
Chaotic Vibration of the Wave Equation with Nonlinear Feedback

Boundary Control: Progress and Open Questions

Goong Chen1,2, Sze-Bi Hsu3 and Jianxin Zhou1

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 The linear wave equation with a van der Pol boundary condition . . . . . . . . . . . 4

1.2.1 Chaotic vibration of the classical solution: the case 0 < α ≤ 1 . . . . . . . . . 7
1.2.2 Chaotic vibration when there is hysteresis: the case α > 1 . . . . . . . . . . . 9
1.2.3 Memory effects when the displacement term is present in the nonlinear bound-

ary condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.4 Nonisotropic spatiotemporal chaotic vibration . . . . . . . . . . . . . . . . . . 13

1.3 Some open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Abstract

The study of chaotic phenomena in partial differential equations is a challenging subject. In
this paper, we survey the recent progress in the study of chaotic vibration of the linear wave
equation with nonlinear boundary feedback control law. We show that when there is linear
energy injection at one end of the boundary and the self-regulating or van der Pol nonlinearity
at the other end of the boundary, chaos occurs as a reconciliation between linear instability and
nonlinear self-regulation when the parameters enter a certain regime. A list of open problems
is also posed.
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1.1 Introduction

The onset of chaotic phenomena in systems governed by nonlinear partial differential equations
(PDEs) has fascinated scientists and mathematicians for many centuries. The most famous
case in point is the Navier–Stokes equations and related models in fluid dynamics, where the
occurrence of turbulence in fluids is well accepted as a chaotic phenomenon. Yet despite the
diligence of numerous of the most brilliant minds of mankind, and the huge amount of new
knowledge gained through the vastly improved computational and experimental methods and
facilities, at present we still have not been able to rigorously prove that turbulence is indeed
chaotic in a certain universal mathematical sense.

Nevertheless, rapid advances have been made in nonlinear science that now we do know
much more about how and why nonlinear phenomena such as pattern formation, adaptation,
self-organization, bifurcation and chaos, etc., happen in a variety of physical systems. So many
new results are announced daily that there is no doubt that nonlinear science belongs to the
frontiers of science and technology of the 21st Century, offering numerous challenges as well as
exciting opportunities.

Look at the mathematics side. Three or four decades ago, the majority of the research
publications in the area of nonlinear differential equations still dealt with the existence and
uniqueness issues. There seemed to be a mentality set during that period that these were the
best qualities a nonlinear system (or any system) should possess, and no other qualities were
more worthwhile. Gradually, we saw the shifts of emphases and interests. Bifurcation analysis
have become popular, and new methods have been developed to prove multiplicity of solutions
of genuinely nonlinear problems (where the linearization method would not lead anywhere).
Nowadays, existence and uniqueness are treated mostly as “mundane” issues and few people are
interested only in these issues.

Chaos may be viewed as an extreme form of the nonlinear dynamical phenomena. In general,
it seems harder to prove the onset of chaos than, e.g., that of bifurcations. For systems of
nonlinear ordinary differential equations (ODEs), pioneering work probing the chaotic behavior
was done by Lorenz [18] for the Lorenz system and by Cartwright and Littlewood [1] for the
forced van der Pol oscillator, among others. A useful mathematical technique to rigorously
prove the occurrence of chaos was developed by Melnikov [20] using the Smale Horseshoe; see
also [22].

Generalization of the Melnikov method to certain nonlinear PDEs has been made; see [12,
15, 16, 17], e.g. Those PDEs have a Hamiltonian structure available for exploitation. The PDEs
(mostly) live on the entire space and, therefore, there are no boundary conditions to worry
about.

When boundary conditions are present in a time-dependent nonlinear PDE, analysis becomes
very complicated and, to our knowledge, not too much work is available in the literature. But
for a special class of PDEs, namely, the wave equation, one can utilize wave reflection on the
boundary to analyze or even “manipulate” chaotic behavior. This study actually complements
the type of work mentioned in the preceding paragraph [12, 15, 16, 17] where, as we men-
tioned earlier, boundary conditions are for the most part either not included or not regarded as
important in the models.

The historical background of our study came from the boundary stabilization problem of the

2



linear wave equation. Let us describe it below. Let

1
c2

∂2w(x, t)
∂t2

− ∂w(x, t)
∂x2

= 0, 0 < x < 1, t > 0, (1.1)

denote the linear PDE modeling either acoustic wave propagation or a vibrating string on the
unit interval (0,1), where c > 0 denotes the speed of wave propagation. At the left-end x = 0,
assume that the boundary condition is fixed:

w(0, t) = 0, t > 0. (1.2)

At the right-end x = 1, control is placed:

wx(1, t) = u(1, t), t > 0. (1.3)

The initial conditions are

w(x, 0) = w0(x), wt(x, 0) = w1(x), 0 < x < 1, (1.4)

for two given functions w0 and w1 with sufficient smoothness, satisfying w(0, t) = 0 for all t > 0.
The energy associated with vibration at time t is

E(t) =
1
2

∫ 1

0

[
w2

x(x, t) +
1
c2

w2
t (x, t)

]
dx. (1.5)

The objective of the stabilization problem is to find a feedback law for u(t) in (1.3) such that

lim
t→∞ E(t) = 0. (1.6)

A simple choice of the feedback law is the negative velocity feedback:

u(t) = −αwt(1, t), t > 0, α > 0, α 6= 1/c, (1.7)

under the assumption that the velocity wt(1, t) at x = 1 can be observed and be fedback.
Substituting (1.7) into (1.3), we obtain the so-called viscous damping boundary condition

wx(1, t) + αwt(1, t) = 0, t > 0. (1.8)

With this boundary condition, the energy of the system dissipates with time t:

d

dt
E(t) =

∫ 1

0

[
wx(x, t)wxt(x, t) +

1
c2

wt(x, t)wtt(x, t)
]

dx

(integration by parts ⇒)

= wx(x, t)wt(x, t)
∣∣∣x=1

x=0
(1.9)

= −αw2
t (1, t) ≤ 0.

Using the method of characteristics (see Section 1.2), one can further show that the energy
decays with an exponential rate:

E(t) ≤ Ke−µtE(0), for some K > 0 independent of (w0, wt), (1.10)

where the exponential rate e−µt with µ = − c
2 ln

∣∣∣ 1−αc
1+αc

∣∣∣ > 0 is sharp. Thus, (1.10) is actually a
uniform exponential stabilization result, where by “uniform” we mean the decay rate is uniform
with respect to any initial condition (w0, w1) given in (1.4). This uniform stabilization result is
also useful in solving the exact controllability problem:
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“For any given sufficiently smooth functions z0(x) and z1(x) on [0,1], satisfying
z0(0) = 0, find a controller u(t) in (1.3) such that at the terminal time T > 0,

w(T, x) = z0(x), wt(T, x) = z1(x), 0 < x < 1.”

Using the “controllability via stabilizability” method of Russell [21] for time-reversible dis-
tributed parameter systems, one can prove that the exact controllability problem is solvable
if T > 0 is sufficiently large. (The provision that T be sufficiently large cannot be weakened
because the wave propagates with a finite speed and it takes a certain amount of time for the
boundary control effect to be propagated to the entire interval.)

So the linear feedback boundary condition (1.8) is nice and useful. However, in the design
of many servomechanisms, stabilizability or controllability are not issues of any concern. What
is really of concern is the safe or robust operation of the servomechanism. One such example is
the classical van der Pol equation

ẍ − (α − βẋ2)ẋ + kx = 0; α, β > 0, (1.11)

where x = x(t) is proportional to the electric current at time t on a circuit equipped with a van
der Pol device. Then the energy at time t is E(t) = 1

2 (ẋ2 + kx2) and

d

dt
E(t) = ẋ(ẍ + kx) = ẋ2(α − βẋ2),

so we have

E′(t)

{
≥ 0 if |ẋ| ≤ (α/β)1/2,

< 0 if |ẋ| > (α/β)1/2
(1.12)

which is the desired self-regulation effect, i.e., energy will increase when |ẋ| is small which is
unfit for operation, and energy will decrease when |ẋ| is large in order to prevent electric current
surge which may destroy the circuit. (This self-regulating effect is also called self-excitation.) A
second version of the van der Pol equation is

ẍ − (α − 3βx2)ẋ + kx = 0, (1.13)

which may be regarded as a differentiated version of (1.11), satisfying a regulation effect similar
to (1.12). Neither (1.11) nor (1.13) has any chaotic behavior as the solutions tend to limit
cycles according to the Poincaré–Bendixon Theorem. However, when a forcing term A cos(cot)
is added to the right hand side of (1.11) or (1.13), solutions display chaotic behavior when the
parameters A and ω enter a certain regime [12, 14].

What happens when we study the PDE analogue of (1.11) or (1.13) for the wave equation?
This is one of the major motivations of our study to be delineated in Section 1.2. In Section 1.3,
we provide what we regard as a set of interesting open questions for further research.

1.2 The linear wave equation with a van der Pol boundary condition

In this section, we survey four cases of chaos generation or anticontrol by nonlinear feedback
boundary control. Consider (1.1), but set the wave speed c = 1 therein because c is not an
essential parameter as far as the mathematical analysis of chaotic vibration is concerned. Thus,
we consider

wtt(x, t) − wxx(x, t) = 0, 0 < x < 1, t > 0. (1.14)
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Repeat the two initial conditions in (1.4) here:

w(x, 0) = w0(x), wt(x, 0) = w1(x), 0 < x < 1. (1.15)

At the right-end x = 1, assume a nonlinear boundary condition

wx(1, t) = αwt(1, t) − βw3
t (1, t); t > 0, α, β > 0. (1.16)

At the left-end x = 0, we have options to choose several types of boundary conditions. Here,
let us choose it to be

wt(0, t) = −ηwx(0, t), t > 0; η > 0, η 6= 1. (1.17)

Remark 1.1. Equation (1.17) says that negative force is fedback to the velocity at x = 0. An
alternate choice would be

wx(0, t) = −ηwt(0, t), t > 0; η > 0, η 6= 1,

which says negative velocity is fedback to force. �

With (1.16) and (1.17), we have, by (1.9), (1.16) and (1.17),

d

dt
E(t) =

d

dt

∫ 1

0

[
1
2
w2

x(x, t) + w2
t (x, t)

]
dt

= ηw2
x(0, t) + w2

t (1, t)[α − βw2
t (1, t)]. (1.18)

The contribution ηw2
x(0, t) above, due to (1.17), is always nonnegative. Thus we see that the

effect of (1.17) is to cause energy to increase. For this reason, the boundary condition (1.17) is
said to be energy-injecting or energy-pumping. On the other hand, we have

w2
t (1, t)[α − βw2

t (1, t)]

{
≥ 0 if |wt(1, t)| ≤ (α/β)1/2,

< 0 if |wt(1, t)| > (α/β)1/2,
(1.19)

so the contribution of the boundary condition (1.16) to (1.18) is self-regulating because (1.19)
works in exactly the same way as (1.12). Thus, we call (1.16) a van der Pol, self-regulating, or
self-excitation, boundary condition. Intuitively speaking, with the boundary condition (1.17)
alone (and with the right-end boundary condition (1.16) replaced by a conservative boundary
condition such as w(1, t) = 0 or wx(1, t) = 0 for all t > 0) it causes the well-known classical
linear instability, namely, the energy grows with an exponential rate:

E(t) = O(ekt), k =
1
2

ln
(∣∣∣∣1 + η

1 − η

∣∣∣∣) > 0. (1.20)

However, the self-regulating boundary condition (1.16) can hold the instability (1.20) partly in
check by its regulation effect, for a large class of bounded initial states with bounds depending
on the parameters α, β and η. When α, β and η match in a certain regime, chaos happens,
which could be viewed as a reconciliation between linear instability and nonlinear self-regulation.
Overall, there is a richness of nonlinear phenomena, including: the existence of asymptotically
periodic solutions, hysteresis, instability of the type of unbounded growth, and fractal invariant
sets.

5



A basic approach for the problems under consideration in this section is the method of
characteristics. Let u and v be the Riemann invariants of (1.14) defined by

u(x, t) =
1
2
[wx(x, t) + wt(x, t)],

v(x, t) =
1
2
[wx(x, t) − wt(x, t)].

(1.21)

Then u and v satisfy a diagonalized first order linear hyperbolic system

∂

∂t

[
u(x, t)
v(x, t)

]
=

[
1 0
0 −1

]
∂

∂x

[
u(x, t)
v(x, t)

]
, 0 < x < 1, t > 0, (1.22)

with initial conditions

u(x, 0) = u0(x) ≡ 1
2
[w′

0(x) + w1(x)],

v(x, 0) = v0(x) ≡ 1
2
[w′

0(x) − w1(x)],
0 < x < 1.

 (1.23)

The boundary condition (1.16), after converting to u and v and simplifying, becomes

u(1, t) = Fα,β(v(1, t)), t > 0, (1.24)

where the relation u = Fα,β(v) is defined implicitly by

β(u − v)3 + (1 − α)(u − v) + 2v = 0; α, β > 0. (1.25)

Remark 1.2. For (1.25), we know that

(i) when 0 < α ≤ 1, for each v ∈ R, there exists a unique u ∈ R;

(ii) when α > 1, for each v ∈ R, in general there may exist two or three distinct u ∈ R

satisfying (1.25). Thus u = Fα,β(v) is not a function relation.

Case (i) will be treated in Subsection 1.2.1 while case (ii), containing hysteresis, will be treated
in Subsection 1.2.2. �

The boundary conditions (1.14), by (1.21), becomes

v(0, t) = Gη(u(0, t)) ≡ 1 + η

1 − η
u(0, t), t > 0. (1.26)

Equations (1.25) and (1.26) are, respectively, the wave-reflection relations at the right-end x = 1
and the left-end x = 0. The reflection of characteristics is depicted in Fig. 2.1.

Assume that Fα,β is well defined. Then a solution (u, v) of the system (1.22), (1.23), (1.24)
and (1.26) can be expressed as follows:

For 0 ≤ x ≤ 1 and t = 2k + τ , with k = 0, 1, 2, . . ., and 0 ≤ τ < 2,

u(x, t) =


(F ◦ G)k(u0(x + τ)), τ ≤ 1 − x,

G−1 ◦ (G ◦ F )k+1(v0(2 − x − τ)), 1 − x < τ ≤ 2 − x,

(F ◦ G)k+1(u0(τ + x − 2)), 2 − x < τ ≤ 2;

v(x, t) =


(G ◦ F )k(v0(x − τ)), τ ≤ x,

G ◦ (F ◦ G)k(u0(τ − x)), x < τ ≤ 1 + x,

(G ◦ F )k+1(v0(2 + x − τ)), 1 + x < τ ≤ 2,

(1.27)
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where in the above, F = Fα,β and G = Gη, and (G ◦F )k represents the k-th iterate of the map
G ◦ F . From now on, we often abbreviate Fα,β and Gη, respectively, as F and G, in case no
ambiguities will occur. We call the map Gη ◦ Fα,β , naturally, the composite reflection relation.
This map Gη ◦Fα,β can be regarded as the Poincaré section of the PDE system because we can
essentially construct the solution from Gη ◦ Fα,β using (1.27).

From (1.27), it becomes quite apparent that the solutions (u(x, t), v(x, t)) will manifest
chaotic behavior when the map G ◦ F is chaotic, in the sense of Devaney [11, p. 50], for exam-
ple. We proceed with the discussion in the following four subsections. The main sources for
Subsections 1.2.1–1.2.4 are, in sequential order respectively, [4, 5, 9, 7].

1.2.1 Chaotic vibration of the classical solution: the case 0 < α ≤ 1

As mentioned in Remark 1.1, when 0 < α ≤ 1, for each v ∈ R there exists a unique u ∈ R such
that u = Fα,β(v). Therefore, the solution (u, v) to (1.22), (1.23), (1.24) and (1.26) is unique.
When the initial condition (u0, v0) is sufficiently smooth satisfying compatibility conditions with
the boundary conditions, then (u, v) will also be C1-smooth on the spatiotemporal domain.

Let α and β be fixed, and let η > 0 be the only parameter that varies. To aid understanding,
we include a sample graph of the map Gη ◦Fα,β , with α = 1/2, β = 1, and η = 0.552, in Fig. 2.2.
We only need to establish that Gη ◦Fα,β is chaotic, because Fα,β ◦Gη is topologically conjugate
to Gη ◦ Fα,β through

Fα,β ◦ Gη = G−1
η ◦ (Gη ◦ Fα,β) ◦ Gη

and, thus, the iterates (F ◦ G)k or (F ◦ G)k+1 appearing in (1.27) do not need to be treated
separately.

We note the following bifurcations: For fixed α : 0 < α ≤ 1 and β > 0, let η ∈ (0, 1) be
varying.

(1) Period-doubling bifurcation [4, p. 431, Theorem 3.1]
Define

h(v, η) = −Gη ◦ F (v)

and let
v0(η) ≡ η[(1 + η)/2][(α + η)/β]1/2

which, for each η, represents a fixed point of h, i.e.,

h(v0(η), η) = v0(η).

Then the algebraic equation

1
2

(
1 + αη

3βη

)1/2 [
1 + (3 − 2α)η

3η

]
=

1 + η

2

(
α + η

β

)1/2

(1.28)

has a unique solution η = η0 : 0 < η0 ≤ ηηηH , where

ηηηH ≡
(

1 − 1 + α

3
√

3

) /(
1 +

1 + α

3
√

3

)
(1.29)

satisfying
∂

∂v
h1(v, η)

∣∣∣
v=v0(η0)
η=η0

= −1 (1.30)
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which is the primary necessary condition for period-doubling bifurcation to happen, at
v = v0(η0), η = η0. Furthermore, the other “accessory” conditions are also satisfied, and
the bifurcationed period-2 solutions are attracting.

Consequently, there is a period-doubling route to chaos, as illustrated in the orbit diagram
in Fig. 2.3.

(2) Homoclinic orbits [4, pp. 436–437, Theorem 4.1]
Let ηηηH be given by (1.28). If

ηηηH ≤ η < 1, (1.31)

then M ≥ I1 (cf. Fig. 2.2) and, consequently, the repelling fixed point 0 of Gη ◦ F has
homoclinic orbits. Furthermore, if η = ηηηH , then there are degenerate homoclinic orbits
(and, thus, homoclinic bifurcations [11, p. 125]).

When M > I2; cf. Fig. 2.2, then [−I2, I2] × [−I2, I2] is no longer an invariant square for the
map G◦F . What happens is exactly similar to the case of the quadratic map fµ(x) = µx(1−x),
for 0 ≤ x ≤ 1, when µ > 4 because part of the graph of fµ will protrude above the unit square.
See Fig. 2.4. It is easy to see that now the map G ◦ F has a Cantor-like fractal invariant set Λ

on the interval [−I2, I2], where Λ =
∞⋂

j=1

(G ◦ F )k([−I2, I2]). All the other points outside Λ are

eventually mapped to ±∞ as the number of iterations increases.
We furnish a PDE example below.

Example 1.1 ([[[4, p. 435, Example 3.3]]]). Consider (1.22), (1.23), (1.24) and (1.26), where
we choose

α = 0.5, β = 1, η = 0.525 ≈ ηηηH , satisfying (1.31),

w0(x) = 0.2 sin
(π

2
x
)

, w1(x) = 0.2 sin(πx), x ∈ [0, 1].

Two spatiotemporal profiles of u and v are plotted, respectively, in Figs. 2.5 and 2.6. Their
rugged outlooks manifest chaotic vibration. �

Miscellaneous remarks

(1) In this subsection, we have illustrated only the case 0 < η < 1. When η > 1, the results
are similar. See [4].

(2) With the nonlinear boundary condition (1.16), we can only establish that u and v are
chaotic. From this, we can then show that wx and wt, i.e., the gradient of w, are also
chaotic by a natural topological conjugacy, see [3, Section 5]. However, w itself is not
chaotic because w is the time integral of wt, which smooths out the oscillatory behavior
of wt.
In order to have chaotic vibration of w, one must use a differentiated boundary condition;
see [4, Section 6]. This is actually an analog of (1.13).

(3) When the initial data (u0, v0) takes values outside the invariant square [−I2, I2]× [I2, I2],
then part of u and v will diverge to ±∞ as t → ∞. This behavior belongs to classical
unbounded instability.
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1.2.2 Chaotic vibration when there is hysteresis: the case α > 1

When α > 1, the relation u = Fα,β(v) is no longer single-valued. (The notation u ∈ Fα,β(v)
would be more appropriate.) For each value of v ∈ R, there may exist up to three u ∈ R

satisfying (1.25). We plot a graph of u = Gη ◦ Fα,β(v) in Fig. 2.7. Throughout this subsection,
we require 0 < η < 1.

The multi-valued relation u = Gη ◦Fα,β(v) consists of three piecewise single-valued branches,
H1, H2 and H3 (where H stands for “hysteresis”), to be defined below. First, let v∗ ≡
α−1

3

[
α−1
3β

]1/2

. Note that if v /∈ [−v∗, v∗], then Fα,β is actually single-valued: it consists of

a continuous branch F
(1)
α,β , defined for v < −v∗ and a second branch F

(3)
α,β defined for v > v∗.

Now, let F̃
(1)
α,β be the maximal single-valued continuous extension of the continuous function

F
(1)
α,β , and let F̃

(3)
α,β similarly be the maximal single-valued continuous extension of the function

F
(3)
α,β such that

F
(i)
α,β(v) ∈ Fα,β(v), for i = 1 or 3.

Then we see that F̃
(1)
α,β is defined for v ∈ (−∞, v∗], and F̃

(3)
α,β is defined for [−v∗,∞). We define

F̃
(2)
α,β to be

u = F̃
(2)
α,β(v) if v ∈ (−v∗, v∗) and F̃

(2)
α,β(v) ∈ Fα,β(v)

but F̃
(2)
α,β(v) 6= F̃

(i)
α,β(v) for i = 1, 3.

Now we define

u = H1(v) ≡ Gη ◦ F̃
(1)
α,β(v) if v ∈ (−∞, , v∗],

u = H2(v) ≡ Gη ◦ F̃
(2)
α,β(v) if v ∈ (−v∗, v∗),

u = H3(v) ≡ Gη ◦ F̃
(3)
α,β(v) if v ∈ [−v∗,∞).

These three branches are also illustrated in Fig. 2.7. We know that when two branches have
overlapping domains, such as H1 and H2 overlap over (−∞, v∗] ∩ (−v∗, v∗), or H2 and H3 do
over (−v∗, v∗) ∩ [−v∗,∞), there is a selection rule in favor of the branch with more stability,
in this case H1 is selected over H2, and H3 over H2 as well, because the slopes on the H1 and
H3 branches have smaller magnitude than the counterpart on H2. We now define the hysteresis
iterates [5, p. 451, Def. 2.1] as follows: for u0 ∈ R, uk = Hk(u0) is given inductively according
to:

(i) For k = 1, u1 ≡ H(u0), where

u1 =


H1(u0), if u0 < −v∗,
H2(u0), if u0 ∈ [−v∗, v∗],
H3(u0), if u0 > v∗.

(ii) For k = 2, u2 ≡ H2(u0), where

u2 =


H1(u1), if either u1 ≤ −v∗ or if u0 < −v∗ and u1 ∈ [−v∗, v∗],
H2(u1), if u0 ∈ [−v∗, v∗], u1 ∈ (−v∗, v∗),
H3(u1), if either u1 ≥ v∗ or if u0 > v∗ and u1 ∈ [−v∗, v∗],

for u1 = H(u0).
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(iii) Assume that uj = Hj(u0) are defined for j = 1, 2, . . . , k, k ≥ 2. We define uk+1 =
Hk+1(u0) by

uk+1 =


H1(uk), if either uk ≤ −v∗ or if uk−1 < −v∗ and uk ∈ [−v∗, v∗],
H2(uk), if u0 ∈ [−v∗, v∗], u1, u2, . . . , uk ∈ (−v∗, v∗),
H3(uk), if either uk ≥ u∗ or if uk−1 > v∗ and uk ∈ [−v∗, v∗].

When η = 0, i.e., no energy injection, then it is known that when α increases (with β held
fixed), the hysteresis iteration u = H∗(v) has periodic orbits with larger and larger periods, but
no chaos [5, Section 3]. However, if η > 0, then under the following sufficient conditions, chaos
occurs.

Theorem 1.1 ([[[5, p. 467, Theorem 4.1]]]). Let 0 < η < 1, α > 1 and β > 0 such that

m̃ ≡ 1 + η

1 − η

1 + α

3

[
1 + α

3β

]1/2

≤ 1 + η

2η

[
1 + αη

βη

]1/2

.

Define θ0 = −v∗ ≡ α−1
3

[
α−1
3β

]1/2

, and let

θj+1 = H−1
3 (θj), j = 0, 1, 2, . . . .

If for some j ≥ 1, we have θ̃j−1 < v∗, and θ̃j, θ̃j+1, θ̃j+2 ∈ [v∗, m̃], then the hysteresis map
u = H(v) is chaotic on the interval [−m̃, m̃]. �

Remark 1.3. The proof of Theorem 1.1 basically shows that property (1.36) (see the next
subsection) is true. The hysteresis map H in Theorem 1.1 is essentially a piecewise continuous
map, though not single-valued. Thus, useful ideas from Keener [13] can be adopted as well as
adapted for our purpose here, and elsewhere [3]. But now we can use a more unified approach
based on the exponential growth of total variations as developed in [8, 10] by proving the
property (1.36) instead. �

Example 1.2 ([[[5, p. 468, Example 4.1]]]). Choose η = 1/2, α = 2, β = 1, and

u0(x) = u0(0) + x[u0(1) − u0(0)],
v0(x) = u0(x)2 + bu0(x) + c,

}
0 ≤ x ≤ 1,

with u0(0) = 0.5, u0(1) = H(v0(1)), b = −0.32830, c = 1.4145 and so, v0(0) = 1.5, v0(1) = 1.5.
Then the initial data u0 and v0 satisfy the compatibility conditions, and

v∗ = 0.1925, θ0 = −0.1925, θ1 = 1.6461, θ2 = 2.4408, θ3 = 2.7710, θ4 = 2.9065,

. . . , lim
j→∞

θ3 = 3, m̃ = 3,

and the conditions of Theorem 1.1 are satisfied. The solution (u, v) displays chaotic vibration,
as can be seen in Fig. 2.8. �

1.2.3 Memory effects when the displacement term is present in the nonlin-

ear boundary condition

Throughout this subsection, we assume that 0 < α < 1 and η > 0, η 6= 1.
The nonlinear boundary condition (1.16) does not contain the displacement term w(1, t).

However, such a term can naturally occur due to symmetry and reduction of dimensionality.
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Example 1.3 ([[[9, pp. 966–967]]]). The wave equation in 3D

∂2

∂x2
1

W (
⇀
x, t) +

∂2

∂x2
2

W (
⇀
x, t) +

∂2

∂x2
3

W (
⇀
x, t) − 1

c2

∂2W (
⇀
x, t)

∂t2
= 0, t > 0,

where
⇀
x = (x1, x2, x3) ∈ Ω = {⇀

x ∈ R
3 | a < |⇀x | < b}, for some a > 0, b > 0, i.e., Ω is the 3D

spherical-annular domain with radius a of the inner shell and radius b of the outer shell. The
boundary conditions are

∂W (
⇀
x, t)

∂n
= αWt(

⇀
x, t) − βW 3

t (
⇀
x, t) − k1W (

⇀
x, t), |⇀x | = a, t > 0; k1 ≥ 0,

∂W (
⇀
x, t)

∂n
=

1
η
Wt(

⇀
x, t) − k2W (

⇀
x, t), |⇀x | = b, t > 0; η > 0, k2 ≥ 0,

where n is the unit outward normal at ∂Ω, the boundary of Ω. Assume that the initial conditions
are radially symmetric:

W (
⇀
x, 0) = W0(|⇀x |),

Wt(
⇀
x, 0) = W1(|⇀x |)

}
⇀
x ∈ Ω, (1.32)

for some sufficiently smooth functions W0 and W1 defined on R. We can utilize this radial
symmetry to effect a reduction of dimensionality by setting

W (
⇀
x, t) =

w(r, t)
r

, r = |⇀x |. (1.33)

After some manipulation and simplifying assumptions, we obtain a 1D wave equation (1.14),
along with (1.15) and (1.17). However, the boundary condition (1.16) now becomes

wx(1, t) = αwt(1, t) − βw3
t (1, t) − γw(1, t), t > 0, (1.34)

for some γ > 0. Note that since γ > 0, the term γw(1, t) in (1.34) cannot be eliminated. �

On the boundary x = 1, t > 0, we have

w(1, t) =
∫ t

0

wt(1, τ)dτ − w(0, t).

Therefore, the wave-reflection condition (1.25) at the right-end x = 1 is now modified to be a
nonlinear boundary integral equation:

“For given v(τ), 0 ≤ τ < 1, and a0 ∈ R, find u(τ), 0 ≤ τ < t such that

βX3(t) + (1 − α)X(t) + γ

[∫ t

0

X(τ)dτ + a0

]
+ 2v(t) = 0, t > 0, (1.35)

where X(t) ≡ u(t) − v(t).”

It is not difficult to prove that the nonlinear integral equation (1.35) has a unique solution u

when v is sufficiently smooth, say v is C0. But the difficulty here is that the integral term

γ

∫ t

0

v(τ)dτ, as part of γ

∫ t

0

X(τ)dτ = γ

∫ t

0

[u(τ) − v(τ)]dτ in (1.35),

now has a memory effect. The Poincaré section of the PDE is no longer an interval map Gη◦Fα,β

which we relied so heavily in Subsections 1.2.1 and 1.2.2. The problem is no longer reducible to
a 1-dimensional map. It is a genuine infinite dimensional problem.
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For an infinite-dimensional problem, there is first the question of what we mean by chaos in
such a system. Here we take an intuitive view that for a dynamical system

d

dt
x(t) = f(x(t)), t > 0,

x(0) = x0 ∈ H,
(1.36)

where H is a certain function space over the spatial interval I ⊂ R, we say that the solution
x(·) of (1.36) is chaotic if

VI(x(t)) ≥ Keµt, for some K, µ > 0, for all t > 0, (1.37)

where VI(f) is the total variation of f on the spatial interval I defined by

VI(f) = sup
P

{ n−1∑
j=0

|f(xj+1) − f(xj)|
∣∣∣ {x0, x1, . . . , xn} ∈ P ,

x0 < x1 < · · · < xn, xj ∈ I, j = 0, 1, . . . , n

}
(1.38)

and P is the set of all partitions {x0, x1, . . . , xn} of the interval I. Thus, (1.37) says that the total
variation in time of the solution x(·) grows exponentially. This view and approach is developed
in [8, 10], motivated by the theorems in [10] that for interval maps, the exponential growth of
iterates of total variations is equivalent to the fact that the interval map has a homoclinic orbit,
and is thus chaotic.

A key idea in establishing the property (1.37) for our PDE system under study here in this
subsection is to exploit the fact that the map Gη ◦ Fα,β has, in addition to the invariant square
[−I2, I2]× [−I2, I2] as indicated in Fig. 2.2, when M < I2, also two smaller invariant rectangles
contained within, such as Fig. 2.9 indicates visually. This leaves us with some leeway (called
the extra margin property in [9]) to treat (1.35) as a (very) small perturbation term so that the
solution stays within the large invariant square [−I2, I2] × [−I2, I2]. But the restriction is that
γ must be quite small. We have proved the following.

Theorem 1.2 ([[[9, pp. 978–979, Theorem 4.1]]]). Consider (1.22), (1.23), (1.26) and (1.35).
Let w0 and w1 in (1.23) be sufficiently smooth and be compatible with the boundary conditions
(1.17) and (1.34) such that u0 = (1/2)(w′

0 + w1) and v0 = (1/2)(w′
0 − w1) satisfy

|v0(x)| ≤ M1, |u0(x)| ≤ M2, x ∈ [0, 1],

where

M1 ≡ local maximum of Gη ◦ Fα,β = M (cf. caption of Fig. 2.2)

=
∣∣∣∣1 + η

1 − η

∣∣∣∣ 1 + α

3

√
1 + α

3β
,

M2 ≡ local maximum of Fα,β ◦ Gη

=
1 + α

3

√
1 + α

3β
.

Let η satisfy either

0 <

(
1 − 1 + α

3
√

3

) (
1 +

1 + α

3
√

3

)−1

< ηηη0 < 1

12



or

1 < η̄0 < η <

(
1 − 1 + α

3
√

3

)−1 (
1 +

1 + α

3
√

3

)
,

where ηηη0 : 0 < ηηη0 < 1 and η̄0 : 1 < η̄0 < ∞ are the unique solution of, respectively, the following
equations

1 + ηηη0

1 − ηηη0

1 + α

3

(
1 + α

3β

)1/2

=
1 + ηηη0

2ηηη0

(
1 + αηηη0

βηηη0

)1/2

,

η̄0 + 1
η̄0 − 1

1 + α

3

(
1 + α

3β

)1/2

=
1 + η̄0

2

(
α + η̄0

β

)1/2

.

Assume that γ > 0 is sufficiently small, and that

Range v0 ⊇ [−δ, M1 − δ], Range u0 ⊇ [−δ, M2 − δ],

for some small δ > 0 depending only on α, β, γ and η. Then we have

V[0,1](u(·, t)) ≥ Keµt → ∞,

V[0,1](v(·, t)) ≥ Keµt → ∞,

}
as t → ∞,

for some µ > ln 2, where V[0,1] denotes the total variation on the x-interval [0, 1]. �

Snapshots of u and v for some “generic” example are offered in Fig. 2.10.

1.2.4 Nonisotropic spatiotemporal chaotic vibration

The chaotic vibrations studied in previous subsections are isotropic in space and time because
the governing equation (1.14) is invariant with respect to the change of variables x ↔ t. (In
addition, (1.14) is invariant under x ↔ −t.) A somewhat different equation, described by the
PDE

wxx(x, t) − νwxt(x, t) − wtt(x, t) = 0, 0 < x < 1, t > 0; ν > 0 (1.39)

contains a special feature that the two families of characteristics propagate with different speeds
and, thus, provide a simple model for the analysis of nonisotropic spatiotemporal chaotic vibra-
tion.

The time rate of change of energy corresponding to (1.39), subject to boundary conditions

wx(0, t) = 0, t > 0, (1.40)

wx(1, t) = αwt(1, t) − βw3
t (1, t), t > 0; α, β > 0, (1.41)

is then found to be

d

dt
E(t) ≡ d

dt

[
1
2

∫ 1

0

(w2
x = w2

t )dx

]
(integration by parts ⇒)

= T1 + T2,

where
T1 ≡ ν

2
w2

t (0, t), T2 ≡ w2
t (1, t)

[(
α − ν

2

)
− βw2

t (1, t)
]
. (1.42)

The positivity or negativity of T1 and T2 signifies the following:

13



(i) T1 ≥ 0 if ν > 0, i.e. there is energy injection into the system indirectly through the term
−νwxt in (1.39). This T1 term would have disappeared if the homogeneous Dirichlet
condition w(0, t) = 0 were imposed at x = 0 in lieu of the Neumann condition (1.40).

(ii) T2 is “regulating” if α − (ν/2) > 0, i.e.

T2 ≥ 0 if |wt(1, t)| ≤
√

α − ν
2

β
;

T2 < 0 if |wt(1, t)| >

√
α − ν

2

β
.

Thus energy is increasing if velocity is small, and decreasing if velocity is large.

(iii) T2 is dissipative, i.e. T2 ≤ 0, if α − (ν/2) ≤ 0.

Again, we hope that the imbalance between energy injection and the self-regulation effect may
lead to chaos.

To study (1.39), we again use the method of characteristics by setting

u =
1

ρ1(ν) + ρ2(ν)
[ρ2(ν)wx + wt],

v =
1

ρ1(ν) + ρ2(ν)
[ρ1(ν)wx − wt],

where
ρ1(ν) ≡ [−ν + (4 + ν2)1/2]/2, ρ2(ν) = [ν + (4 + ν2)1/2]/2.

We obtain a diagonalized linear symmetric first order hyperbolic system

∂

∂t

[
u(x, t)
v(x, t)

]
=

[
ρ1(ν) 0

0 −ρ2(ν)

]
∂

∂x

[
u(x, t)
v(x, t)

]
, 0 < x < t, t > 0. (1.43)

Physically, the above says that one wave travels to the right with speed 1/ρ1(ν), while another
wave travels to the left with speed 1/ρ2(ν). A complete cycle of vibration takes ρ1(ν) + ρ2(ν)
time units. The boundary condition (1.40) gives the reflection relation

v(0, t) = −u(0, t) ≡ G(u(0, t)), t > 0, (1.44)

at the left-end x = 0, while (1.41) gives

u + v = α(ρ1u − ρ1v) − β(ρ1u − ρ2v)3; ρi = ρi(ν) for i = 1, 2,

or
βX3 + (ρ2 − α)X + (ρ2

2 + 1)v = 0; X ≡ ρ1u − ρ2v. (1.45)

In order to have a unique real solution u for a given v from the cubic equation, from now on we
require that

ρ2(ν) − α =
√

4 + ν2 + ν

2
− α ≥ 0. (1.46)

For each given v, then the real solution u of (1.45) is expressed as

u = Fν(v),

14



where ν > 0 satisfying (1.46) is regarded as the varying parameter, while α, β > 0 are assumed
to be held fixed. The unique solution of (1.43)–(1.45), with initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), 0 < x < 1,

can now be expressed explicitly as follows: for 0 < x < 1 and for t = k(ρ1 + ρ2) + τ , k =
0, 1, 2, . . . , 0 ≤ τ < ρ1 + ρ2,

u(x, t) =


(Fν ◦ G)k(u0(x + ρ1τ)), τ ≤ ρ2(1 − x),
Fν ◦ (G ◦ Fν)k(v0(1 + ρ2

2 − ρ2
2(x + ρ1τ)), ρ2(1 − x) < τ ≤ ρ2(1 + ρ2

1 − x),
(Fν ◦ G)k+1(u0(x + ρ1τ − 1 − ρ2

1)), ρ2(1 + ρ2
1 − x) < τ < ρ1 + ρ2,

v(x, t) =


(G ◦ Fν)k(v0(x − ρ2τ)), τ ≤ ρ1x

G ◦ (Fν ◦ G)k(u0(−ρ2
1(x − ρ2τ))), ρ1x < τ ≤ ρ1(x + ρ2

2),
(Fν ◦ G)k+1(v0(x − ρ2τ + 1 + ρ2

2)), ρ1(x + ρ2
2) < τ < ρ1 + ρ2.

Again, as in (1.27), we see that G ◦ Fν forms a natural Poincaré section for the given PDE
system. Chaotic vibration occurs if the map G ◦ Fν is chaotic.

One can analyze that as ν increases, the map G ◦ Fν has a period-doubling cascade similar
to what we have in (1.28)–(1.30) in Subsection 1.2.2. Also, G ◦ Fν has homoclinic orbits and a
Cantor-like fractal invariant set when ν enters a certain regime. For details, see [7].

To conclude, we provide the following example and graphics.

Example 1.4 ([[[7, pp. 552–554, Example 6.2]]]). Choose α = 0.5, β = 1 and ν = 3.33. For
these parameters it is known [7] that the map G ◦ Fν is chaotic.

We have
ρ1(ν) = 0.277, ρ2(ν) = 3.61.

A complete cycle of vibration takes ρ1 + ρ2 ≈ 3.88 time units.
For initial conditions, we choose

v0(x) ≡ 0, 0 ≤ x ≤ 1,

and a C2-spline for u0:

u0(x) =
1
12



(x − x1)3

h3
, x1 ≤ x ≤ x2,

1 +
3(x − x2)

h
+

3(x − x2)2

h2
− 3(x − x2)3

h3
, x2 ≤ x ≤ x3,

1 − 3(x − x4)
h

+
3(x − x4)3

h2
+

3(x − x4)3

h3
, x3 ≤ x ≤ x4,

(x5 − x)3

h3
, x4 ≤ x ≤ x5,

0, elsewhere,

h =
1
6
, xj =

j

6
, j = 1, 2, 3, 4, 5.

The profiles of u and v, as well as the gradient wx, wt, are plotted in Figs 2.10 and 2.11. The
reader may observe sharp “randomness” in every direction of space and time. Thus, nonisotropic
chaotic vibration shows strong mixing of waves. �
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1.3 Some open questions

We pose a few open questions relevant to the topics discussed in Section 1.2. In our opinion,
these are “workable” problems whose resolution will significantly enhance our understanding of
chaos in PDEs.

(Q1) Chaotic vibration in 3D

Example 1.3 in Subsection 1.2.3 shows a 3D problem whose solution has chaotic behavior in
the radial variable, as we have successfully reduced the problem to 1D in terms of the variable
r = |x| =

√
x2

1 + x2
2 + x2

3 (which is rewritten as x in (1.14)). What if the initial conditions in
(1.32) contain a small perturbation such as

W (
⇀
x, 0) = W0(|⇀x |) + εf(

⇀
x), Wt(

⇀
x, 0) = W1(|⇀x |),

where f(
⇀
x) is not a function of |⇀x | only?

There is little trouble in believing that chaotic vibration will occur when α, β, γ and η satisfy
the assumptions in Theorem 1.2. This will be genuine 3D chaotic vibration because W (

⇀
x, t)

depends not only on |⇀x | but also on the spherical angular variables θ and φ as well.
Can we establish a rigorous proof for this?

(Q2) Chaotic vibration of the wave equation on a 2D annular domain with

radial symmetry

Consider Example 1.3 again, but in 2D, i.e.,

Ω = {⇀
x ∈ R

2 | a < |⇀x | < b}.

Also assume (1.32), so we have radial symmetry. But the wave equation in 2D,

∂2W (
⇀
x, t)

∂x2
1

+
∂2W (

⇀
x, t)

∂x2
2

− 1
c2

∂2W (
⇀
x, t)

∂t2
= 0

is no longer reducible to the form (1.14) because the Huygen’s principle does not apply to 2D.
The reduced form we can reach is

∂2w(r, t)
∂r2

+
1
r

∂w(r, t)
∂r

− 1
c2

∂2w(r, t)
∂t2

= 0, r = |⇀x |, a < r < b.

For this equation, can we study its chaotic vibrations such as those discussed in Section 1.2?

(Q3) The 1D linear Klein–Gordon equation

The equation is

1
c2

wtt(x, t) − wxx(x, t) + k2w(x, t) = 0, 0 < x < 1, t > 0, k2 > 0.

The dispersion term k2w above causes significant technical difficulty in the analysis of its be-
havior when boundary conditions contain nonlinearities.

Can we develop effective methods and devise nonlinear feedback boundary conditions to
determine if the system behaves chaotically?
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(Q4) van der Pol nonlinearity distributed over the xxx-span

We have assumed the van der Pol nonlinearity to live on the boundary x = 1 such as (1.16).
Instead, we may also consider the van der Pol nonlinearity to be distributed

wtt(x, t) + [−αwt(x, t) + βw3
t (x, t)] − wxx(x, t) = 0, 0 < x < 1, t > 0, α, β > 0, (1.47)

and set
w(1, t) = 0, t > 0.

Then we have

d

dt
E(t) =

d

dt

[
1
2

∫ 1

0

(w2
x + w2

t )dx

]
= ηw2

x(0, t) +
∫ 1

0

w2
t (α − βw2

t )dx.

So again we see that the bracketed terms in (1.47) have a self-regulation effect.
Numerical experiments have shown that when η enters a certain regime (while α and β are

held fixed), chaotic vibration occurs.
Can this be rigorously proved?

(Q5) Memory effect of the displacement term when γ > 0γ > 0γ > 0 in (1.34) is not

small

The study in Subsection 1.2.3 was essentially carried out by a perturbation argument re-
quiring that γ be small. There is never any doubt that even when γ is not small, the system
will possess chaotic behavior. The memory effect of γw tends to cause a deformation of the
invariant region, which we are unable to analyze so far.

We deem any successful study of the case when γ > 0 is not small very desirable.

(Q6) Coupled vibrating strings with a joint

This problem is of the type considered in [2, 6].
The composite reflection relation for such a coupled structure is a 2 × 2 nonlinear matrix

relation instead of the scalar map Gη ◦Fα,β or G ◦Fν surveyed in this paper. This type of 2× 2
nonlinear relation is not invertible, preventing the applicability of the Smale Horseshoe method.

New analytical methods are desirable to enable the treatment of 2-dimensional nonlinear
mappings in order to handle (Q6).
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