2z,>0.

The basic assumptions for (2.1) are:

(H1) p;(-)e C([0, o0), R), p;(0) =0 and p;(x) >0 for all x > 0,i =1, 2.

(H2) There exists x, > 0 such that p;(x,) =d;.

(H3) ¢g(:)eC([0, o©), R) and there exits K > x, such that g(K)=0 and
g(x)(x — K) <0 for all x >0, x + K.

Some typical forms of p;(x) and g(x) could be found in [4, 8-10, 12, 14].
For general three species food chain models, interested readers may consult
[5-7, 11, 17]. 1t is easy to verify that the solutions x(t), y(t), z(t) of model (2.1)
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are bounded and x(t) = K for ¢ sufficiently large. When z(t) = 0 in (2.1), the

prey isocline is

_ xg(v)
p1(x)

y = h(x) :
Under assumptions (H1)—(H3), there exists an equilibrium E,, = (x,,, y, 0) of
(2.1) with y, = h(x,,). Define

“ T — dyp@gde. O Ko R

Theorem 2.1. Let (H1)~(H3) hold and (x(t), y(t), z(t)) be the solution of system
(2.1). If p2(y4) —d>, <0 and
(i) There exists 8 > 0 such that

F(x)

0= F(x) forall xe(0,x,) and 0 =F(x) forall xe(x,,K). (2.2)
(i) There exists ¢ > 0 such that for all y > 0 with y + y,,
A(Y) = c(p2(3) = P2(y4)) — P21 (¥ — 4) <0. (2.3)
Then (x(1), y(¢), z(?)) = (X4, Yy, 0) as t = co.

Proof. Let

y X _ d
W(x,y,z) = J sP7 (s — y)ds + yOJ p©—dy dé + cz.
Vi Xy D1 (5)
It is obvious that W(x, y, z)e C/(R%, R), W (x,, V4, 0) = 0 and W (x, y, z) > 0
for (x, y, z) € R — {(X,» Vx> 0)}. Then the derivative of W along the trajectory
of (2.1) is

: 1 - dl
Wy, 2) = <%> (xg () — p1()7)
P1(X)
0 -1 -1 xpl(é)—dl .
— 0 —2 -d
" <y By w0y J NG g)
X [(p1(x) —d1)y — p2(¥)z] + c(p2(y) — do)z.
Hence
: 1 - dl
Wix, y.2) = <%> (xg(x) — p1 (X))
Pl(x)

X 1 _ dl
o (v mrero [ 2O dé) [(p1(9) = i)y = pa()=]
x D19

+ c[(p2(¥) — P2(¥4) + (P2(yy) — d2)]z
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= (p2(9) — dy) [h(x) ) n@—d dg}
x P
60— 1 p1(&) —
2(Vy) —da)z — 0 d
c(p2(yy) — da) VO, (y)z f s ¢

+2[e(p2(3) = P2(¥2) = ¥ T2 (MY — yi)].
From the assumption p,(y,) — d, < 0 and (2.2), (2.3), it follows that
Wi(x,y,2)£0 for0<x<K,y>0,z>0.

Hence we complete the proof of Theorem 2.1 by LaSalle’s invariance principle

[17, 18]. O

We observe that in order to satisfy (2.3), we must have

P2(Vs) -1
- . 2.4
Pa(ye) ¥ @4

In the following we consider the three level food chain models similar to
(1.1) except that the functional response for the top-predator is of Holling’s
type III.

Example 1. Let p,(y) = myy"/a, + y", neN, my >0, a, > 0. From (2.4)

AtV
= Vx-
na,

Then from (2.3)

a + y:x: 9 mlyn m2yr>;< mZyn 0—1
A(y) = — - —
) na, a +y'  ar+yy az+yny =2
o mads A S VA T
n(a, + y" a4y *
my(y — Vy) J’* n—1 n—2 n—1 0+n—1
P ( + V" A R VA B ]

If 0 <y =<y, then we have

FOT Y e e Ay Y D =y
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If y,. <y then we have

)
n

S N e A S A I A

lIA

0
y_(nyn—l) _ y0+n—1 =0.
n

Hence A(y) <0 for all y >0 with y # y,. Then (2.3) in Theorem 2.1 are
satisfied.

Example 2. Let py(y) =my*/(a+ y)(b +y), m>0, a>0 and b > 0. From
(2.3), (2.4)

_ (a+ y )b+ yy) 0
(a + b)y, + 2ab V-

and

Aly) = @+ )b +yy) < my® my3 >

@+ by +2ab"*\(a+ b +y) @+ y)b+ s

(a+y)(b+y)y (¥ — ¥

_m(y = pys ((a +b)yys + ab(y + y*)>
(a+y)b+y) (a+b)yy + 2ab

. my2 0—1
EEES A

_ m(y — yy) |:< I ab(yy — ) )9_ 9+1:|
G+ |V T @ ey rom) Y

If 0 <y =y, then we have

ab(y, —y) 0 0+1 0 0+1
_— — > — =0.
<y+(a+b)y*+2ab R =Yy Y

V= V)

If y,. < y then we have

ab(y, — )
(4 Gy s =0,
k

Hence A(y) <O for all y >0 with y % y,. Then (2.3) in Theorem 2.1 are
satisfied.
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3 Main result
If the top-predator is absent, i.e. z(t) = 0, system (1.1) is reduced to

dx { X myx

Tox (12 ) 22y,

dt / K a; +x Y

dy myx
— = —d 3.1
d[ < 1>J7> ( )

x(0) =x0 >0, y(0)=yo>0.

System (3.1) has a unique equilibrium E,, = (x,, y,) where x,, = a,d,/m; — d;,
Ve = (p/d1) x4 (1 — (x4/K)), m;y > d;. The behavior of the solutions of (3.1) is
well known and is classified as followings [2—4]:

1. If (K — ay)/2 < x, < K, then E, is globally stable.

2. If 0 < x,, < (K — ay)/2, then E,, is an unstable focus and it is surrounded by
a unique stable limit cycle.

3. A supercritical Hopf bifurcation takes place at x,, = (K — a,)/2.

The prey isocline of system (3.1) is

Vv = h(x) (1 - 1) (ar + x). (3.2)
my K
For system (1.1), the function F: (0, x,)u(x,., K) = R is given by
Vi — h(x)

J LG ) Gl

Vi — h(x)

(Rl )]

Theorem 2.1 proposes a criterion, depending on a parameter 0, for the
extinction of top predator in three level food chain models, it is quite general
and is applicable to most of food chains. To understand the meaning of
0 geometrically, we observe that one branch of the graph of y = F(x) lay
above y = 0, for x e(x,,, K) and the other lay below y = 0, for xe(0, x,,). But it
is not easy to verify the existence of 0 satisfying the conditions in Theorem 2.1
for general three level food chain models. However, for system (1.1), we will
show that the equilibrium (x,, y,,0) is globally stable, provided that
(X4 Vs 0) 1s locally stable (including neutrally stable case). The following is
our main result for system (1.1).

F(x) =

(3.3)

Theorem 3.1. Let (x(t), y(t), z(t)) be the solution of system (1.1). If
(myyy/az + yy) —dy, = 0and (K — a,) = 2x, then (x(1), y(1), z(1)) = (X, Yy, 0)
as t — oo.
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Proof. From (3.2), there exists X > (K — ay/2) such that h(X) = h(0) = ya,/m;.
Consider the following cases

Case (i) (K —a1)/2)) <x, = X.
There exists 0 < X < (K — ay)/2, such that h(X) = y,, then from (3.3), F(x)
satisfies:

lim  F(x)=0, F(¥)=0,lim F(x)=—o0, lim F(x) =00 and

x—=0" x—oxy x—=xy
F(x)>0 forO<x<%, F(x)<O0 forX<x<x, and
F(x)>0 forx,<x=K.

Claim:
max F(x) < min F(x). (3.4)

0<x<<x X, <x=<K

If (3.4) does not hold, then there exists § > 0 such that the equation F(x) =
has three distinct roots d4, 0,, 03 satisfying 0 < 6; < 9, < £ < 93 < K. Con-
sider the function

H(x)=y, —h(x)—f <m1m_ d1> <x — Xy — Xy In <xi>> .

Then H(x) = 0 has four roots namely x,, and d;, d,, d5 in [0, K. Since

H () = 2 P = dxs “_f})x* , (3.5)
mqXx

1

from Rolle’s Theorem, there exists ne(0, K) such that H () = 0 which is
obviously a contradiction to (3.5). Hence (3.4) holds. From (3.4) we choose
0 > 0 s£Luch that

max F(x)£60< min F(x).

0<x==x X, <x=K

Thus 0 satisfies the hypothesis in Theorem 2.1, and (x(t), y(¢), z(¢)) = (X4, V4. 0)
as t — oo.

Case (ii): (K — ay)/2) < X = x,.
From (3.3), F(x) satisfies:

F(x) <0 for0<x < x,, lim F(x)=0, lim F(x) =—c0 and

x—>0* XXy

F(x)>0 forx,<x=K, lim F(x)=c0.

Obviously the hypothesis in Theorem 2.1 is satisfied with 0 satisfying
0<f0< min F(x).

x, <x=K

Case (iil): x, = (K — a4)/2).
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From (3.3), F(x) satisfies:

V(K —ay)
x—-0" x—x"* K(ml _dl)’

lim F(x) =0, lim F(x) =

and
Fx)>0 for0<x=<K.

379

Therefore F(x) is continuous in (0, K7]. Let x = nx,,n€(0, 1)u(1, K/x,,), then

from (3.2) we have

h(nx,) = mTK [ — (1= 1°x3 + x5 + Kal} :
pe = hv) = — (<3 + Kay).
m K
From (3.3) we have
Vs — hnxy)

F(x) = F(nx,) =

my

_ VX n —1)°
_vawng—1_m»’”dqm(

Consider the following function

K
f)=n*+2Inn—4n + 3, ne(O -

Obviously,
lim f(g) =—co, f(1)=0 and [f'(n)=

n—0

—d
<MI 1> (x4 — X4 — Xy In1)

207 — 1
20207, ‘v’ne(

(3.6)

K
0, _> |
X

Hence f'(y) is an increasing function. If # €(0, 1) then x €(0, x,,), and we have

n?4+2Ilnn—4n+3<0.
This implies
(n— 1)
— <2
n—1—Iny =
hence from (3.6) we have

2yxy _ (K —ay)
K(my —d,) K(m;—d,) ’

F(x) <

If ne(1, K/x,) then xe(x,, K), and we have

n?+2lny—4n+3>0.
This implies
(n —1)?

U
n—l—lnn> ’

Vxe(0,x,).
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hence from (3.6) we have

2yx, V(K —ay)
F(x) > = , Vxe(x,,K). 3.8
W K — a0 " Ko~y ) oy
From (3.7), (3.8) we choose 0 = y(K — a;)/K(my — dy). Thus 0 satisfies the
hypothesis in Theorem 2.1, and (x(t), y(t), z(¢)) = (X4, V4, 0) as t—o0.
Therefore we complete the proof of Theorem 3.1. O
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