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Abstract This paper deals with a resource competition model of two algal species in a
water column with excessive dioxide in the atmosphere. First, the uniqueness of positive
steady state solutions to the single-species model with two resources is established by the
application of the degree theory and the strong maximum principle for the cooperative
system. Second, some asymptotic behavior of the single-species model is given by com-
parison principle and uniform persistence theory. Third, the coexistence solutions to the
competition system of two species with two substitutable resources are obtained by global
bifurcation theory, various estimates and the strong maximum principle for the cooperative
system. Numerical simulations are used to illustrate the outcomes of coexistence and
competitive exclusion.
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1 Introduction

Some of the most profound challenges in understanding the global environment involve the con-
nection between phytoplankton and carbon. As photosynthetic organisms, the algae of oceans and
lakes consume inorganic carbon and produce organic matter. Atmospheric carbon dioxide (CO2)
is the ultimate source of the carbon consumed by phytoplankton, and the organic matter they
produce either fuels aquatic food webs (whence most of it is returned to the atmosphere as CO2),
or is transported to deep water and sediments by sinking algae. This sinking flux potentially in-
fluences whether the world’s ocean can absorb enough of the CO2 produced by burning fossil fuels
to retard the expected warming of the earth (Siegenthaler and Sarmiento 1993; Sabine et al. 2004;
Riebesell et al. 2007).

Understanding the role of phytoplankton in global carbon dynamics is complicated by many
factors, including the biochemistry of carbon acquisition by algae and the geochemistry of inorganic
carbon in aquatic systems. Algae acquire inorganic carbon from CO2 dissolved in the water,
assimilating it into photosynthesis via the Rubisco enzyme (Kaplan and Reihnold 1999; Badger et
al. 2006). Many species possess various adaptations (called carbon concentrating mechanisms) to
increase the concentration of CO2 at the active site of this enzyme, including active transport of
CO2 and of bicarbonate, an ionic form of inorganic carbon, which is converted enzymatically to
CO2 (Raven 1970; Martin and Tortell 2008; Maberly et al. 2009). This biochemical capability to
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use bicarbonate can be important where, as in ocean water, the bicarbonate concentration greatly
exceeds that of CO2 (Rost et al. 2008). Geochemically, CO2 diffuses across the air water interface,
and is produced biochemically by the respiration and decomposition of organic matter. Once
dissolved in water, CO2 hydrates with water molecules to form carbonic acid. This acid can lose
one proton to become the bicarbonate ion, which can in turn lose another to become the carbonate
ion. Both of these ionic forms of inorganic carbon can enter aquatic systems through dissolution
from sediments and surrounding rocks and soils, so that inland and coastal waters display greater
variability of inorganic carbon concentrations than does the open ocean. The availability of CO2

and bicarbonate to algae thus depends on multiple sources of supply and the kinetics of several
chemical reactions, diffusive transport across the surface of the water, and on transport within the
water by turbulent diffusion in deep or poorly mixed systems.

Two important quantities in aquatic chemistry strongly influence the kinetics of reactions in-
volving inorganic carbon: pH and alkalinity. The pH is a measure of proton (or H+ ion) concen-
tration in water, on a negative log10 scale, and measures the difference between the concentration
of ions that can absorb protons and the concentration of proton donors (Wolf-Gladrow et al.
2007). Although alkalinity potentially depends on the concentrations of many dissolved ions, it is
strongly related to the concentrations of bicarbonate and carbonate ions. Both pH and alkalinity
of the world’s waters are influenced by human processes. The increasing CO2 concentration of
the atmosphere supplies inorganic carbon to water and lowers its pH, increasing its proton con-
centration (Orr et al. 2005). Atmospheric sulfur and nitrogen oxides, which are also produced by
fossil fuel combustion, convert to acids, and when deposited in receiving waters they reduce both
pH and alkalinity (Rice and Herman 2012). Alkalinity can also be altered by changes in erosion
and weathering of rocks and soils accompanying various geological processes and human activities.
Thus the relationship between inorganic carbon and the algae of oceans and lakes connects many
environmental problems of global scale.

The goal of this paper is to construct a model of algal growth and competition between species
in relation to the supply inorganic carbon, simplifying the complex processes involved to a point
of analytical tractability. We begin with a simplification introduced by Van de Waal et al. (2011),
who proposed to represent dissolved CO2 and carbonic acid as one resource and bicarbonate and
carbonate ions as another. For shorthand we denote the first resource as ”CO2” and the second
as ”CARB”, denoting their concentrations ( µmol m−3) as R(x, t) and S(x, t), respectively. These
resources are substitutable (Tilman 1982) in their effects on algal growth. In a well-mixed system
in contact with the atmosphere but containing no algae or additional external sources of inorganic
carbon, the kinetics of R and S (taken independent of x), follow the linear system:

dR
dt = −α(R(t)− R̂) + ωsS(t)− ωrR(t),
dS
dt = −ωsS(t) + ωrR(t),

(1)

where α is the rate of CO2 gas exchange between air and water, R̂ is the thermodynamic equilibrium
concentration of CO2 in water, ωr is the rate at which carbonic acid loses a proton to become
bicarbonate, and ωs the rate of the reverse reaction. All of these parameters vary with the physical
and chemical conditions of natural waters, including in particular temperature, pH and alkalinity.
The parameter R̂ also depends directly on the atmospheric CO2 concentration, which is currently
increasing due to fossil fuel combustion. If the parameters of the linear system are taken as
constants, then it has a stable equilibrium in which R(t) approaches R̂, and S(t) approaches a
value R̂ωr/ωs. Additional processes, such as consumption of CO2 and CARB by algae, displace the
system from this equilibrium. Van de Waal et al. (2011) introduced terms for this consumption,
and additional computations of feedbacks that arise from changes in pH and alkalinity during
algal growth and thus alter the parameters of the linear system. For the purposes of this study,
we ignore these latter feedbacks, treating the parameters of the linear system as constant. An
additional simplification used here is that the cellular carbon content (or quota) is constant.

These simplifications are intended to retain analytical tractability while coupling the assumed
linear dynamics of CO2 and CARB to consumption and growth of algae, and embedding these
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dynamics in a spatially extended system, representing the vertical water column of an ocean or
lake. For this water column, atmospheric exchange occurs at the surface and is thus represented in
the upper boundary conditions (depth x = 0). Additional sources of both CO2 and CARB arise in
the lower boundary (depth x = L), as a result of decomposition of organic matter and weathering
of sediments, respectively. Turbulent diffusion transports all constituents between these boundary
points, but produces only incomplete mixing.

Because algal species differ in their relative abilities to consume CO2 and CARB (Badger et al.
2006; Martin and Tortell 2008; Maberly et al. 2009), we include two competing species, taking the
first to be more proficient than the second at consuming CO2, and the second to be more proficient
at consuming CARB. Both resources are substitutable to both species. The conventional graphical
analysis of competition between two species for two substitutable resources (Tilman 1982; Grover
1997) leads to the expectation that competition outcomes should depend on the relative supplies of
CO2 and CARB. Relatively high CO2 supply should produce dominance by the better consumer of
CO2, relatively high CARB supply should produce dominance by the better consumer of CARB,
and intermediate supplies could allow coexistence. Additional results are possible if one of the
resources cannot support growth of one of the competitors (Ballyk and Wolkowicz 1993; Ballyk
et al. 2005). In the model studied here there are further complications that have received little
attention in the literature on substitutable resources: conversion between the resources such as
represented by the linear system (1), recycling of one resource (CO2) through respiration, and
the spatial structure of a water column. Our goal is to address such resource conversion in a
water-column model representing algal growth and competition in relation to inorganic carbon.
Our model complements similar models representing competition for other inorganic nutrients and
light in a water column (e.g. Huisman et al. 1999; Klausmeier and Litchman 2001; Yoshiyama et
al. 2009; Grover 2009, 2011; Blasius and Ryabov 2011; Kerimoglu et al. 2012). From a practical
standpoint, we wish to know whether different algal species win the competition, depending on
the geochemical parameters governing inorganic carbon, which are currently impacted by human
alteration. Because different algal species have different edibility to consumer animals, for example,
such knowledge lays the foundation to understand the food web and ecosystem impacts of human
alteration of the aquatic carbon cycle.

2 The Mathematical Model and Main Results

We consider a resource competition model of two species in a water column with excessive dioxide
in the atmosphere

Rt = DRxx + ωsS − ωrR+ r1
Q∗1
B1 + r2

Q∗2
B2 − f1(R)B1 − f2(R)B2, x ∈ (0, L), t > 0,

St = DSxx − ωsS + ωrR− g1(S)B1 − g2(S)B2, x ∈ (0, L), t > 0,
(B1)t = D(B1)xx − ν1(B1)x + [f1(R) + g1(S)− r1

Q∗1
−m1]B1, x ∈ (0, L), t > 0,

(B2)t = D(B2)xx − ν2(B2)x + [f2(R) + g2(S)− r2
Q∗2
−m2]B2, x ∈ (0, L), t > 0,

(2)

with boundary conditions

Rx(0, t) = α(R(0, t)− R̂), R(L, t) = R0, t > 0,
Sx(0, t) = 0, S(L, t) = S0, t > 0,
D(Bi)x(0, t)− νiBi(0, t) = 0, D(Bi)x(L, t)− νiBi(L, t) = 0, i = 1, 2, t > 0,

(3)

and nonnegative initial conditions, where R(x, t), S(x, t), B1(x, t), B2(x, t) are the concentrations
of “CO2”, “CARB” and the two algal species. α, R̂, ωs, ωr > 0 are constants, whose biological
meaning can be found in Introduction. D > 0 is the vertical turbulent diffusion coefficient, νi is
the sinking velocity (νi > 0) or the buoyant velocity (νi < 0) of species i(i = 1, 2). mi, ri, Q

∗
i are

the death rate, respiration rate and Carbon quota of species i(i = 1, 2), respectively. R0, S0 > 0
are the source concentration of CO2 and CARB at the bottom of the water column, respectively.
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Here for S,R ≥ 0,

fi(R) =
µirR

air +R
and gi(S) =

µisS

ais + S

with i = 1, 2, µir, µis > 0 are the maximum growth/uptake rates of species i(i = 1, 2) in relation to
CO2 and CARB respectively, and air, ais > 0 are the half-saturation constants for growth/uptake
of species i(i = 1, 2) in relation to CO2 and CARB respectively. For S,R ≤ 0, we take the response
functions fi(R) = 0 and gi(S) = 0 with i = 1, 2.

For simplicity by suitable scaling, we may assume L = 1. Let r̄i = ri
Q∗i

. Then the original

system (2)-(3) becomes

Rt = DRxx + ωsS − ωrR+ r1B1 + r2B2 − f1(R)B1 − f2(R)B2, x ∈ (0, 1), t > 0,
St = DSxx − ωsS + ωrR− g1(S)B1 − g2(S)B2, x ∈ (0, 1), t > 0,
(B1)t = D(B1)xx − ν1(B1)x + [f1(R) + g1(S)− r1 −m1]B1, x ∈ (0, 1), t > 0,
(B2)t = D(B2)xx − ν2(B2)x + [f2(R) + g2(S)− r2 −m2]B2, x ∈ (0, 1), t > 0,

(4)

with the boundary conditions

Rx(0, t) = α(R(0, t)− R̂), R(1, t) = R0, t > 0,
Sx(0, t) = 0, S(1, t) = S0, t > 0,
D(Bi)x(0, t)− νiBi(0, t) = 0, D(Bi)x(1, t)− νiBi(1, t) = 0, i = 1, 2, t > 0

(5)

and nonnegative initial conditions. Here we denote r̄i by ri (i = 1, 2) for the sake of simplicity.

The steady-state system of (4)-(5) is

DRxx + ωsS − ωrR+ r1B1 + r2B2 − f1(R)B1 − f2(R)B2 = 0, x ∈ (0, 1),
DSxx − ωsS + ωrR− g1(S)B1 − g2(S)B2 = 0, x ∈ (0, 1),
D(B1)xx − ν1(B1)x + [f1(R) + g1(S)− r1 −m1]B1 = 0, x ∈ (0, 1),
D(B2)xx − ν2(B2)x + [f2(R) + g2(S)− r2 −m2]B2 = 0, x ∈ (0, 1),

(6)

with the boundary conditions

Rx(0) = α(R(0)− R̂), R(1) = R0, Sx(0) = 0, S(1) = S0,
D(Bi)x(0)− νiBi(0) = 0, D(Bi)x(1)− νiBi(1) = 0, i = 1, 2,

(7)

The nonnegative steady state solutions of (4)-(5) can be divided into three types:

(i) washout solutions (namely trivial solutions) (R,S, 0, 0);

(ii) semi-trivial solutions (R,S,B1, 0) and (R,S, 0, B2);

(iii) positive solutions (R,S,B1, B2) with B1(x) > 0 and B2(x) > 0 on [0, 1].

We begin with determining the washout solutions to (4)-(5). If B1 = B2 = 0, we have

Rt = DRxx + ωsS − ωrR, x ∈ (0, 1), t > 0,
St = DSxx − ωsS + ωrR, x ∈ (0, 1), t > 0,

Rx(0, t) = α(R(0, t)− R̂), R(1, t) = R0,
Sx(0, t) = 0, S(1, t) = S0,
R(x, 0) = R0(x) ≥ 0, S(x, 0) = S0(x) ≥ 0.

(8)

Theorem 2.1 (8) has a unique steady state solution (R∗(x), S∗(x)) with R∗(x), S∗(x) > 0 on [0, 1].
Moreover, the solution (R(x, t), S(x, t)) of (8) satisfies (R(x, t), S(x, t))→ (R∗, S∗) as t→ +∞.

It follows from Theorem 2.1 that the steady-state system (6)-(7) has a unique washout equilib-
rium solution (R∗, S∗, 0, 0). Here R∗ = R∗(x), S∗ = S∗(x), 0 ≤ x ≤ 1. Let

m∗1 := −λ1(−f1(R∗)− g1(S∗), ν1)− r1 and m∗2 := −λ1(−f2(R∗)− g2(S∗), ν2)− r2,
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where λ1(−fi(R∗) − gi(S
∗), νi)(i = 1, 2) is the smallest eigenvalue corresponding to the linear

eigenvalue problem (39) (or (38) equivalently) with q(x) = −fi(R∗)− gi(S∗) and ν = νi. Suppose
fi(R

∗) > ri(i = 1, 2). Then −fi(R∗)− gi(S∗) < −ri. It follows from Lemma D.1 that

λ1(−fi(R∗)− gi(S∗), νi) < λ1(−ri, νi) = −ri,

which implies m∗i > 0(i = 1, 2) provided that fi(R
∗) > ri(i = 1, 2).

Theorem 2.2 Suppose fi(R
∗) > ri(i = 1, 2). Then the unique washout equilibrium solution

(R∗, S∗, 0, 0) of (6)-(7) is linearly stable provided m1 > m∗1,m2 > m∗2; and unstable provided
m1 < m∗1 or m2 < m∗2.

Next, we study the single population system

Rt = DRxx + ωsS − ωrR+ rB − f(R)B, x ∈ (0, 1), t > 0,
St = DSxx − ωsS + ωrR− g(S)B, x ∈ (0, 1), t > 0,
Bt = DBxx − νBx + [f(R) + g(S)− r −m]B, x ∈ (0, 1), t > 0,

Rx(0, t) = α(R(0, t)− R̂), R(1, t) = R0, t > 0,
Sx(0, t) = 0, S(1, t) = S0, t > 0,
DBx(0, t)− νB(0, t) = 0, DBx(1, t)− νB(1, t) = 0, t > 0,
R(x, 0) = R0(x) ≥ 0, S(x, 0) = S0(x) ≥ 0, B(x, 0) = B0(x) ≥ 0, 6≡ 0,

(9)

where f(R), g(S), r, ν have exactly the same meaning as the associated parameters or variables
with subscript i = 1 or 2. The corresponding steady state problem is

DRxx + ωsS − ωrR+ rB − f(R)B = 0, x ∈ (0, 1),
DSxx − ωsS + ωrR− g(S)B = 0, x ∈ (0, 1),
DBxx − νBx + [f(R) + g(S)− r −m]B = 0, x ∈ (0, 1),

(10)

with the boundary conditions

Rx(0) = α(R(0)− R̂), R(1) = R0,
Sx(0) = 0, S(1) = S0,
DBx(0)− νB(0) = 0, DBx(1)− νB(1) = 0.

(11)

Theorem 2.3 Let m∗ := −λ1(−f(R∗)−g(S∗), ν)−r and assume f(R∗) > r. Then (10)−(11) has
a unique positive solution if m ∈ (0,m∗) and it has no positive solution if m ≥ m∗. Moreover, the
unique positive solution (R,S,B) is continuous in (0,m∗) with respect to m. Here λ1(−f(R∗) −
g(S∗), ν) is the smallest eigenvalue corresponding to the linear eigenvalue problem (39) (or (38)
equivalently) with q(x) = −f(R∗)− g(S∗).

Theorem 2.4 Let m∗ := −λ1(−f(R∗)− g(S∗), ν)− r and suppose f(R∗) > r. Then

(i) the solution (R(x, t), S(x, t), B(x, t)) of (9) converges to the washout steady state (R∗, S∗, 0)
as t→∞ uniformly on [0, 1] provided m > m∗.

(ii) the system (9) is uniformly persistent (i.e. there exists ε0 > 0 such that the solution
(R(x, t), S(x, t), B(x, t)) of (9) satisfies lim inf

t→∞
B(·, t) ≥ ε0) provided 0 < m < m∗.

Remark 2.5 Theorems 2.3 and 2.4 indicate that m∗ is a critical death rate. Namely, the species
goes extinct if the death rate m > m∗; the species survives if the death rate m < m∗.

Now, we state the results on the two species system (4)-(5). It follows from Theorem 2.3 that
the steady-state system (6)-(7) has two semi-trivial solutions, denoted by

(R̄1(m1, ·), S̄1(m1, ·), B̄1(m1, ·), 0) and (R̄2(m2, ·), S̄2(m2, ·), 0, B̄2(m2, ·))

provided that m1 ∈ (0,m∗1) and m2 ∈ (0,m∗2). From now on, we denote the two semi-trivial
solutions by omitting the spacial variable x or the parameters mi(i = 1, 2) for simplicity. Define
the following two semi-trivial branches

Γ1 = {(m2, R̄1(m1), S̄1(m1), B̄1(m1), 0) : m2 ∈ (0,+∞)}
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and
Γ2 = {(m2, R̄2(m2), S̄2(m2), 0, B̄2(m2)) : m2 ∈ (0,m∗2)}.

Next, we treat m2 as the bifurcation parameter to construct positive solutions to (6)-(7) from the
semi-trivial branch Γ1. We assume 0 < m1 < m∗1, 0 < m2 < m∗2 and use the global bifurcation
theorem (see Theorem 2.1 of (Du 1996)) to find sufficient conditions for the existence of positive
solutions to (6)-(7).

Theorem 2.6 Suppose fi(R̄j) > ri with i = 1, 2, j = 1, 2. Then for fixed m1 ∈ (0,m∗1), (6)-(7) has
a positive solution (R,S,B1, B2) if m2 lies between m̂2 and m̃2. Moreover, there exists a branch
of positive solutions Γ = {(m2, R, S,B1, B2)} ⊂ (0,+∞) × C([0, 1],R4

+) which bifurcates from
the semi-trivial solution branch Γ1 at (m̂2, R̄1, S̄1, B̄1, 0) and meets the other semi-trivial solution
branch Γ2 precisely at (m̃2, R̄2, S̄2, 0, B̄2). Here m̂2 = −λ1(−f2(R̄1) − g2(S̄1), ν2) − r2 and m̃2 is
determined by m1 = −λ1(−f1(R̄2(m̃2))− g1(S̄2(m̃2)), ν1)− r1.

3 Numerical results

3.1 Competitive outcomes in relation to parameter values

To illustrate the dynamics of equation system (2)-(3) numerically, a default parameter set was
assigned in Table 1. The biological parameters are similar to those used by Van de Waal et al.
(2011), based on cyanobacteria that are common in inland waters. With the assigned values, both
competing species consume CARB more effectively than CO2, but species 1 is better than species
2 at consuming CO2, while species 2 is better than species 1 at consuming CARB. The physical
and geochemical parameters are assigned to represent CO2 and CARB concentrations typical of
thermally stratified inland waters of moderate to high alkalinity. If other nutrients are sufficient,
lakes with these characteristics commonly contain cyanobacteria, and under these conditions CO2

is at relatively low concentration, while CARB is relatively high. Under these default conditions,
there is coexistence of the two competitors.

Table 1: Default Parameters

Quantity Value Quantity Value
D 3 m2 d−1 L 10 m

α 0.05 d−1 R̂ 104 µmol C m−3

R0 104 µmol C m−3 S0 104 µmol C m−3

ωr 3000 d−1 ωs 20 d−1

ν1 0.5 m d−1 ν2 0.2 m d−1

µ1r 0.2 d−1 µ2r 0.18 d−1

µ1s 1.6 d−1 µ2s 3 d−1

a1r 1000µmol C m−3 a2r 2000µmol C m−3

a1s 2× 105 µmol C m−3 a2s 7.5× 104 µmol C m−3

r1 50× 10−9 µmol C cell−1 d−1 r2 50× 10−9 µmol C cell−1 d−1

Q∗1 2500× 10−9 µmol C cell−1 Q∗2 3000× 10−9 µmol C cell−1

m1 0.1 d−1 m2 0.44 d−1

With the other parameters fixed at their default values, selected parameters were varied though
biologically realistic ranges, and bifurcations related to competitive exclusion and coexistence were
summarized by calculating the total biomasses of each species (as L1 norms), and then the propor-
tion of biomass represented by species 2, the CARB specialist. These calculations were done after
the system reached its asymptotic state. Thus competitive exclusion of species 1 is associated with
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a biomass proportion of one, competitive exclusion of species 2 with a biomass proportion of zero,
and coexistence by values between zero and one.

The theorems in section 2 address how the competitive outcomes of exclusion and coexistence
are related to the semitrivial and positive solutions of the system (2)-(3), when mortality rates
are taken as bifurcation parameters. As expected from these theorems, and in agreement with
biological intuition, low values for the mortality rate of species 1 (m1) enable it to exclude species
2, intermediate values allow coexistence, while high values produce exclusion of species 1 (Fig.
1a). Similarly, low values for the mortality rate of species 2 (m2) enable it to exclude species 1,
intermediate values allow coexistence, while high values produce exclusion of species 2 (Fig. 1b).

Sinking out of the water column can represent a loss process for planktonic algae, and thus
variations in sinking rate might intuitively be expected to produce competitive outcomes similar
to those seen in relation to mortality rate. This is not the case, however. For the default values of
ν1 = 0.5 m d−1 and ν2 = 0.2 m d−1 there is coexistence. Reducing the sinking rate for one species
alone leads to its competitive exclusion. That is, reducing ν1 produces exclusion for species 1 (Fig.
2a), and reducing ν2 leads to exclusion of species 2 (Fig. 2b). Conversely, raising the sinking rate
for one species alone leads to its dominance and exclusion of the other species (species 1 - Fig. 2a;
species 2 - Fig. 2b). Throughout most of the water column, CO2 is depleted to near zero (some
illustrations are presented in section 3.3), but it rises sharply near the bottom due to the non-zero
value of R0. Apparently, both species can benefit from the supply of CO2 at the bottom of the
water column and within the range of sinking rates explored, higher rates bring a larger proportion
of their populations into the vicinity of this source.

Another counterintuitive result arises from bifurcations in relation to R̂, the thermodynamic
equilibrium concentration of CO2. This parameter depends directly on the atmospheric CO2

concentration, which is currently rising. Although the increased supply of CO2 from the atmosphere
might be expected to favor the CO2 specialist (species 1), the result instead is that an increase of
R̂ favors dominance by species 2 (the CARB specialist), and eventually the exclusion of species
1 (Fig. 3). For the parameters assigned, the conversion of CO2 to CARB is very rapid, so that
as the atmospheric supply of CO2 increases, the water column experiences an effective increase in
CARB.

The parameters governing conversion between CO2 and CARB also affect competitive out-
comes, though more intuitively. As ωr increases, conversion of CO2 to CARB becomes more rapid,
increasing the effective supply of CARB relative to CO2. Accordingly, low values of ωr produce
exclusion of the CARB specialist (species 2), intermediate values produce coexistence, and high
values produce exclusion of the CO2 specialist (species 1) (Fig. 4a). Similarly, as ωs increases,
conversion of CARB to CO2 becomes more rapid, increasing the effective supply of CO2 relative to
CARB. Low values of ωs produce exclusion of the CO2 specialist (species 1), intermediate values
produce coexistence, and high values produce exclusion of the CARB specialist (species 2) (Fig.
4b).

The parameters representing sources of CO2 and CARB at the bottom of the water column (R0

and S0) also affect competitive outcomes, although in counterintuitive ways. The default value
of R0, produces coexistence. But, both higher and lower values produce exclusion of species 1,
the CO2 specialist when other parameters are at their default settings (Fig. 5a). Both species
consume CARB more effectively than CO2, and the CO2 introduced at the bottom of the water
column when R0 is high is mostly converted geochemically to CARB. This conversion benefits
species 2 because it is a better competitor for CARB. A wide range of values for S0 was explored
because natural waters vary greatly in geochemical sources of CARB. Against intuition, raising S0

to high values above the default value produces exclusion of species 2, the CARB specialist (Fig.
5b). For sufficiently low values of S0(< about 400µmol C m−3, not displayed on Fig. 5b), species
1 is excluded. Increasing S0 through this very low range appears to produce coexistence and then
exclusion of species 2, but for these lower values of S0 dynamics are complex and do not approach
equilibrium quickly.
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(a) (b)

Figure 1: Bifurcation diagrams of positive steady state solutions to (2)-(3) with the bifurcation
parameters m1 and m2, respectively. For (a), m1 ranges from 0.05 d−1 to 0.15 d−1, and for (b)
m2 ranges from 0.4 d−1 to 0.5 d−1. The other parameters are fixed as above. In this figure, the

vertical axis is
‖B2(·,t)‖L1

‖B1(·,t)‖L1+‖B2(·,t)‖L1
, where ‖ · ‖L1 is the L1 norm and t = 1000 d. This appears to

be long enough to allow the solutions to be very close to steady state. Moreover, it is easy to see

that
‖B2(·,t)‖L1

‖B1(·,t)‖L1+‖B2(·,t)‖L1
∈ (0, 1) implies coexistence, and

‖B2(·,t)‖L1

‖B1(·,t)‖L1+‖B2(·,t)‖L1
= 0 or 1 implies

competitive exclusion.

(a) (b)

Figure 2: Bifurcation diagram of positive steady state solutions to (2)-(3). For (a), the bifurcation
parameter ν1 ranging from 0.2 m d−1 to 0.8 m d−1, and the other parameters are fixed as above. For
(b), the bifurcation parameter ν2 ranging from 0.05 m d−1 to 0.65 m d−1, and the other parameters

are fixed as above. The vertical axis is still
‖B2(·,t)‖L1

‖B1(·,t)‖L1+‖B2(·,t)‖L1
, where ‖ · ‖L1 is the L1 norm and

t = 1000 d.

Figure 3: Bifurcation diagram of positive steady state solutions to (2)-(3) with the bifurcation
parameter R̂ ranging from 0.5 × 104 µmol C m−3 to 1.5 × 105 µmol C m−3. The other parameters

are fixed as above. The vertical axis is also
‖B2(·,t)‖L1

‖B1(·,t)‖L1+‖B2(·,t)‖L1
, where ‖ · ‖L1 is the L1 norm and

t = 1000 d.
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(a) (b)

Figure 4: Bifurcation diagram of positive steady state solutions to (2)-(3). For (a), the bifurcation
parameter ωr ranging from 2000 d−1 to 4000 d−1, and the other parameters are fixed as above.
For (b), the bifurcation parameter ωs ranging from 15 d−1 to 25 d−1, and the other parameters are

fixed as above. The vertical axis is also
‖B2(·,t)‖L1

‖B1(·,t)‖L1+‖B2(·,t)‖L1
, where ‖ · ‖L1 is the L1 norm and

t = 1000 d.

(a) (b)

Figure 5: Bifurcation diagram of positive steady state solutions to (2)-(3). For (a), the bifurca-
tion parameter R0 ranging from 5000µmol C m−3 to 3 × 104 µmol C m−3, and the other parame-
ters are fixed as above. For (b), the bifurcation parameter S0 ranging from 1 × 104 µmol C m−3

to 2 × 106 µmol C m−3, and the other parameters are fixed as above. The vertical axis is also
‖B2(·,t)‖L1

‖B1(·,t)‖L1+‖B2(·,t)‖L1
, where ‖ · ‖L1 is the L1 norm and t = 1000 d.

9



(a) (b)

Figure 6: Bifurcation diagrams of positive steady state solutions to (2)-(3) with the bifurcation
parameters m2 ranging from 0.4 d−1 to 0.5 d−1. In these figures, the vertical axis denote the L1

norm of R(·, t), S(·, t), B1(·, t), B2(·, t) at t = 1000 d, respectively.

3.2 Carbon stocks in relation to mortality

By varying the mortality rate of species 2, competitive outcomes vary from dominance by species
2, to coexistence, to dominance by species 1, when other parameters are at default values (Fig.
1b). Throughout these changes, the depth-integrated stock of CARB greatly exceeds that of CO2

(Fig. 6a, b). As m2 increases through the low range where species 2 is dominant, stocks of both
CO2 and CARB rise, as expected from Theorem 2.6 (Fig. 6b). When m2 is low and the CARB
specialist (species 2) dominates, its depth-integrated biomass is lower than the CARB stock (Fig.
6a), and its biomass decreases with m2 as expected from Theorem 2.6. As m2 increases to the
point where the CO2 specialist (species 1) dominates, the depth-integrated biomass of species 1
is higher than that attained by species 2, and higher than the CARB stock (Fig. 6a). Through
this high range of m2, stocks of CO2 and CARB are independent of variations in m2, because
species 2 is excluded. More generally, for the parameter space explored in this study, CARB is a
dominant carbon stock, although algal biomass can attain similar levels, while CO2 is generally at
much lower levels.

3.3 Depth distributions

Although consumption by algae is partially responsible for low levels of CO2, the depth distri-
butions characterizing the washout, semitrivial and coexistence equilibria (Figs. 7-9) under the
default parameters (except as noted) suggest that rapid conversion to CARB has a strong influence
on CO2 dynamics. When no algae are present (washout solution), the CARB concentration greatly
exceeds that of CO2 at all depths (Fig. 7), due to the very rapid conversion of CO2 to CARB
dictated by parameter values (ωr � ωs � 1). If the water column was well mixed, CO2 would
dissolve from the atmosphere into the water and be distributed over depth, with its concentration
approaching the thermodynamic equilibrium value, R̂, independent of the parameters ωr and ωs,
whose ratio would determine the concentration of CARB. Instead, concentrations of both CO2 and
CARB vary with depth and depend on the parameters ωr and ωs (e.g. compare Figs. 7a, b). Most
of the CO2 that enters from the atmosphere at the surface is rapidly converted to CARB, and then
distributed downward by mixing, producing decreasing depth distributions in the absence of algae
(Figs. 7a, b). Toward the very bottom of the water column, CARB decreases sharply and CO2

rises sharply, as both converge to the source concentrations R0 and S0, respectively.

For most depths, consumption by algae reduces CO2 and CARB below the concentrations seen
in the washout solution (Figs. 8, 9a). In the semitrivial equilibria where each species grows alone,
each displays increasing biomass distributions with depth, as a result accumulation from sinking
out of shallower water and growth on the CO2 and CARB sources at the bottom (Fig. 8). The
distribution of CARB is modified from the washout equilibrium, with a peak concentration near
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(a) (b)

Figure 7: The washout solutions to (2)-(3) with wr = 3000 d−1 for (a) and wr = 300 d−1 for (b). In
these figures, the concentrations R(x, t), S(x, t) at t = 1000 d are plotted versus the spatial variable
x on [0, L], respectively.

(a) (b)

Figure 8: The semitrivial solutions to (2)-(3) with all parameters fixed as above. In these figures,
the concentrations R(x, t), S(x, t), B1(x, t), B2(x, t) at t = 1000 d are plotted versus the spatial
variable x on [0, L], respectively.

the bottom source, a minimum at intermediate depths owing to consumption by algae, and an
increase towards the surface resulting from atmospheric input of CO2 and conversion to CARB
(Fig. 8). Qualitatively similar depth distributions are observed for the coexistence equilibrium
(Fig. 9).

4 Discussion

We have shown that when two species compete for inorganic carbon (consisting of CO2 and CARB)
in a water column, the competitive outcomes can include competitive exclusion of one or the other
species independent of initial conditions, and coexistence of the two species, depending on param-
eter values. It is likely that for some parameter values another outcome, competitive exclusion
dependent on initial conditions arises, though we have not explicitly analyzed this possibility. This
range of outcomes is expected for competition models (Ballyk and Wolkowicz 2011), and biolog-
ically intuitive relationships between the competitors’ mortality rates and competitive outcomes
were illustrated. The relationship of competitive outcomes to several other parameters was less
intuitive, at least from the perspective of the conventional analysis of substitutable resources found
in the ecological literature (Tilman 1982; Grover 1997). According to this conventional analysis,
high CO2 supply should produce dominance by the better consumer of CO2, high CARB supply
should produce dominance by the better consumer of CARB, and intermediate supplies could allow
coexistence. Variations of parameters that influence relative supplies of CO2 and CARB did not
always have this expected effect.
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(a) (b)

Figure 9: The coexistence solutions to (2)-(3) with all parameters fixed as above. In these figures,
the concentrations R(x, t), S(x, t), B1(x, t), B2(x, t) at t = 1000 d are plotted versus the spatial
variable x on [0, L], respectively.

The conventional graphical analysis of competition for substitutable resources focuses on the
set of resource concentrations (R,S) where growth balances mortality, called the Zero Net Growth
Isocline (ZNGI). Usually, the ZNGI is defined by fi(R) + gi(S) −mi = 0, neglecting respiratory
losses, and ZNGIs are drawn as decreasing functions of R in the RS-plane. Such graphs assume
that each resource can support the growth of each species when the other resource is unavailable.
Large disparities in the ability of each resource to support growth could produce violations of
this assumption (Ballyk and Wolkowicz 1993). In the parameterized model presented here, CO2

supports growth at much lower rates than CARB (µir < µis). For the mortality rates explored here
there are conditions where CO2 cannot alone support positive growth by species 2. In such cases,
the ZNGI graphed on the RS-plane is an increasing function of R, indicating that higher CO2

concentrations inhibit rather than promote growth, and the conventionally expected competitive
outcomes might not be observed (Ballyk and Wolkowicz 1993). Ecologically, the relationship
between such species is not necessarily one of pure and simple competition. If increased CO2

inhibits growth of one competitor (e.g. species 2), then consumption by the other competitor
(species 1) facilitates the growth of the inhibited species.

Additional complications in the model presented here depart further from the conventional
representation of competition for substitutable resources. The consumption of CO2 is relatively
slow, i.e. fi(R) is relatively small due to the low value of µir. Therefore, under conditions where
CO2 is low, which is common in the upper part of the water column (Figs. 7-9), the respiration
rate ri/Q

∗
i is higher than the consumption rate, and instead of consuming CO2, species are net

producers of CO2. Both species primarily consume CARB to meet their needs for growth and
respiration, and the latter process converts some of the consumed CARB to CO2. Towards the
bottom of the water column, CO2 is high enough so that consumption exceeds respiratory recycling,
and both species are net consumers of CO2. Both the respiratory recycling of CO2 and depth-
related changes in consumption versus recycling are factors not considered by the conventional
analysis of competition for substitutable resources.

A final complication in the model presented here is the abiotic inter-conversion between CO2

and CARB. Such inter-conversion is not a part of conventional analyses, and indeed may only
arise for resources that are reactive chemical forms of the same nutrient element. Due to this inter-
conversion, changes in a parameter governing resource supply do not independently affect the
supply of only one resource. The conversion favors CARB over CO2 for parameters used here, thus
increasing the supply of either resource through changes in R̂, R0, or S0, tends predominantly to
increase the availability of CARB. Changing the parameters that govern conversion between CO2

and CARB (ωr and ωs) has a strong influence on competitive outcomes. Altering these parameters
to produce relatively high CO2 supply produces dominance by the better consumer of CO2, and
altering them to produce high CARB supply produces dominance by the better consumer of CARB,
and with intermediate values producing coexistence.
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Indeed one potentially important prediction of this analysis is the strong effect of varying ωr
and ωs(Figs. 4) compared to the weak influence of R̂(Fig. 3). The latter parameter represents
the influence of atmospheric CO2 concentration, and our analysis suggests that ongoing increases
(Siegenthaler and Sarmiento 1993; Sabine et al. 2004) would have only weak direct effects on com-
petition between algae for inorganic carbon through changes in R̂. However, increased atmospheric
CO2 concentration also acidifies aquatic ecosystems (Orr et al. 2005; Riebesell et al. 2007), which
effectively reduces ωr relative to ωs. Anthropogenic emissions of sulfur and nitrogen oxides, which
accompany combustion emissions of CO2, also acidify aquatic ecosystems, especially inland waters,
and reduce alkalinity (Rice and Herman 2012). Strong acidification can dramatically reduce the
effective values of ωr relative to ωs. Our model thus suggests that acidification and alkalinity
reduction from human impacts could more strongly affect algal competition for inorganic carbon
than the direct increase in CO2 availability.

These predictions are based on a parameterized model, and might not hold in regions of param-
eter space not yet explored. However, we argue that essential aspects of our parameterization are
biologically and geochemically reasonable. Biologically, we have represented algae that consume
CARB more rapidly at high concentration than they consume CO2. While this parameterization
is inspired by observations on strains of a particular species of freshwater cyanobacteria (Van de
Waal et al. 2011), it might apply more broadly for other algae in aquatic environments of rela-
tively high pH and alkalinity, where CARB concentrations greatly exceed that of CO2. However,
we acknowledge that there is wide variation among species in their kinetics of inorganic carbon
uptake and relative capabilities to use CO2 and CARB (Rost et al. 2003; Martin and Tortell 2008;
Maberly et al. 2009). Our model represents the geochemistry of inorganic carbon in a highly
simplified manner, through the linear system (1) and the parameters R̂, ωr, and ωs. We assigned
values to these parameters so that in a well mixed system open to the atmosphere but containing
no algae, CO2 and CARB concentrations would approach a realistic thermodynamic equilibrium.
In this state, the assigned parameters lead to CARB concentrations much higher than those of
CO2, which is realistic for seawater and for inland waters with pH above neutral and moderate
to high alkalinity. For inland waters with lower pH and alkalinity, especially those impacted by
acidification, smaller values of ωr, relative to ωs would be appropriate.

Historically, the possibility of competition among algae for different sources of inorganic carbon
has been somewhat neglected. Some influential, early studies established that the kinetics of con-
version between CO2 and CARB are very rapid compared to the kinetics of algal uptake and growth
(Goldman et al. 1974). These early studies implied that rapid kinetic equilibration between CO2

and CARB would effectively make them a single resource, instead of two substitutable resources,
and an early observation of competitive outcomes was consistent with this interpretation (Williams
and Turpin 1987). Since then, observations have accumulated suggesting that algae differ in their
capabilities to use CO2 and CARB, and that such differences affect their competitive fitness (Chen
and Durbin 1998; Caraco and Miller 1998; Van de Waal et al. 2011). Notwithstanding the rapid
kinetics of conversion between CO2 and CARB, our theory predicts that at high biomass, algal
growth and consumption deplete the availabilities and alter the spatial distributions of these two
resources, leading to the classical competitive outcomes of exclusion or coexistence depending on
parameters. In addition to these consumption-mediated competitive feedbacks, algal alteration
of pH and alkalinity (Brewer and Goldman 1976; Van de Waal et al. 2011), which we neglected
here for simplicity, could further complicate interactions among algal species in habitats with low
availability of inorganic carbon.

Algae require inorganic nutrients other than carbon, and it is well known that nitrogen, phos-
phorus, iron and other elements can limit algal growth, with inorganic carbon regarded as less likely
to be limiting in most aquatic habitats. We neglected the influence of other nutrients in this study
in the interest of simplicity, but acknowledge that examining the joint dynamics of competition
for carbon and other nutrients will be important. Among the widespread environmental changes
now taking place under human influence, increased supplies of nitrogen and phosphorus in aquatic
habitats are often accompanied by acidification and reduction of alkalinity. The latter changes ef-
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fectively reduce the supply of CARB, potentially setting the stage for one of the outcomes sketched
here - competitive elimination of algae better adapted to using CARB than CO2.

5 Appendix: Some mathematical proofs

A. The washout solution

The purpose of this subsection is to study the washout solution of (4)-(5). Noting that (8) is
a cooperative system, we first introduce the maximum principle for cooperative weakly coupled
elliptic systems, which is adapted from (Amann 2004) and (López-Gómez and Molina-Meyer 1994)
and plays a crucial role throughout this paper. This maximum principle helps us to decouple the
full elliptic system into some scalar systems or some lower dimensional systems.

Let E1 = C2+σ([0, 1],R2), E2 = Cσ([0, 1],R2), and L0 : E1 → E2 be given by

L0 =

(
D d2

dx2 − ωr ωs
ωr D d2

dx2 − ωs

)
.

Consider the eigenvalue problem

−L0(φ1, φ2)ᵀ = λ(φ1, φ2)ᵀ, x ∈ (0, 1),
−(φ1)x(0) + αφ1(0) = 0, φ1(1) = 0, (φ2)x(0) = 0, φ2(1) = 0.

(12)

It follows from Theorem 2.6 or Remark 2.4 of (López-Gómez and Molina-Meyer 1994) that the
operator (−L0)−1 : E2 → E1 with the above boundary conditions is well defined and it is compact
and strongly order preserving, and the principal eigenvalue of −L0, denoted by λ1(−L0), is strictly
positive and has a positive eigenfunction. That is, −L0 subject to the boundary conditions:
−(φ1)x(0) +αφ1(0) = 0, φ1(1) = 0, (φ2)x(0) = 0, φ2(1) = 0 satisfies the strong maximum principle
(cf. Theorem 13 of (Amann 2004)).

Proof of Theorem 2.1. The steady-state system corresponding to (8) is

DRxx + ωsS − ωrR = 0, x ∈ (0, 1),
DSxx − ωsS + ωrR = 0, x ∈ (0, 1),

Rx(0) = α(R(0)− R̂), R(1) = R0, Sx(0) = 0, S(1) = S0.
(13)

It follows from Theorem 13 of (Amann 2004) or Theorem 2.6 and Remark 2.4 of (López-Gómez
and Molina-Meyer 1994) that the principle eigenvalue of −L0 is positive, and hence the strong
maximum principle holds for (13). In view of Theorem 15 of (Amann 2004), (13) has a unique
solution, which is positive and denoted by (R∗, S∗).

Note that the solutions of (8) generate a monotone semi-dynamical system on C([0, 1],R2
+).

Hence, (ii) is a direct result of (i) and Theorem 2.2.6 of (Zhao 2003).

Proof of Theorem 2.2. The linearized eigenvalue problem of (6)-(7) with respect to the washout
solution (R∗, S∗, 0, 0) is

Dφ1xx + ωsφ2 − ωrφ1 − (f1(R∗)− r1)ψ1 − (f2(R∗)− r2)ψ2 = −λφ1,
Dφ2xx − ωsφ2 + ωrφ1 − g1(S∗)ψ1 − g2(S∗)ψ2 = −λφ2,
Dψ1xx − ν1ψ1x + [f1(R∗) + g1(S∗)− r1 −m1]ψ1 = −λψ1,
Dψ2xx − ν2ψ2x + [f2(R∗) + g2(S∗)− r2 −m2]ψ2 = −λψ2,

(14)

with boundary conditions

−φ1x(0) + αφ1(0) = 0, φ1(1) = 0,
φ2x(0) = 0, φ2(1) = 0,
Dψix(0)− νiψi(0) = 0, Dψix(1)− νiψi(1) = 0, i = 1, 2.

(15)
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Clearly, the eigenvalues of the linearized eigenvalue problem (14)-(15) consist of the eigenvalues

of the following three operators: −L0, L1 = −D d2

dx2 + ν1
d
dx − (f1(R∗) + g1(S∗) − r1 − m1) and

L2 = −D d2

dx2 +ν2
d
dx−(f2(R∗)+g2(S∗)−r2−m2). Recall that the smallest eigenvalue λ1(−L0) > 0

of −L0. Meanwhile, the smallest eigenvalue of Li(i = 1, 2) is larger than 0 provided mi > m∗i ,
and less than 0 provided mi < m∗i . Hence, all eigenvalues of the linearized eigenvalue problem
(14)-(15) are larger than zero provided m1 > m∗1,m2 > m∗2, and the linearized eigenvalue problem
(14)-(15) has an eigenvalue less than zero provided m1 < m∗1 or m2 < m∗2. That is, the washout
equilibrium solution (R∗, S∗, 0, 0) is linearly stable provided m1 > m∗1,m2 > m∗2; and unstable
provided m1 < m∗1 or m2 < m∗2.

B. Single population system

The purpose of this subsection is to study the dynamical behavior of the single population system
(9) and to establish Theorems 2.3–2.4.

First, we study the well-posedness of the initial boundary value problem (9). Let X+ =
C([0, 1],R3

+) be the positive cone in the Banach space X = C([0, 1],R3) with the usual supremum
norm. To simplify notations, we set

Φ1 = R, Φ2 = S, Φ3 = e−
ν
D xB and Φ = (Φ1,Φ2,Φ3).

Note that the initial conditions in (9) satisfying (Φ0
1,Φ

0
2,Φ

0
3) = (R0(x), S0(x), e−

ν
D xB0(x)) ∈ X+.

For the local existence and positivity of solutions, we appeal to the theory developed by Martin
and Smith (1990) where existence, uniqueness and positivity are treated simultaneously. The idea
is to view the system (9) as the abstract ordinary differential equation in X+ and the so-called
mild solutions can be obtained for any given initial data. More precisely,(

Φ1(t)
Φ2(t)

)
= H0(t) ·

(
Φ0

1

Φ0
2

)
+
∫ t

0
G0(t− s) ·

(
F1(Φ(s))
F2(Φ(s))

)
ds,

Φ3(t) = G1(t)Φ0
3 +

∫ t
0
G1(t− s)F3(Φ(s))ds,

where G0(t) is the positive, non-expansive, analytic semigroup on C([0, 1],R2) (see, e.g., Chapter
7 in the book by Smith (1995)) such that (u, v)ᵀ = G0(t) · (Φ0

1,Φ
0
2)ᵀ satisfies the linear initial value

problem (
u
v

)
t

= L0

(
u
v

)
, 0 < x < 1, t > 0,

−ux(0, t) + αu(0, t) = 0, u(1, t) = 0, vx(0, t) = 0, v(1, t) = 0, t > 0,
u(x, 0) = Φ0

1(x), v(x, 0) = Φ0
2(x), 0 ≤ x ≤ 1,

and G1(t) is the positive, non-expansive, analytic semigroup on C[0, 1] (see, e.g., Chapter 7 in the
book by Smith (1995)) such that u = G1(t)Φ0

3 satisfies the linear initial value problem

ut = Duxx + νux − (r +m)u, 0 < x < 1, t > 0,
ux(0, t) = 0, ux(1, t) = 0, t > 0,
u(x, 0) = e−

ν
D xΦ0

3(x), 0 ≤ x ≤ 1.

H0(t), t > 0, is the family of affine operators on C([0, 1],R2) (see, e.g., Chapter 5 in the book by
Pazy (1983)) such that (u, v)ᵀ = H0(t) ·(Φ0

1,Φ
0
2)ᵀ satisfies the linear systems with nonhomogeneous

boundary condition given by(
u
v

)
t

= L0

(
u
v

)
, t > 0, 0 < x < 1,

−ux(0, t) + αu(0, t) = αR̂, u(1, t) = R0, vx(0, t) = 0, v(1, t) = S0, t > 0,
u(x, 0) = Φ0

1(x), v(x, 0) = Φ0
2(x), 0 ≤ x ≤ 1.
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The nonlinear operators Fi : C([0, 1],R+)→ C[0, 1] are defined by

F1(Φ) = −(f(Φ1)− r)Φ3,
F2(Φ) = −g(Φ2)Φ3,
F3(Φ) = [f(Φ1) + g(Φ2)]Φ3.

By the maximum principle arguments, it follows that

G0(t) · C([0, 1],R2
+) ⊂ C([0, 1],R2

+), ∀ t > 0,
H0(t) · C([0, 1],R2

+) ⊂ C([0, 1],R2
+), ∀ t > 0,

G1(t)C([0, 1],R+) ⊂ C([0, 1],R+), ∀ t > 0.

Since f(0) = 0, g(0) = 0, it follows that Fi(Φ) ≥ 0 whenever Φi ≡ 0, ∀ 1 ≤ i ≤ 3, and hence,
F := (F1, F2, F3) is quasipositive (see, e.g., Remark 1.1 of (Martin and Smith 1990)). By Theorem
1 and Remark 1.1 of (Martin and Smith 1990), it follows that the system (9) has a unique solution
and the solutions to (9) remain non-negative on their interval of existence if they are non-negative
initially. In other words, the following results hold:

Lemma B.1 For every initial value function Φ0 = (Φ0
1,Φ

0
2,Φ

0
3) ∈ X+, the system (9) has a

unique mild solution Φ(x, t,Φ0) on (0, δΦ0) with Φ(·, 0,Φ0) = Φ0, where δΦ0 ≤ ∞. Furthermore,
Φ(·, t,Φ0) ∈ X+, ∀ t ∈ (0, δΦ0) and Φ(x, t,Φ0) is a classical solution of (9) for t > 0.

Next, we are ready to show the solutions of (9) exist globally on (0,+∞) and converge to
a compact attractor in X+. At first, we show solutions are ultimately bounded and uniformly
bounded in X+.

Lemma B.2 Suppose f(R∗) > r and m > 0. Then for every initial value function Φ0 =
(Φ0

1,Φ
0
2,Φ

0
3) ∈ X+, the system (9) has a unique solution Φ(x, t,Φ0) on [0,∞) with Φ(·, 0,Φ0) = Φ0,

and the solutions of (9) are ultimately bounded and uniformly bounded in X+.

Proof. Let W = e−
ν
D xB. Then (9) becomes

Rt = DRxx + ωsS − ωrR− (f(R)− r)e νD xW, x ∈ (0, 1), t > 0,
St = DSxx − ωsS + ωrR− g(S)e

ν
D xW, x ∈ (0, 1), t > 0,

e
ν
D xWt = D

(
e
ν
D xWx

)
x

+ (f(R) + g(S)− r −m)e
ν
D xW, x ∈ (0, 1), t > 0,

Rx(0, t) = α(R(0, t)− R̂), R(1, t) = R0, t > 0,
Sx(0, t) = 0, S(1, t) = S0, Wx(0, t) = Wx(1, t) = 0, t > 0,
R(x, 0) = R0(x) ≥ 0, S(x, 0) = S0(x) ≥ 0, W (x, 0) = e−

ν
D xB0(x) ≥ 0, 6≡ 0.

(16)

By Lemma B.1, any solution (R,S,W ) to (16) satisfies R(x, t) > 0, S(x, t) > 0,W (x, t) > 0. Note
that there exists a constant ρ > 1 large enough such that R0(x) ≤ ρR∗, S0(x) ≤ ρS∗. For given
W (x, t) ≥ 0, consider the following system

Rt = DRxx + ωsS − ωrR− (f(R)− r)e νD xW, x ∈ (0, 1), t > 0,
St = DSxx − ωsS + ωrR− g(S)e

ν
D xW, x ∈ (0, 1), t > 0,

Rx(0, t) = α(R(0, t)− R̂), R(1, t) = R0, t > 0,
Sx(0, t) = 0, S(1, t) = S0, t > 0,
R(x, 0) = R0(x) ≥ 0, S(x, 0) = S0(x) ≥ 0.

(17)

Clearly, (0, 0) and ρ(R∗, S∗) are the ordered lower and upper solutions of (17) by Definition 8.1.2
in the book by Pao (1992). It follows from the iteration process of Chapter 8.2 in the book
by Pao (1992) and Theorem 8.3.1 in the book by Pao (1992) that (17) has a unique solution
(R(x, t), S(x, t)) satisfies 0 ≤ R(x, t) ≤ ρR∗, 0 ≤ S(x, t) ≤ ρS∗ for all x ∈ [0, 1], t > 0. Namely,
Λ = {(R,S) : 0 ≤ R ≤ ρR∗, 0 ≤ S ≤ ρS∗} is an invariant set(cf. Definition 5.4.1 in the book by
Pao (1992)) of the system (17), which implies R(x, t), S(x, t) are ultimately bounded and uniformly
bounded in X+.
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Next, we claim W (1, t) is bounded in t ∈ (0,+∞). If not, we can find tn → ∞ such that

W (1, tn)→∞ as tn →∞. Let Ŵn(x, t) = W (x,t+tn)
W (1,tn) . Then Ŵn(x, t) satisfies

(e
ν
D xŴn)t = D(e

ν
D x(Ŵn)x)x + (f(R(x, t+ tn)) + g(S(x, t+ tn))− r −m)e

ν
D xŴn,

(Ŵn)x(0, t) = (Ŵn)x(1, t) = 0,

Ŵn(x, 0) ≥ 0, Ŵn(1, 0) = 1.

Note that |f(R(x, t + tn)) + g(S(x, t + tn)) − r − m| ≤ |f(ρR∗) + g(ρS∗) − r − m| is bounded.

It follows from Lemma D.2 that Ŵn(x, t) > δ > 0 for all x ∈ [0, 1] and t > 0, which implies
W (x, t+ tn) > δW (1, tn). Thus, W (x, t)→∞ as t→∞ uniformly in [0, 1]. Hence, for any M > 0,
there exists t0 > 0 large enough such that W (x, t) > M on [0, 1] for t ≥ t0, which implies

St ≤ DSxx − ωsS − g(S)e
ν
D xM + ωrρR

∗.

Namely, S(x, t) is a lower solution of the parabolic problem

S̃t = DS̃xx − ωsS̃ − g(S̃)e
ν
D xM + ωrρR

∗, x ∈ (0, 1), t > t0,

S̃x(0, t) = 0, S̃(1, t) = S0, t > t0,

S̃(x, t0) = S(x, t0), x ∈ [0, 1].

(18)

It follows from the comparison principle for parabolic equation that S(x, t) ≤ S̃(x, t) for t ≥ t0.
Note that the steady state system of (18) satisfies

−DS̃xx + (ωs +
∫ 1

0
g′(τ S̃)dτe

ν
D xM)S̃ = ωrρR

∗ > 0, x ∈ (0, 1),

S̃x(0) = 0, S̃(1) = S0.
(19)

It follows from the maximum principle that the steady state solution S̃ > 0 on [0, 1]. Let χ = S0−S̃.
Then

Dχxx − ωsχ+ g(S0 − χ)e
ν
D xM + ωsS

0 − ωrρR∗ = 0, x ∈ (0, 1),
χx(0) = 0, χ(1) = 0.

(20)

Suppose inf
[0,1]

χ = χ(x0) < 0. Then −ωsχ(x0)+g(S0−χ(x0))e
ν
D x0M+ωsS

0−ωrρR∗(x0) ≤ 0, which

implies g(S0)M + ωsS
0 < ωrρmax

[0,1]
R∗. Choosing M such that ωsS

0 + g(S0)M ≥ ωrρmax
[0,1]

R∗, we

get a contradiction. Hence, χ ≥ 0 on [0, 1], which means 0 < S̃ ≤ S0 on [0, 1]. Moreover, in view of
ωsS

0 +g(S0)M ≥ ωrρmax
[0,1]

R∗, it is easy to see that 0 is a strictly lower solution to the steady state

system of (18), and S0 is a strictly upper solution to the steady state system of (18). It follows
from monotone iteration process that there exists a pair S̃+ and S̃−, which are the maximal and
minimal solutions to the steady state system of (18), and satisfy the relation 0 < S̃− ≤ S̃+ ≤ S0.
Next, we show S̃− ≡ S̃+. Obviously,

D(S̃+ − S̃−)xx − ωs(S̃+ − S̃−)− (g(S̃+)− g(S̃−))e
ν
D xM = 0.

Integrating over [0, x], and integrating over [0, 1] again, we have

−D(S̃+(0)−S̃−(0))−ωs
∫ 1

0

∫ x

0

(S̃+(ξ)−S̃−(ξ))dξdx−M
∫ 1

0

∫ x

0

(g(S̃+(ξ))−g(S̃−(ξ)))e
ν
D ξMdξdx = 0.

Noting that S̃+ ≥ S̃− on [0, 1], and g(S) is strictly increasing with respect to S, we must have
S̃+ ≡ S̃−. Hence, if ωsS

0+g(S0)M ≥ ωrρmax
[0,1]

R∗, (18) has a unique positive steady state solution,

denoted by S̃∗M (x), which satisfies 0 < S̃∗M (x) ≤ S0.

Meanwhile, it follows from (20) that χ = a
∫ 1

0
G(x, ξ)

(
g(S̃(ξ))e

ν
D ξM + ωsS

0 − ωrρR∗(ξ)
)

dξ,

where G(x, ξ) is the Green’s function corresponding to

−DGxx + ωsG = δ(x− ξ), x ∈ (0, 1), Gx(0) = 0, G(1) = 0.
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Letting M →∞, we obtain g(S̃(ξ))→ 0 in (0, 1), that is, lim
M→∞

g(S̃∗M (x)) = 0 in (0, 1).

On the other hand, it is easy to see that the solutions of (18) generate a monotone semi-
dynamical system on C([0, 1],R+). Hence, it follows from Theorem 2.2.6 of (Zhao 2003) that the
solution S̃(x, t) of (18) converges to the unique positive steady-state solution S̃∗M (x) of (19) as
t → ∞, and g(S̃∗M (x)) → 0 in (0, 1) as M → ∞. Hence, for any ε > 0, there exist M1 > 0 and
t1 > t0 large enough such that for M ≥ M1 and t ≥ t1, we have 0 < g(S(x, t)) ≤ g(S̃(x, t)) < ε
in (0, 1). Similarly, we can show that for any ε > 0, there exist M2 > 0 and t2 > 0 large enough
such that for M ≥ M2 and t ≥ t2, we have f(R)− r < ε in (0, 1). Take M0 = max{M1,M2} and
T0 = max{t1, t2}. Thus forM ≥M0, t ≥ T0 andm ≥ δ0, we have f(S)+g(S)−r−m < 2ε−δ0 < 0 in

(0, 1) as long as 0 < ε < δ0/2. Take ε = δ0
4 . Then e

ν
D xWt ≤ D

(
e
ν
D xWx

)
x
− δ0

2 e
ν1
D xW for M ≥M0,

t ≥ T0 and m ≥ δ0, which implies W (x, t)→ 0 in (0,1) as t→∞, a contradiction. Hence, W (1, t)
is bounded in t ∈ (0,+∞).

Let φ be the principal eigenfunction of

−φxx = µφ, x ∈ (0, 1), φx(0) = 0, φ(1) = 0.

Then the principal eigenvalue µ1 = π2

4 , and the associated eigenfunction φ = cos(π2x), and φ(0) =
1, φx(1) = −π2 . Let Q(x, t) = R+ S + e

ν
D xW . By direct computation, we obtain

d
dt

∫ 1

0
Q(x, t)φdx

= D
∫ 1

0
[Rxxφ+ Sxxφ+ (e

ν
D xWx)xφdx]−m

∫ 1

0
e
ν
D xWφdx

= D(α(R̂−R(0, t)) + π
2R

0 + π
2S

0)− π2

4 D
∫ 1

0
(R+ S)φdx

+D
∫ 1

0
(e

ν
D xWx)xφdx−m

∫ 1

0
e
ν
D xWφdx,

where

D
∫ 1

0
(e

ν
D xWx)xφdx = −D

∫ 1

0
φxe

ν
D xWxdx

= −D
∫ 1

0
φxd(e

ν
D xWx −

∫ x
0

ν
DW (ξ, t)e

ν
D ξdξ)

= π
2De

ν
DW (1, t)− π

2 ν
∫ 1

0
We

ν
D xdx− π2

4 D
∫ 1

0
We

ν
D xφdx+ π2

4 ν
∫ 1

0
(
∫ x

0
W (ξ, t)e

ν
D ξdξ)φdx.

Note that
∫ 1

0
φdx = 2

π , and

π2

4 ν
∫ 1

0
(
∫ x

0
W (ξ, t)e

ν
D ξdξ)φdx− π

2 ν
∫ 1

0
We

ν
D xdx

≤ π2

4 ν
∫ 1

0
W (ξ, t)e

ν
D xdx

∫ 1

0
φdx− π

2 ν
∫ 1

0
We

ν
D xdx

= 0.

Hence,

d

dt

∫ 1

0

Q(x, t)φdx+
π2

4
D

∫ 1

0

Qφdx ≤ D(αR̂+
π

2
R0 +

π

2
S0) +

π

2
De

ν
DW (1, t)−m

∫ 1

0

e
ν
D xWφdx,

that is,

d

dt

(
e
π2

4 Dt

∫ 1

0

Q(x, t)φdx

)
≤ D(αR̂+

π

2
R0+

π

2
S0)e

π2

4 Dt+
π

2
De

ν
DW (1, t)e

π2

4 Dt−meπ
2

4 Dt

∫ 1

0

e
ν
D xWφdx.

Since W (1, t) is bounded, by Gronwall inequality we get∫ 1

0
Q(x, t)φdx ≤ e−π

2

4 Dt
∫ 1

0
Q(x, 0)φdx+D(αR̂+ π

2R
0 + π

2S
0) 4
π2D (1− e−π

2

4 Dt)

+π
2De

ν
D

∫ t
0
W (1, τ)e−

π2

4 D(t−τ)dτ −m
∫ t

0
(
∫ 1

0
e
ν
D xW (x, τ)φdx)e−

π2

4 D(t−τ)dτ

≤ e−π
2

4 Dt
∫ 1

0
Q(x, 0)φdx+D(αR̂+ π

2R
0 + π

2S
0) 4
π2D (1− e−π

2

4 Dt)

+π
2De

ν
D

∫ t
0
W (1, τ)e−

π2

4 D(t−τ)dτ

≤ e−π
2

4 Dt
∫ 1

0
Q(x, 0)φdx+D(αR̂+ π

2R
0 + π

2S
0) 4
π2D (1− e−π

2

4 Dt)

+ 2
πDe

ν
DC(1− e−π

2

4 Dt)
(21)

18



Next, we show W (x, t) is bounded for all x ∈ [0, 1] and t > 0. Let W(t) = max
x∈[0,1],τ∈[0,t]

W (x, τ).

Clearly, W(t) is nondecreasing. Suppose for contradiction that W(t) → ∞ as t → ∞. Then we
can find tn → ∞ such that W(tn) = max

x∈[0,1]
W (x, tn). We may assume that tn > 1 for all n ≥ 1.

Define W̃n(x, t) = W (x,t+tn−1)
W(tn) . Then W̃n(x, t) satisfies

(e
ν
D xW̃n)t = D(e

ν
D x(W̃n)x)x + (f(R(x, t+ tn − 1)) + g(S(x, t+ tn − 1))− r −m)e

ν
D xW̃n,

(W̃n)x(0, t) = (W̃n)x(1, t) = 0,

0 ≤ W̃n(x, 0) ≤ 1.

Noting that |f(R(x, t+ tn − 1)) + g(S(x, t+ tn − 1))− r−m| ≤ |f(ρR∗) + g(ρS∗)− r−m| := Λ0,

the comparison principle for parabolic system leads to 0 ≤ W̃n(x, t) ≤ eΛ0t for x ∈ [0, 1] and t ≥ 0.

Hence by the application of standard parabolic regularity, we can conclude that {W̃n} is bounded
in C1+γ,γ([0, 1]× [ 1

2 , 2]) for any γ ∈ (0, 1). Hence, by passing to a subsequence if necessary we get

W̃n(x, t)→ W̃ in C1,0([0, 1]× [ 1
2 , 2]). Since |f(R(x, t+tn−1))+g(S(x, t+tn−1))−r−m| ≤ Λ0, we

may assume that f(R(x, t+tn−1))+g(S(x, t+tn−1))−r−m→ h(x, t) weakly in L2([0, 1]× [ 1
2 , 2])

by passing to a further subsequence if necessary. Moreover, |h(x, t)| ≤ Λ0, and W̃ is a weak solution
to

(e
ν
D xW̃ )t = D(e

ν
D xW̃x)x + h(x, t)e

ν
D xW̃ , x ∈ (0, 1), t ∈ [ 1

2 , 2],

W̃x(0, t) = W̃x(1, t) = 0, t ∈ [ 1
2 , 2],

0 ≤ W̃ (x, t) ≤ eΛ0t, x ∈ [0, 1], t ∈ [ 1
2 , 2].

It follows from max
x∈[0,1]

W̃n(x, 1) = 1 that max
x∈[0,1]

W̃ (x, 1) = 1, which implies W̃ 6≡ 0. By the strong

maximum principle, we deduce that W̃ (x, 1) ≥ δ1 > 0 in [0,1]. Hence, W̃n(x, 1) ≥ δ1
2 for all large

n and x ∈ [0, 1], which leads to

W (x, tn) = W̃n(x, 1)W(tn) ≥ δ1
2

W(tn) for all large n and x ∈ [0, 1].

It follows that ∫ 1

0

Q(x, tn)φdx >

∫ 1

0

W (x, tn)φdx ≥
∫ 1

0

δ1
2

W(tn)φdx→∞

as n→∞, a contradiction to (21). That is, W (x, t) is bounded for all x ∈ [0, 1] and t > 0. In view
of W (x, t) > 0 for all x ∈ [0, 1] and t > 0, we obtain that there exists a positive constant C1 > 0
such that 0 < B(x, t) ≤ C1 for all x ∈ [0, 1] and t > 0. Namely, B(x, t) is ultimately bounded and
uniformly bounded in X+. The proof is completed.

Next, we derive a priori estimates for positive solutions of the steady-state system (10)-(11).

Lemma B.3 Suppose f(R∗) > r and (R,S,B) is a nonnegative solution of (10)-(11) with B 6≡ 0.
Then

(i) 0 < R < R∗, 0 < S < S∗, B > 0 in (0, 1);

(ii) 0 < m < m∗, where m∗ = −λ1(−f(R∗)− g(S∗), ν)− r;
(iii) for any given δ0 > 0, there exists a positive constant M0(δ0) such that ‖B‖∞ ≤M0 provided

that m ∈ [δ0,m
∗).

Proof. (i) Note that

−DSxx + [ωs +B
∫ 1

0
g′(τS)dτ ]S = ωrR ≥ 0, x ∈ (0, 1),

−DRxx + [ωr +B
∫ 1

0
f ′(τR)dτ ]R = ωsS + rB ≥ 0, x ∈ (0, 1),

Sx(0) = 0, S(1) = S0 > 0, −Rx(0) + αR(0) = αR̂ > 0, R(1) = R0 > 0.
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By the strong maximum principle, it is easy to see that R > 0, S > 0 on [0, 1]. Let W = e−
ν
D xB.

Then
−DWxx − νWx + (r +m)W = [f(R) + g(S)]W ≥ 0, 6≡ 0, x ∈ (0, 1),
Wx(0) = 0, Wx(1) = 0.

It follows from the strong maximum principle that W > 0 on [0, 1], and hence B > 0 on [0, 1].

Now, we begin to prove R < R∗, S < S∗. To this end, let U = R∗ − R, V = S∗ − S. Then
U < R∗, V < S∗, and

−DUxx + ωrU − ωsV = (f(R∗ − U)− r)B, x ∈ (0, 1),
−DVxx + ωsV − ωrU = g(S∗ − V )B, x ∈ (0, 1),
−Ux(0) + αU(0) = 0, U(1) = 0, Vx(0) = 0, V (1) = 0.

(22)

At first, it is easy to see that there exists some x0 ∈ (0, 1) such that U(x0) > 0. Otherwise,
U(x) ≤ 0 on [0, 1]. Then −L0(U, V )T > 0 based on f(R∗) > r and V < S∗, B > 0. Hence, we
have (U, V ) > 0 on [0, 1] by using Theorem 15 of (Amann 2004), a contradiction. Noting that
U(1) = 0, V (1) = 0 and f(R∗) > r, one can show that there exists ε > 0 small enough such that
Uxx < 0 and Vxx < 0 for any x ∈ (1 − ε, 1). Furthermore, we claim that Ux(1) < 0, Vx(1) < 0. If
not, we have Ux(1) ≥ 0 or Vx(1) ≥ 0. Thus we have three cases: (1) Ux(1) ≥ 0, Vx(1) ≥ 0; (2)
Ux(1) ≥ 0, Vx(1) < 0; (3) Ux(1) < 0, Vx(1) ≥ 0.

Case (1): Suppose Ux(1) ≥ 0, Vx(1) ≥ 0. Since U(1) = 0 and Uxx < 0 for any x ∈ (1− ε, 1), we
have U(1− ε) < 0. Let

x1 = sup{x ∈ (0, 1)|Ux(x) = 0, U(x) < 0}.

Then 0 < x1 < 1 because there exists some x0 ∈ (0, 1) such that U(x0) > 0. Moreover, U(x) < 0
for x ∈ [x1, 1), Ux(x1) = 0 and Uxx(x1) ≥ 0. It follows from the first equation of (22) that

ωsV (x1) = −DUxx(x1) + ωrU(x1)− (f(R∗(x1)− U(x1))− r)B(x1) < 0,

which leads to V (x1) < 0. Adding the equations for U and V , we obtain

−D(U + V )xx = (f(R∗ − U)− r)B + g(S∗ − V )B > 0

for any x ∈ [x1, 1) since f(R∗) > r, U < 0 in [x1, 1) and V < S∗, B > 0 in [0, 1]. Hence,
Vxx(x1) < 0. Integrating this equation over [x1, 1], we obtain Vx(x1) > Ux(1) + Vx(1) ≥ 0. Define

y1 = sup{x ∈ (0, x1)|Vx(x) = 0, V (x) < 0}.

Noting that V (x1) < 0, Vx(x1) > 0 and Vxx(x1) < 0, we can show that 0 ≤ y1 < x1, v(y) < 0 on
[y1, x1], Vx(y1) = 0, Vx ≥ 0 on [y1, x1], and Vxx(y1) ≥ 0. It follows from the second equation of
(22) that

ωrU(y1) = −DVxx(y1) + ωsV (y1)− g(S∗(y1)− V (y1))B(y1) < 0,

which leads to U(y1) < 0. If y1 = 0. Then U(0) < 0 and Ux(0) = αU(0) < 0. Let z1 = inf{x ∈
(0, x1)|U(x) = 0}. Then 0 < z1 < 1 since there exists some x0 ∈ (0, 1) such that U(x0) > 0.
Moreover, we have U(x) < 0 in (0, z1) and Ux(z1) ≥ 0. Now, consider the following elliptic
problem on [0, z1]

−DUxx + ωrU − ωsV = (f(R∗ − U)− r)B > 0, x ∈ (0, z1),
−DVxx + ωsV − ωrU = g(S∗ − V )B > 0, x ∈ (0, z1),
−Ux(0) + αU(0) = 0, Ux(z1) ≥ 0, Vx(0) = 0, Vx(z1) ≥ 0.

It follows from Theorem 15 of (Amann 2004) that (U, V ) > 0 on [0, z1], a contradiction. Hence
0 < y1 < x1.

Now, we have two cases: (a) U(x) < 0 on [y1, 1]; (b) U(x0) > 0 for some x0 ∈ (y1, x1). If
U(x) < 0 on [y1, 1], by adding the equations for U and V , we obtain −D(U + V )xx = (f(R∗ −
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U) − r)B + g(S∗ − V )B > 0 for any x ∈ (y1, 1). Hence, Uxx(y1) < 0. Integrating this equation
over [y1, 1], we obtain Ux(y1) > Ux(1) + Vx(1) ≥ 0. Define

x2 = sup{x ∈ (0, y1)|Ux(x) = 0, U(x) < 0}.

Then we can assert that 0 < x2 < x1, U(x2) < 0 in (x2, 1), Ux(x2) = 0, Ux ≥ 0 on [x2, y1], and
Uxx(x2) ≥ 0 similarly. The same arguments lead to V (x2) < 0, Vx(x2) > 0 and Vxx(x2) < 0.
Hence, similarly, we can define

y2 = sup{x ∈ (0, x2)|Vx(x) = 0, V (x) < 0}.

Moreover, 0 < y2 < x2 by the above arguments. Continuing the above process, we can show that
there must exist positive integer i such that U(x0) > 0 for some x0 ∈ (yi, xi). Moreover,

U(yi) < 0, Uxx(yi) < 0, U(xi) < 0, Ux(xi) = 0, Uxx(xi) ≥ 0,

and
V (xi) < 0, Vxx(xi) < 0, V (yi) < 0, Vx(yi) = 0, Vxx(yi) ≥ 0, Vx ≥ 0 on [yi, xi].

Let zi = inf{x ∈ (yi, xi)|U(x) = 0}. Then yi < zi < xi, Ux(zi) ≥ 0 and U < 0 in (yi, zi). Adding
the equations for U and V , we obtain −D(U + V )xx = (f(R∗ − U) − r)B + g(S∗ − V )B > 0 for
any x ∈ (yi, zi). Integrating this equation over [yi, zi], we obtain Ux(yi) > Ux(zi) + Vx(zi) ≥ 0.
Hence, we can define

xi+1 = sup{x ∈ (0, yi)|Ux(x) = 0, U(x) < 0} and yi+1 = sup{x ∈ (0, xi+1)|Vx(x) = 0, V (x) < 0}.

This process will be terminated if yi+1 = 0 or Vx < 0 for any x ∈ (0, yi+1). If yi+1 = 0. Then U(0) <
0. Noting that U < 0 in (xi+1, zi), we can prove that there exists some x̂0 ∈ (0, xi+1) such that
U(x̂0) > 0. Otherwise, U ≤ 0 on [0, zi]. On the other hand, considering the equations for U and
V on [0, zi], we have (U, V ) > 0 on [0, zi], a contradiction. Let zi+1 = inf{x ∈ (0, xi+1)|U(x) = 0}.
Considering the equations for U and V on [0, zi+1], we have (U, V ) > 0 on [0, zi+1], a contradiction.
If Vx < 0 for any x ∈ (0, yi+1), we define xi+2 = sup{x ∈ (0, yi+1)|Ux(x) = 0, U(x) < 0}. Then
0 < xi+2 < yi+1. Considering the equations for U and V on [xi+2, yi+1], we get

−DUxx + ωrU − ωsV = (f(R∗ − U)− r)B > 0, x ∈ (xi+2, yi+1),
−DVxx + ωsV − ωrU = g(S∗ − V )B > 0, x ∈ (xi+2, yi+1),
Ux(xi+2) = 0, Ux(yi+1) ≥ 0, −Vx(xi+2) ≥ 0, Vx(yi+1) = 0.

It follows from Theorem 15 of (Amann 2004) that (U, V ) > 0 on [xi+2, yi+1], a contradiction.

Case (2): Ux(1) ≥ 0, Vx(1) < 0. Noting that U(1) = 0, V (1) = 0 and Uxx < 0, Vxx < 0 for any
x ∈ (1− ε, 1), we have U(1− ε) < 0 and V (1− ε) > 0. Let x1 = sup{x ∈ (0, 1)|Ux = 0, U(x) < 0}.
Then U(x) < 0 for x ∈ [x1, 1), Ux(x1) = 0, Ux ≥ 0 on [x1, 1], and Uxx(x1) ≥ 0. It follows from the
first equation of (22) that ωsV (x1) = −DUxx(x1) + ωrU(x1)− (f(R∗(x1)− U(x1))− r)B(x1) < 0
since f(R∗) > r, which leads to V (x1) < 0. In view of V (x1) < 0, V (1 − ε) > 0, we define
z1 = inf{x ∈ (x1, 1)|V (x) = 0}. Then x1 < z1 < 1 and Vx(z1) ≥ 0. On the other hand, we have
Ux(z1) ≥ 0. Hence, we obtain a contradiction as Case (1) on [0, z1] by the same arguments.

Case (3): Ux(1) < 0, Vx(1) ≥ 0. Noting that U(1) = 0, V (1) = 0 and Uxx < 0, Vxx < 0 for any
x ∈ (1− ε, 1), we have U(1− ε) > 0 and V (1− ε) < 0. Let y1 = sup{x ∈ (0, 1)|Vx = 0, V (x) < 0}.
Then V (x) < 0 for x ∈ [y1, 1), Vx(y1) = 0, Vxx(y1) ≥ 0 and Vx ≥ 0 for any x ∈ (y1, 1). It
follows from the second equation of (22) that ωrU(y1) = −DVxx(y1) + ωsV (y1) − g(S∗(y1) −
V (y1))B(y1) < 0, which leads to U(y1) < 0. In view of U(y1) < 0, U(1 − ε) > 0, we define
z1 = inf{x ∈ (y1, 1)|U(x) = 0}. Then y1 < z1 < 1 and Ux(z1) ≥ 0. On the other hand, we have
Vx(z1) ≥ 0. Similarly, we obtain a contradiction as Case (1) on [0, z1].

Thus, Ux(1) < 0, Vx(1) < 0. Hence, there exists ε > 0 small such that U(1−ε) > 0, V (1−ε) > 0.
Next, we show U > 0, V > 0 in [0, 1). Suppose U(x0) < 0 for some point x0 ∈ [0, 1). Define

x1 = sup{x ∈ (0, 1)|Ux = 0, U(x) < 0} and z1 = inf{x ∈ (x1, 1)|U(x) = 0}.
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Then U ≥ 0 on [z1, 1]. By virtue of U(1 − ε) > 0, it is easy to check that U(x) < 0 in [x1, z1),
Ux(x1) = 0, Ux ≥ 0 on [x1, z1], Uxx(x1) ≥ 0. It follows from the first equation of (22) that

ωsV (x1) = −DUxx(x1) + ωrU(x1)− (f(R∗(x1)− U(x1))− r)B(x1) < 0

based on f(R∗) > r, which leads to V (x1) < 0. Define

y1 = sup{x ∈ (0, 1)|Vx = 0, V (x) < 0} and z2 = inf{x ∈ (y1, 1)|V (x) = 0}.

In view of V (1− ε) > 0, it is easy to check that V (x) < 0 in [y1, z2), Vx(y1) = 0, Vx ≥ 0 on [y1, z2],
Vxx(y1) ≥ 0. It follows from the second equation of (22) that

ωrU(y1) = −DVxx(y1) + ωsV (y1)− g(S∗(y1)− V (y1))B(y1) < 0,

which leads to U(y1) < 0. Hence y1 < z1 based on U ≥ 0 on [z1, 1]. Let z0 = min{z1, z2}. Then
Ux(z0) ≥ 0 and Vx(z0) ≥ 0. Hence, we can derive a contradiction as Case (1) on [0, z0] by similar
arguments. Thus we have U ≥ 0 on [0, 1]. By the application of strong maximum principle to the
equations (22), we can find immediately that U, V > 0 in (0, 1). That is, 0 < R < R∗, 0 < S < S∗

in (0, 1).

(ii) It follows from the equation for B that m = −λ1(−f(R) − g(S), ν) − r. Noting that
0 < R < R∗, 0 < S < S∗ and the properties of eigenvalue λ1(q(x), ν), it is easy to see that
0 < m < m∗ = −λ1(−f(R∗)− g(S∗), ν)− r.

(iii) We argue by contradiction. Suppose there exists a sequence mn ∈ (δ,m∗)(n = 1, 2, · · · ),
and positive solution (Rn, Sn, Bn) of (10)-(11) with m = mn such that ‖Bn‖∞ → ∞ as n → ∞.
Passing to a subsequence if necessary we may assume that mn → m0 ∈ [δ,m∗]. Set B̂n = Bn

‖Bn‖∞ .

Then
D(B̂n)xx − ν(B̂n)x + (f(Rn) + g(Sn)− r −mn)B̂n = 0, x ∈ (0, 1),

D(B̂n)x(0)− ν(B̂n)(0) = 0, D(B̂n)x(1)− ν(B̂n)(1) = 0.

Integrating the above equation from 0 to x, we obtain

D(B̂n)x(x)− ν(B̂n)(x) +

∫ x

0

(f(Rn) + g(Sn)− r −mn)B̂ndx = 0,

which indicates (B̂n)x(x) is uniformly bounded since 0 < Rn < R∗, 0 < Sn < S∗ and ‖B̂n‖∞ = 1.
Hence, (B̂n)xx is uniformly bounded. Passing to a subsequence if necessary, we may assume
B̂n → B̂ in C1[0, 1], and B̂ ≥ 0, ‖B̂‖∞ = 1. Let Fn(x) = f(Rn) + g(Sn)− r. Then −r ≤ Fn(x) ≤
f(R∗) + g(S∗)− r on [0, 1], and hence we may assume Fn(x)→ F0(x) weakly in L2(0, 1) for some
function F0(x) satisfy −r ≤ F0(x) ≤ f(R∗) + g(S∗)− r. Hence, B̂ is a weak solution to

DB̂xx − νB̂x + (F0(x)−m0)B̂ = 0, x ∈ (0, 1),

DB̂x(0)− νB̂(0) = 0, DB̂(1)− νB̂(1) = 0.
(23)

It follows from the strong maximum principle that B̂ > 0 on [0, 1]. Let Un = R∗−Rn, Vn = S∗−Sn.
Then 0 < Un < R∗, 0 < Vn < S∗, and (Un, Vn) satisfies

D(Un)xx − ωrUn + ωsVn + (f(Rn)− r)‖Bn‖∞B̂n = 0, x ∈ (0, 1),

D(Vn)xx − ωsVn + ωrUn + g(Sn)‖Bn‖∞B̂n = 0, x ∈ (0, 1),
−(Un)x(0) + αUn(0) = 0, Un(1) = 0, (Vn)x(0) = 0, Vn(1) = 0.

Hence, we have
D(Un)xx +D(Vn)xx + Fn(x)‖Bn‖∞B̂n = 0.

Multiplying this equation by any smooth function ϕ ∈ C∞[0, 1] whose support is in (0, 1), we
obtain

D
Un(0) + Vn(0)

‖Bn‖∞
ϕx(0) +D

∫ 1

0

Un + Vn
‖Bn‖∞

ϕxxdx+

∫ 1

0

Fn(x)B̂nϕdx = 0.

Taking the weak limits, we get
∫ 1

0
F0(x)B̂ϕdx = 0. The arbitrariness of ϕ leads to F0(x)B̂ = 0

a.e. in (0, 1). Integrating (23) over (0, 1), we get m0 = 0, a contradiction to m0 ∈ [δ,m∗].
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Remark B.4 It is easy to check that m∗ = −λ1(−f(R∗)−g(S∗), ν)−r > 0 based on the hypothesis
f(R∗) > r. Moreover, it follows from Lemma B.3 that (10)-(11) has no positive solution when
m ≥ m∗.

Now we are ready to prove Theorem 2.3. Since the proof is complicated, we divided it into the
following three lemmas.

Lemma B.5 Assume f(R∗) > r. Then given B ∈ X+
1 := C([0, 1],R+), the problem

L0

(
R
S

)
−
(
f(R)− r
g(S)

)
B(x) = 0,

−Rx(0) + αR(0) = αR̂, R(1) = R0, Sx(0) = 0, S(1) = S0

(24)

has a unique solution (R(·, B), S(·, B)), which satisfies 0 < R(·, B) ≤ R∗, 0 < S(·, B) ≤ S∗

and (R(·, 0), S(·, 0)) = (R∗, S∗). Moreover, for any 0 ≤ B ≤ M0, the maps B 7→ R(·, B) and
B 7→ S(·, B) are Lipschitz continuous from X+

1 → X+
1 and C1 continuous from Ẋ+

1 → X+
1 , where

M0 is given in Lemma B.3 and Ẋ+
1 = {u(x) ∈ X+

1 : u(x) > 0 on [0, 1]}.

Proof. From Lemma B.3, one can find that any nonnegative solution to (24) satisfies 0 < R ≤
R∗, 0 < S < S∗ provided B(x) ≥ 0. Note that (24) is a cooperative system, and the reaction terms
are C1 continuous. According to Definition 8.4.1 of (Pao 1992), it is easy to see that (0, 0) is a
strictly lower solution to (24), and (R∗, S∗) is a strictly upper solution to (24) provided f(R∗) > r.
It follows from monotone iteration process in Chapter 8.4 of (Pao 1992) that there exists a pair
(R+, S+) and (R−, S−), which are the maximal and minimal solutions to (24), and satisfy the
relation 0 < R− ≤ R+ ≤ R∗, 0 < S− ≤ S+ ≤ S∗. The detailed proof can be found in Lemma
8.4.1 and Theorem 8.4.1 of (Pao 1992). Next, we show R− ≡ R+, S− ≡ S+. Obviously,

L0

(
R+ −R−
S+ − S−

)
+

(
f(R−)− f(R+)
g(S−)− g(S+)

)
B(x) = 0.

Hence, we have

D(R+ −R−)xx +D(S+ − S−)xx + [f(R−)− f(R+) + g(S−)− g(S+)]B(x) = 0.

Integrating over [0, x], and integrating over [0, 1] again, we have

−(D+αD)(R+(0)−R−(0))−D(S+(0)−S−(0))+

∫ 1

0

∫ x

0

[f(R−)−f(R+)+g(S−)−g(S+)]B(ξ)dξdx = 0.

Noting that R+ ≥ R−, S+ ≥ S− on [0, 1], and f(R), g(S) are strictly increasing, we must have
R+ ≡ R−, S+ ≡ S−. Hence, (24) has a unique solution, denoted by (R(·, B), S(·, B)), satisfying
0 < R(·, B) ≤ R∗, 0 < S(·, B) ≤ S∗. It follows from Theorem 2.1 that (R(·, 0), S(·, 0)) = (R∗, S∗).

Next, we prove the Lipschitz continuity of the maps R(·, B) and S(·, B) with respect to B.
To this end, let (R1, S1) = (R(·, B1), S(·, B1)) and (R2, S2) = (R(·, B2), S(·, B2)) be the unique
solution to (24) with B = B1 and B = B2 respectively. Here 0 ≤ B1(x) ≤ B2(x) ≤ M0 with
B1(x), B2(x) ∈ C[0, 1] and B1(x) 6≡ B2(x). Then

L0

(
R1 −R2

S1 − S2

)
−
(
f(R1)B1 − f(R2)B2 − r(B1 −B2)

g(S1)B1 − g(S2)B2

)
= 0.

It follows from mean value theorem that[
L0 −

(
f ′(ξ1)B1 0

0 g′(ξ2)B1

)](
R1 −R2

S1 − S2

)
=

(
(f(R2)− r)(B1 −B2)

g(S2)(B1 −B2)

)
,

where ξ1 lies between R1 and R2, and ξ2 lies between S1 and S2. Hence, 0 < ξ1 ≤ R∗, 0 < ξ2 ≤ S∗.
Recalling that f ′(R), g′(S) > 0, we can find that the operator

L̂0 = L0 −
(
f ′(ξ1)B1 0

0 g′(ξ2)B1

)

23



is invertible, and its inverse operator is a bounded negative operator by Theorem 2.6 or Remark
2.4 of (López-Gómez and Molina-Meyer 1994). Therefore,(

R1 −R2

S1 − S2

)
= (L̂0)−1

(
(f(R2)− r)(B1 −B2)

g(S2)(B1 −B2)

)
.

The boundedness of the operator (L̂0)−1 and (Ri, Si)(i = 1, 2) leads to the Lipschitz continuity of
the maps B 7→ R(·, B) and B 7→ S(·, B).

At last, we show the C1 continuity of the maps B 7→ R(·, B) and B 7→ S(·, B) by the implicit
function theorem. Define H : Ẋ+

1 × C2+γ [0, 1]× C2+γ [0, 1]→ Cγ [0, 1] by

H(B,R, S) = L0

(
R
S

)
−
(
f(R)− r
g(S)

)
B(x),

subject to the boundary conditions −Rx(0) + αR(0) = αR̂, R(1) = R0, Sx(0) = 0, S(1) = S0.
Clearly, H is a C1 function. Given B0(x) ∈ Ẋ+

1 , H(B0, R(·, B0), S(·, B0)) ≡ 0, and the Fréchet
derivative

D(R,S)H(B0, R(·, B0), S(·, B0)) = L0 −
(
f ′(R(·, B0))B1 0

0 g′(S(·, B0))B1

)
is a non-degenerate negative operator subject to the boundary conditions −Rx(0) + αR(0) =
0, R(1) = 0, Sx(0) = 0, S(1) = 0. It follows from the implicit function theorem that there
exists a C1 map (R(·, B), S(·, B)) : Ẋ+

1 → C2+γ [0, 1] × C2+γ [0, 1] defined in a neighborhood
of B0 such that (R(·, B), S(·, B))|B=B0

= (R(·, B0), S(·, B0)), and H(B,R(·, B), S(·, B)) = 0. It
follows from the uniqueness of the solution (B,R(·, B), S(·, B)) close to (B0, R(·, B0), S(·, B0)) that
R(·, B), S(·, B) are continuously differentiable with respect to B respectively.

Lemma B.6 Suppose f(R∗) > r. Then for any given δ0 > 0, the following problem has a unique
positive solution provided m ∈ [δ0,m

∗)

DBxx − νBx + (f(R(·, B)) + g(S(·, B))− r −m)B = 0,
DBx(0) = νB(0), DBx(1) = νB(1).

(25)

Proof. At first, by Lemma B.3, if B is a nonnegative solution, we must have 0 < B < M0 provided
m ∈ [δ0,m

∗). Next, we show (25) has exactly only one positive solution B ∈ (0,M0). Let
W = e−

ν
D xB(x). Then

D(e
ν
D xWx)x + (f(R(·, e νD xW )) + g(S(·, e νD xW ))− r −m)e

ν
D xW = 0,

Wx(0) = Wx(1) = 0.
(26)

Let Ω = {W ∈ X+
1 : W < M0 + 1}, and define a differential operator Tτ : [0, 1]× Ω→ X+

1 by

Tτ (W ) = KP

(
(τf(R(·, e νD xW )) + τg(S(·, e νD xW ))− r −m)e

ν
D xW + PW

)
where P is large enough such that (τf(R(·, e νD xW )) + τg(S(·, e νD xW )) − r −m)e

ν
D x + P > 0 for

all W ∈ Ω and τ ∈ [0, 1], and KP is the solution operator W = KP (h(x)) for the problem

−D(e
ν
D xWx)x + PW = h(x), x ∈ (0, 1), Wx(0) = Wx(1) = 0.

Let T = T1. Then T : Ω→ X+
1 is compact and continuously differentiable, and (26) has nonnega-

tive solutions if and only if the operator T has a fixed point in Ω. Moreover, Tτ has no fixed point
on ∂Ω. By the homotopic invariance of the degree, it is easy to see that

index(T,Ω, X+
1 ) = index(Tτ ,Ω, X

+
1 ) = index(T0,Ω, X

+
1 ) = index(T0, 0, X

+
1 ) = 1.
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By Lemma D.3, it is easy to check that index(T, 0, X+
1 ) = 0 provided that m < m∗. The additivity

of index implies that T has at least one positive fixed point in Ω.

It remains to prove the uniqueness of positive fixed points. To this end, we first claim that any
positive fixed point W0 of T is non-degenerative, and index(T,W0, X

+
1 ) = 1. It follows from Leray-

Schauder degree theory that index(T,W0, X
+
1 ) = (−1)p, where p is the sum of the multiplicities of

all the eigenvalue of T which are greater than one. Hence it suffices to show T has no eigenvalue
greater than or equal to 1. Suppose λ ≥ 1 is an eigenvalue of the Fréchet derivative operator of T
at W0 with the associated eigenfunction ψ. Then

−λD(e
ν
D xψx)x + (λ− 1)Pψ − (f(R(·, B0)) + g(S(·, B0))− r −m)e

ν
D xψ

−B0f
′(R(·, B0)) · ∂BR(·, B0)e

ν
D xψ −B0g

′(S(·, B0)) · ∂BS(·, B0)e
ν
D xψ = 0,

ψx(0) = ψx(1) = 0,
(27)

whereB0 = e
ν
D xW0. Let φ1 = ∂BR(·, B0)e

ν
D xψ, φ2 = ∂BS(·, B0)e

ν
D xψ. It follows from (R(·, B0), S(·, B0))

is the unique solution to (24) with B = B0 that

L0

(
φ1

φ2

)
−
(
B0f

′(R(·, B0))φ1

B0g
′(S(·, B0))φ2

)
=

(
f(R(·, B0))− r
g(S(·, B0))

)
e
ν
D xψ,

Lλψ = B0f
′(R(·, B0))φ1 +B0g

′(S(·, B0))φ2,

where Lλψ = −λD(e
ν
D xψx)x + (λ − 1)Pψ − (f(R(·, B0)) + g(S(·, B0)) − r −m)e

ν
D xψ. It follows

from Theorem 13 of (Amann 2004) that

L̃0 = L0 −
(
B0f

′(R(·, B0)) 0
0 B0g

′(S(·, B0))

)
is invertible subject to the boundary conditions: −(φ1)x(0) + αφ1(0) = 0, φ1(1) = 0, (φ2)x(0) =
0, φ2(1) = 0, and all eigenvalues of L̃0 are negative.

Let L1 be the linear operator Lλ with λ = 1. Then L1 = −D(e
ν
D xψx)x − (f(R(·, B0)) +

g(S(·, B0))−r−m)e
ν
D xψ. Noting that W0 is a positive solution to (26), that is L1W0 = 0 in (0, 1),

we can find that for λ > 1, Lλ is invertible subject to the boundary conditions: ψx(0) = ψx(1) = 0,
and all eigenvalues of Lλ are positive, which implies the strong maximum principle can be applied
to the operator Lλ. Meanwhile, since L1W0 = 0 in (0, 1), we conclude that λ1(L1) = 0 and all
of other eigenvalue of L1 are positive. Hence, the general maximum principle can be applied to
the operator L1 for the function ψ/W0. By the similar arguments as in Lemma 3.3 of (Nie et al.
2015) and Theorem 3.1 of (López-Gómez and Pardo 1994), one can deduce that ψ ≡ 0. That is,
the Fréchet derivative operator of T at W0 has no eigenvalue greater than or equal to 1. Hence,
index(T,W0, X

+
1 ) = (−1)0 = 1.

Since T is compact and any positive fixed point of T is non-degenerative, and the only trivial
non-negative fixed point 0 is also non-degenerative, we see that T has finitely many positive fixed
points in Ω. Let them be Wi(i = 1, 2, · · · , l). By the additivity of the fixed-point index, we obtain

1 = index(T,Ω, X+
1 ) = index(T, 0, X+

1 ) +

l∑
i=1

index(T,Wi, X
+
1 ) = l.

Hence l = 1 and T has a unique positive fixed point. Namely, (25) has a unique positive solution
provided m ∈ [δ0,m

∗).

It follows from Lemmas B.5–B.6 that for m ∈ (0,m∗), (10)-(11) has a unique positive solution
(Rm(x), Sm(x), Bm(x)) provided f(R∗) > r. Next, we turn to show the continuity of the unique
positive solution (Rm(x), Sm(x), Bm(x)) with respect to m.

Lemma B.7 Suppose f(R∗) > r, and let (Rm(x), Sm(x), Bm(x)) be the unique positive solu-
tion to (10)-(11) when m ∈ (0,m∗). Then (Rm(x), Sm(x), Bm(x)) is continuous from (0,m∗) to
(C1[0, 1])3.
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Proof. The continuity of the unique positive solution (Rm(x), Sm(x), Bm(x)) with respect to m
follows from a standard compactness and uniqueness consideration. Indeed, if mn → m0 ∈ (0,m∗),
then there exists a subsequence of (Rmn(x), Smn(x), Bmn(x)) converges in C1([0, 1],R3) to a pos-
itive solution of (10)-(11) with m = m0. By the uniqueness, this positive solution must be
(Rm0

(x), Sm0
(x), Bm0

(x)). Therefore the entire sequence converges to (Rm0
(x), Sm0

(x), Bm0
(x)).

Remark B.8 It follows from Remark B.4 and Lemmas B.5–B.7 that Theorem 2.3 holds.

Remark B.9 By application of a standard bifurcation argument, (m∗;R∗, S∗, 0) is a simple bi-
furcation point, and (10)-(11) has an unbounded connected branch of positive solution bifurcating
from (m∗;R∗, S∗, 0). Moreover, we can show the branch of positive solution can only become un-
bounded through (m;Rm, Sm, Bm) belongs to the branch and satisfies m→ 0, and ‖Bm‖∞ →∞,
which leads to f(Rn) + g(Sn)− r → 0 a.e. in (0, 1).

Proof of Theorem 2.4. (i) By Lemma B.1, any solution (R,S,B) to (9) satisfies R(x, t) >
0, S(x, t) > 0, B(x, t) > 0. In order to show (R(x, t), S(x, t), B(x, t)) converges to (R∗, S∗, 0),
we first consider the following system

Rt = DRxx + ωsS − ωrR+ rB − f(R)B, x ∈ (0, 1),
St = DSxx − ωsS + ωrR− g(S)B, x ∈ (0, 1),

−Rx(0, t) + αR(0, t) = αR̂, R(1, t) = R0,
Sx(0, t) = 0, S(1, t) = S0,
R(x, 0) = R0(x) ≥ 0, S(x, 0) = S0(x) ≥ 0,

(28)

whereB(x, t) > 0 fixed. Clearly, there exists ρ > 1 large enough such that ρ(R∗, S∗) ≥ (R0(x), S0(x)).
Hence (0, 0) and ρ(R∗, S∗) are the ordered lower and upper solutions of (28) by Definition 8.1.2
of (Pao 1992). It follows from the iteration process of Chapter 8.2 in the book by Pao (1992)
and Theorem 8.3.1 of (Pao 1992) that (28) has a unique solution (R(x, t, B), S(x, t, B)) satisfies
0 < R(x, t, B) < ρR∗, 0 < S(x, t, B) < ρS∗. Let Λ = {(R,S) : 0 ≤ R ≤ ρR∗, 0 ≤ S ≤ ρS∗}.
Then Λ is an invariant set of the semi-dynamical system generated by the solutions of (28).
Since (28) is a cooperative system, the semi-dynamical system generated by the solutions of
(28) is strictly monotone. By Lemma B.5, the corresponding steady state system (24) has a
unique solution (R(x,B), S(x,B)), which satisfies 0 < R(x,B) ≤ R∗, 0 < S(x,B) ≤ S∗. Hence,
lim sup
t→∞

R ≤ R∗, lim sup
t→∞

S ≤ S∗ by Theorem 2.2.6 of (Zhao 2003). This implies there exists ε > 0

small such that R ≤ R∗ + ε, S ≤ S∗ + ε. Let W = e−
ν
D xB. Then

e
ν
D xWt = D(e

ν
D xWx)x + (f(R) + g(S)− r −m)We

ν
D x

≤ D(e
ν
D xWx)x + (f(R∗ + ε) + g(S∗ + ε)− r −m)We

ν
D x.

Noting that m > m∗ = −λ1(−(f(R∗) + g(S∗)), ν)− r, there is ε small enough such that r +m >
−λ1(−(f(R∗ + ε) + g(S∗ + ε)), ν). Hence the comparison principle leads to W (x, t)→ 0 as t→∞
uniformly in x ∈ [0, 1]. Thus lim

t→∞
B(x, t) = 0 uniformly for x ∈ [0, 1] provided m > m∗, which

leads to 0 < B(x, t) ≤ ε for some ε > 0. Therefore,(
R
S

)
t

≥ L0

(
R
S

)
−
(
f(R)− r
g(S)

)
ε ≥ L0

(
R
S

)
−
(
f(R∗ + ε)− r
g(S∗ + ε)

)
ε.

The comparison principle implies (R,S) ≥ (Rε, Sε), where (Rε, Sε) is the solution of(
Rε
Sε

)
t

= L0

(
Rε
Sε

)
−
(
f(R∗ + ε)− r
g(S∗ + ε)

)
ε.

Obviously, (Rε, Sε)→ (R∗, S∗). Hence, (R(x, t), S(x, t), B(x, t)) converges to (R∗, S∗, 0).
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We prove (ii) by making use of the abstract persistence theory (Smith and Zhao 2001). Let
Ψ(t) be the solution semiflow generated by the system (9) on the state space X+. Set X0 :=
{(R,S,B) ∈ X+ : B(x) 6≡ 0} and ∂X0 := X+\X0. Let M∂ := {Φ ∈ ∂X0 : Ψ(t)Φ ∈ ∂X0,∀t ≥ 0}
and ω(Φ) be the omega limit set of the forward orbit γ+(Φ) := {Ψ(t)Φ : t ≥ 0}. Then X0 is open
in X+ and forward invariant under the dynamics generated by (9) and ∂X0 contains the washout
equilibrium (R∗, S∗, 0).

We first claim that ∪Φ∈M∂
ω(Φ) ⊂ {(R∗, S∗, 0)}. For any given Φ ∈ M∂ , we have Ψ(t)Φ ∈

M∂ ,∀t ≥ 0, which implies for each t ≥ 0, we have B(·, t,Φ) ≡ 0. Thus (R,S) satisfies (8). It
follows from Theorem 2.1 that lim

t→∞
(R,S) = (R∗, S∗) uniformly for x ∈ [0, 1]. Hence, the claim is

proved.

Next, we claim that (R∗, S∗, 0) is uniform weak repeller in the sense that lim sup
t→∞

‖Ψ(t)Φ −

(R∗, S∗, 0)‖ ≥ δ for all Φ ∈ X0. Assume to the contrary that (R∗, S∗, 0) is not a weak repeller.
Then there exists such a solution satisfying (R(x, t), S(x, t), B(x, t)) → (R∗, S∗, 0) uniformly in
x ∈ [0, 1] as t→∞. Note that for (R(x, 0), S(x, 0), B(x, 0)) ∈ X0, we have B(x, t) > 0 for all t > 0
by change of variable. Since m < m∗ = −λ1(−f(R∗)− g(S∗), ν)− r, there is an ε > 0 small such
that r + m < −λ1(−f(R∗ − ε) − g(S∗ − ε), ν). Recalling the hypothesis (R,S,B) → (R∗, S∗, 0),
there exists t0 > 0 such that R∗ − ε < R(x, t) < R∗ + ε, S∗ − ε < S(x, t) < S∗ + ε, 0 < B < ε
for t ≥ t0. Consequently, for t ≥ t0, Bt ≥ DBxx − νBx + [f(R∗ − ε) + g(S∗ − ε) − r −m]B. Let
W = e−

ν
D xB. Then for t ≥ t0,

e
ν
D xWt ≥ D(e

ν
D xWx)x + [f(R∗ − ε) + g(S∗ − ε)− r −m]We

ν
D x, Wx(0, t) = Wx(1, t) = 0.

Choosing W (x, t0) ≥ δ1ψ∗(x, ε), by comparison principle, W ≥ δ1ψ∗(x, ε)eλε(t−t0) for t > t0, where
λε = −λ1(−f(R∗−ε)−g(S∗−ε), ν)−r−m > 0, and ψ∗(x, ε) is the associate positive eigenfunction
to the eigenvalue problem (39) with q(x) = −f(R∗ − ε) − g(S∗ − ε). This is a contradiction to
e
ν
D xW (x, t) < ε. Hence, we conclude that (R∗, S∗, 0) is a uniform weak repeller and {(R∗, S∗, 0)}

is an isolated invariant set in X+.

Define a continuous function p : X+ → [0,∞) by p(Φ) := min
x∈[0,1]

Φ3(x) for any Φ = (Φ1,Φ2,Φ3) ∈

X+. It follows from the standard comparison principle that p−1(0,∞) ⊆ X0 and p satisfies that
if p(Φ) > 0 or Φ ∈ X0 with p(Φ) = 0, then p(Ψ(t)Φ) > 0 for all t > 0. That is, p is a generalized
distance function for the semiflow Ψ(t) : X+ → X+ (Smith and Zhao 2001). It follows from
∪Φ∈M∂

ω(Φ) ⊂ {(R∗, S∗, 0)} that any forward orbit of Ψ(t) in M∂ converges to (R∗, S∗, 0). Note
that {(R∗, S∗, 0)} is an isolated invariant set in X+, and the stable set W s({(R∗, S∗, 0)})∩X0 = ∅.
Hence,there is no subsets of {(R∗, S∗, 0)} forms a cycle in M∂ . Meanwhile, it follows from Lemma
B.2 that Ψ(t) is point dissipative on X+, and forward orbits of bounded subsets of X+ for Ψ(t) are
bounded. By Theorem 2.6 of (Magal and Zhao 2005), Ψ(t) has a global attractor that attracts each
bounded set in X+. It follows from Theorem 3 of (Smith and Zhao 2001) that there exists a ε0 such
that for any Φ ∈ X0, min

Φ0∈ω(Φ)
p(Φ0) > ε0, which implies that for any Φ ∈ X0, lim inf

t→∞
B(·, t) ≥ ε0.

The proof is completed.

C. Coexistence Results

The aim of this subsection is devoted to study coexistence solutions of the two species system
(6)-(7), and to establish Theorem 2.6 by the global bifurcation theory (Crandall and Rabinowitz
1971; Du 1996). Let

m∗1 = −λ1(−f1(R∗)− g1(S∗), ν1)− r1, m
∗
2 = −λ1(−f2(R∗)− g2(S∗), ν2)− r2,

where λ1(−fi(R∗) − gi(S
∗), νi)(i = 1, 2) is the smallest eigenvalue corresponding to the linear

eigenvalue problem (39) (or (38) equivalently) with q(x) = −fi(R∗)− gi(S∗) and ν = νi. It follows
from Theorem 2.3 that there are three types of nonnegative steady-state solutions to (6)-(7):
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(i) washout solution (R∗, S∗, 0, 0);

(ii) semi-trivial solutions: (R̄1, S̄1, B̄1, 0) provided 0 < m1 < m∗1; (R̄2, S̄2, 0, B̄2) provided
0 < m2 < m∗2;

(iii) positive solutions (R,S,B1, B2) with B1(x) > 0 and B2(x) > 0 on [0, 1].

Repeating the same arguments in Lemma B.3, we obtain a priori estimates for positive solutions
of (6)-(7).

Lemma C.1 Assume fi(R
∗) > ri(i = 1, 2) and (R,S,B1, B2) is a nonnegative solution of (6)-(7)

with B1 6≡ 0 and B2 6≡ 0. Then

(i) 0 < R < R∗, 0 < S < S∗, B1 > 0, B2 > 0 in (0, 1);

(ii) 0 < m1 < m∗1, 0 < m2 < m∗2;

(iii) for any given δ > 0, there exists a positive constant M(δ) such that every positive solution
(R,S,B1, B2) of (6)-(7) with m1 ∈ [δ,m∗1),m2 ∈ [δ,m∗2) satisfies ‖B1‖∞ + ‖B2‖∞ ≤M(δ).

It follows from Lemma C.1 that the necessary conditions for the existence of a positive solution
of (6)-(7) are

0 < m1 < m∗1, 0 < m < m∗2.

Next, we assume 0 < m1 < m∗1, 0 < m2 < m∗2, and construct a positive solution of (6)-(7) by the
global bifurcation theorem. Thus we need to rewrite (6)-(7) as an abstract equation related to
a completely continuous operator. Let X = C([0, 1],R4), and X+ = C([0, 1],R4

+) be the positive
cone of the ordered Banach space X.

Let u = R∗ − R, v = S∗ − S,w1 = e−
ν1
D xB1, w2 = e−

ν2
D xB2. Then the steady state system

(6)-(7) is equivalent to

−(Duxx + ωsv − ωru) = (f1(R∗ − u)− r1)e
ν1
D xw1 + (f2(R∗ − u)− r2)e

ν2
D xw2,

−(Dvxx − ωsv + ωru) = g1(S∗ − v)e
ν1
D xw1 + g2(S∗ − v)e

ν2
D xw2,

−D
(
e
ν1
D x(w1)x

)
x

= [f1(R∗ − u) + g1(S∗ − v)− r1 −m1]e
ν1
D xw1,

−D
(
e
ν2
D x(w2)x

)
x

= [f2(R∗ − u) + g2(S∗ − v)− r2 −m2]e
ν2
D xw2,

(29)

with the boundary conditions

−ux(0) + αu(0) = 0, u(1) = 0, vx(0) = 0, v(1) = 0, (wi)x(0) = (wi)x(1) = 0, i = 1, 2, (30)

We define A : (0,+∞)× X→ X by

A(m2;u, v, w1, w2) = (A0(u, v, w1, w2),A1(u, v, w1, w2),A2(u, v, w1, w2)),

where

A0(u, v, w1, w2) = K0

(
(f1(R∗ − u)− r1)e

ν1
D xw1 + (f2(R∗ − u)− r2)e

ν2
D xw2

g1(S∗ − v)e
ν1
D xw1 + g2(S∗ − v)e

ν2
D xw2

)
A1(u, v, w1, w2) = K1

(
[f1(R∗ − u) + g1(S∗ − v)− r1 −m1]e

ν1
D xw1 +M1w1

)
A2(u, v, w1, w2) = K2

(
[f2(R∗ − u) + g2(S∗ − v)− r2 −m2]e

ν1
D xw2 +M2w2

)
and K0,Ki(i = 1, 2) are the solution operators for the problems, respectively,

−L0(φ1, φ2)ᵀ = (h1(x), h2(x))ᵀ, x ∈ (0, 1),
−(φ1)x(0) + αφ1(0) = 0, φ1(1) = 0, (φ2)x(0) = 0, φ2(1) = 0;

(31)

−D
(
e
νi
D xwx

)
x

+Miw = h(x), x ∈ (0, 1), wx(0) = wx(1) = 0. (32)
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That is, for any given h1(x), h2(x) ∈ C[0, 1] and h(x) ∈ C[0, 1], (φ1, φ2)ᵀ = K0(h1(x), h2(x))ᵀ and

w = Ki(h(x)). Here, Mi(i = 1, 2) is large enough such that (fi(R
∗−u)+gi(S

∗−v)−ri−mi)e
νi
D x+

Mi > 0. By the application of Theorem 2.6 of (López-Gómez and Molina-Meyer 1994), we obtain
that K0 is strongly positive compact operator when seen as an operator from C1([0, 1],R2) to
C1([0, 1],R2) and from L2((0, 1),R2) to L2((0, 1),R2). Similarly, Ki(i = 1, 2) is strongly positive
compact operator when seen as an operator from C1[0, 1] to C1[0, 1] and from L2(0, 1) to L2(0, 1).
By standard elliptic regularity theory we know that A : (0,+∞)×X→ X is completely continuous.
Let U = (u, v, w1, w2)ᵀ and G(m2; U) = U − A(m2,U). Then the zeros of G(m2; U) = 0 with
0 ≤ u ≤ R∗, 0 ≤ v ≤ S∗, w1 ≥ 0, w2 ≥ 0 correspond to the nonnegative solutions of (29)-(30).

It follows from Theorem 2.3 that (29)-(30) have two semi-trivial solutions

U1 = (R∗ − R̄1, S
∗ − S̄1, e

− ν1D xB̄1, 0) and U2 = (R∗ − R̄2, S
∗ − S̄2, 0, e

− ν2D xB̄2)

when 0 < m1 < m∗1, 0 < m2 < m∗2. Next, we construct a positive solution branch Γ′ = {m2; U} ⊂
(0,+∞)×X+ bifurcating from the semi-trivial solution branches Γ′1 = {(m2; U1) ⊂ (0,+∞)×X+ :
m2 ∈ (0,+∞)} and Γ′2 = {(m2; U2) ⊂ (0,+∞) × X+ : m2 ∈ (0,+∞)}. To this end, we fix
m1 ∈ (0,m∗1) and take m2 as the bifurcation parameter. Introduce

m̂1(m2) = −λ1(−f1(R̄2(·,m2))− g1(S̄2(·,m2)), ν1)− r1,

m̂2(m1) = −λ1(−f2(R̄1(·,m1))− g2(S̄1(·,m1)), ν2)− r2,

where λ1(−f1(R̄2(·,m2)) − g1(S̄2(·,m2)), ν1) and λ1(−f2(R̄1(·,m1)) − g2(S̄1(·,m1)), ν2) are the
smallest eigenvalues corresponding to the linear eigenvalue problem (39) (or (38) equivalently) with
q(x) = −f1(R̄2(·,m2)) − g1(S̄2(·,m2)), ν = ν1 and q(x) = −f2(R̄1(·,m1)) − g2(S̄1(·,m1)), ν = ν2.
In view of 0 < R̄1 < R∗, 0 < S̄1 < S∗, it follows from Lemma D.1 that 0 < m̂1(m2) < m∗1, 0 <
m̂2(m1) < m∗2.

Proof of Theorem 2.6. For any δ > 0 and m1 ∈ [δ,m∗1) fixed, we construct the global bifur-
cation which corresponds to positive solutions by treating m2 as a bifurcation parameter. The
Fréchet derivative of G(m2; U) with respect to U at U1 is denoted by DUG(m2; U1). In order
to apply Crandall-Rabinowitz Theorem of bifurcation from simple eigenvalue (Crandall and Ra-
binowitz 1971), we first show that the dimension of the null space of DUG(m2; U1) is 1. Let
DUG(m2; U1)(φ1, φ2, ψ1, ψ2) = 0. Then direct computation gives

L0

(
φ1

φ2

)
−
(
f ′1(R̄1)B̄1φ1

g′1(S̄1)B̄1φ2

)
+

(
(f1(R̄1)− r1)e

ν1
D xψ1 + (f2(R̄1)− r2)e

ν2
D xψ2

g1(S̄1)e
ν1
D xψ1 + g2(S̄1)e

ν2
D xψ2

)
= 0

D(e
ν1
D xψ1x)x + [f1(R̄1) + g1(S̄1)− r1 −m1]e

ν1
D xψ1 − f ′1(R̄1)B̄1φ1 − g′1(S̄1)B̄1φ2 = 0

D(e
ν2
D xψ2x)x + [f2(R̄1) + g2(S̄1)− r2 −m2]e

ν2
D xψ2 = 0

with the corresponding boundary conditions. Take m2 = m̂2, ψ2 = ψ̂2, which is the associated
positive eigenfunction to the eigenvalue λ1(−f2(R̄1) − g2(S̄1), ν2). It follows from Theorem 13 of
(Amann 2004) that

L̄0 = L0 −
(
f ′1(R̄1)B̄1 0

0 g′1(S̄1)B̄1

)
is invertible subject to the boundary conditions: −(φ1)x(0) + αφ1(0) = 0, φ1(1) = 0, (φ2)x(0) =
0, φ2(1) = 0, and all eigenvalues of L̄0 are negative. Hence(

φ1

φ2

)
= −L̄−1

0

[(
f1(R̄1)− r1

g1(S̄1)

)
e
ν1
D xψ1

]
− L̄−1

0

[(
f2(R̄1)− r2

g2(S̄1)

)
e
ν2
D xψ̂2

]
.

Here L̄−1
0 is the inverse operator of L̄0 subject to the boundary conditions −(φ1)x(0) + αφ1(0) =

0, φ1(1) = 0, (φ2)x(0) = 0, φ2(1) = 0. Let(
φ̄1(ψ1)
φ̄2(ψ1)

)
= L̄−1

0

[(
f1(R̄1)− r1

g1(S̄1)

)
e
ν1
D xψ1

]
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and (
φ̃1(ψ̂2)

φ̃2(ψ̂2)

)
= L̄−1

0

[(
f2(R̄1)− r2

g2(S̄1)

)
e
ν2
D xψ̂2

]
Putting them into the equation for ψ1, we have

D(e
ν1
D xψ1x)x + [f1(R̄1) + g1(S̄1)− r1 −m1]e

ν1
D xψ1

+(f ′1(R̄1)φ̄1(ψ1) + g′1(S̄1)φ̄2(ψ1))B̄1 + (f ′1(R̄1)φ̃1(ψ̂2) + g′1(S̄1)φ̃2(ψ̂2))B̄1 = 0.
(33)

Clearly, φ̄1(ψ1), φ̄2(ψ1) are differentiable with respect to ψ. Note that φ̄1(0) = φ̄2(0) = 0.
Take ‖ψ1‖ = ε by re-scaling. Then B̄1(f ′1(R̄1)φ̄1(ψ1) + g′1(S̄1)φ̄2(ψ1)) = B̄1[f ′1(R̄1)((∂ψ1

φ̄1)ψ1 +
o(ε)ψ1) + g′1(S̄1)((∂ψ1

φ̄2)ψ1 + o(ε)ψ1)] = B̄1[f ′1(R̄1)∂ψ1
φ̄1 + g′1(S̄1)∂ψ1

φ̄2 + o(ε)]ψ1. Note that

L1 = D d
dx (e

ν1
D x d

dx )+[f1(R̄1)+g1(S̄1)−r1−m1]e
ν1
D x+B̄1f

′
1(R̄1)∂ψ1

φ̄1 +g′1(S̄1)∂ψ1
φ̄2) is invertible.

Hence ψ1 = ψ̂1 can be solved by (33) uniquely, which implies the null space of DUG(m̂2; U1) is

spanned by (φ̂1, φ̂2, ψ̂1, ψ̂2). Here(
φ̂1

φ̂2

)
= −L̄−1

0

[(
f1(R̄1)− r1

g1(S̄1)

)
e
ν1
D xψ̂1

]
− L̄−1

0

[(
f2(R̄1)− r2

g2(S̄1)

)
e
ν2
D xψ̂2

]
.

Direct computation leads to that the range of DUG(m̂2; U1) is

{U = (u, v, w1, w2) ∈ X :

∫ 1

0

[(f2(R̄1) + g2(S̄1)− r2 − m̂2)e
ν2
D x +M2]ψ̂2w2dx = 0}.

By virtue of K2(e
ν2
D xψ̂2) > 0, we have∫ 1

0

K2(e
ν2
D xψ̂2)[(f2(R̄1) + g2(S̄1)− r2 − m̂2)e

ν2
D x +M2]ψ̂2dx > 0

Hence, D2
m2U

G(m̂2; U1)(φ̂1, φ̂2, ψ̂1, ψ̂2) = (0, 0, 0,K2(e
ν2
D xψ̂2)) does not belong to the range of

DUG(m̂2; U1). By application of the bifurcation theorem from a simple eigenvalue (Crandall
and Rabinowitz 1971), there exists a τ0 > 0 and C1 function (m2(τ), R(τ), S(τ), B1(τ), B2(τ)) :
(−τ0, τ0) 7→ (−∞,+∞) × X such that m(0) = m̂2, R(0) = R̄1, S(0) = S̄1, B1(0) = B̄1, B2(0) = 0

and (m2, R(τ), S(τ), B1(τ), B2(τ)) = (m2(τ), R̄1 + τ(φ̂1 + U(τ)), S̄1 + τ(φ̂2 + V (τ)), B̄1 + τ(ψ̂1 +

ω1(τ)), τ(ψ̂2 +ω2(τ)))(|τ | < τ0), which is the solution of the steady state system (6)-(7). If we take
0 < τ < τ0, this bifurcation branch is just the positive solution of the steady state system (6)-(7).

Next, we extend the local bifurcation to the global one. Suppose λ ≥ 1 is an eigenvalue of
DUA(m2; U1) with the corresponding eigenfunction (φ1, φ2, ψ1, ψ2). Then

λL0

(
φ1

φ2

)
+

(
−f ′1(R̄1)B̄1φ1 + (f1(R̄1)− r1)e

ν1
D xψ1 + (f2(R̄1)− r2)e

ν2
D xψ2

−g′1(S̄1)B̄1φ2 + g1(S̄1)e
ν1
D xψ1 + g2(S̄1)e

ν2
D xψ2

)
= 0,

λD(e
ν1
D xψ1x)x + (1− λ)M1ψ1 + [f1(R̄1) + g1(S̄1)− r1 −m1]e

ν1
D xψ1

−f ′1(R̄1)B̄1φ1 − g′1(S̄1)B̄1φ2 = 0,

D(e
ν2
D xψ2x)x +M2(−1 + 1

λ )ψ2 + 1
λ (f2(R̄1) + g2(S̄1)− r2 −m2)e

ν2
D xψ2 = 0

(34)

with the boundary conditions (30). Claim that ψ2 6≡ 0. If not, then ψ2 ≡ 0, similar arguments lead
to

L̄λ = L0 −
1

λ

(
f ′1(R̄1)B̄1 0

0 g′1(S̄1)B̄1

)
is invertible subject to the boundary conditions: −(φ1)x(0) + αφ1(0) = 0, φ1(1) = 0, (φ2)x(0) =
0, φ2(1) = 0, and all eigenvalues of L̄λ are negative. Hence(

φ1

φ2

)
= −L̄−1

λ

[
1

λ

(
f1(R̄1)− r1

g1(S̄1)

)
e
ν1
D xψ1

]
.
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Substituting (φ1, φ2) into the equation for ψ1 in (34), we have ψ1 ≡ 0 by similar arguments as
above, which leads to φ1 = φ2 ≡ 0. This is a contradiction. Hence ψ2 6≡ 0. Noting that L̄λ
is invertible, similar arguments as above deduce that φ1, φ2 and ψ1 can be determined by (34)
uniquely. Hence, λ ≥ 1 is an eigenvalue of DUA(m2; U1) if and only if λ ≥ 1 satisfies

D(e
ν2
D xψ2x)x +M2(−1 + 1

λ )ψ2 + 1
λ (f2(R̄1) + g2(S̄1)− r2 −m2)e

ν2
D xψ2 = 0,

ψ2x(0) = ψ2x(1) = 0.

That is, λ ≥ 1 is an eigenvalue of DUA(m2; U1) if and only if 1
λ (0 < 1

λ ≤ 1) is an eigenvalue of

−D(e
ν2
D xψ2x)x +M2ψ2 = σ[(f2(R̄1) + g2(S̄1)− r2 −m2)e

ν2
D x +M2]ψ2,

ψ2x(0) = ψ2x(1) = 0.
(35)

If m2 > m̂2, then λ1(−f2(R̄1)− g2(S̄1) + r2 +m2, ν2) > 0. It follows from Lemma D.4 that the
eigenvalue problem (35) has no eigenvalue less than or equal to 1, which leads to DUA(m2; U1)
has no eigenvalue λ > 1. Thus index(A(m2; U),U1) = 1.

On the other hand, in view of f2(R̄1) + g2(S̄1)− r2 −m2 +M2 > 0, it is easy to check that all
eigenvalues σi(m2) of (35) are real and strictly increasing with respect to m2, and can be ordered
as 0 < σ1(m2) < σ2(m2) ≤ σ3(m2) ≤ · · · with σ1(m̂2) = 1(cf. Courant and Hilbert 1953). Hence,
for m̂2 − ε < m2 < m̂2, one can find that 0 < σ1(m2) < σ1(m̂2) = 1 and σ2(m̂2) > σ1(m̂2) = 1.
The continuity of σ2(m2) leads to σ2(m2) > σ2(m̂2 − ε) > 1 as long as ε is small enough. Thus
σ1(m2) is the unique eigenvalue of (35), which is less than 1, and (35) has exactly one nontrivial
solution (up to a multiplicative constant), denoted by ψ̃2, whenever m2 < m̂2 is close enough to
m̂2. This establishes that DUA(m2; U1) has a unique eigenvalue λ0 = 1

σ1(m2) > 1.

Next, we can show that

N(λ0I −DUA(m2; U1)) ∩R(λ0I −DUA(m2; U1)) = {0},

which implies the algebraic multiplicity of the eigenvalue λ0 is one. If not, without loss of generality,
we may assume that (φ1, φ2, ψ1, ψ̃2) ∈ R(λ0I −DUA(m2; U1)), where (φ1, φ2, ψ1, ψ̃2) satisfies (34)
with λ = λ0. Then there exists (Φ1,Φ2,Ψ1,Ψ2) ∈ X such that

λ0D(e
ν2
D xΨ2x)x −M2(λ0 − 1)Ψ2 + (f2(R̄1) + g2(S̄1)− r2 −m2)e

ν2
D xΨ2

= D(e
ν2
D xψ̃2x)x −M2ψ̃2,

Ψ2x(0) = Ψ2x(1) = 0.

(36)

Meanwhile, note that λ0 = 1
σ1(m2) , ψ̃2 6= 0 and

−D(e
ν2
D xψ̃2x)x +M2ψ̃2 = σ1(m2)[(f2(R̄1) + g2(S̄1)− r2 −m2)e

ν2
D x +M2]ψ̃2,

ψ̃2x(0) = ψ̃2x(1) = 0.
(37)

Multiplying (36) by ψ̃2 and (37) by Ψ2, and integrating over (0, 1) by parts, we obtain

−D
∫ 1

0

e
ν2
D xψ̃2

2xdx−M2

∫ 1

0

ψ̃2
2dx = 0,

a contradiction. Hence, λ0 is the unique eigenvalue of DUA(m2; U1) greater than 1. Moreover, its
algebraic multiplicity is one. This gives index(A(m2; U),U1) = −1.

By the global bifurcation theorem (see Theorem 2.1 of (Du 1996)), the local bifurcation
given as above can be extended to a continuum Γ, satisfying one of the alternative: (i) meets
(m̄2, R̄1, S̄1, B̄1, 0) at m̄2 6= m̂2; (ii) joins (m̂2, R̄1, S̄1, B̄1, 0) to ∞ in (−∞,+∞)× X.

Suppose (i) holds. Then we can find a sequence of points (m
(n)
2 , Rn, Sn, B

(n)
1 , B

(n)
2 ) ∈ (0,m∗2)×

X+ with Rn, Sn, B
(n)
1 , B

(n)
2 > 0 on [0, 1], which converges to (m̄2, R̄1, S̄1, B̄1, 0) in (0,+∞) × X.

It follows from the equation for B
(n)
2 , we have

−m(n)
2 = λ1(−f2(Rn)− g2(Sn), ν2) + r2 → λ1(−f2(R̄1)− g2(S̄1), ν2) + r2 = −m̂2.
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Hence, m̄2 = m̂2, a contradiction. Thus (i) can not occur.

It follows from Lemma B.3 that 0 < R < R∗, 0 < S < S∗, B1 > 0, B2 > 0, and ‖B1‖∞ +
‖B2‖∞ ≤M for m1 ∈ [δ,m∗1),m2 ∈ [δ,m∗2) and any δ > 0. By Lp estimate and Sobolev embedding
theorem, we can claim that ‖R‖, ‖S‖, ‖B1‖, ‖B2‖ are bounded. So Γ is bounded in [δ,m∗2) × X+.
Since (ii) holds, one can claim that the global bifurcation branch Γ must meet the boundary of
[δ,m∗2) × X+. Thus Γ − {(m̂2, R̄1, S̄1, B̄1, 0)} 6⊆ X+ or Γ contains a point (m2, R, S,B1, B2) ∈
[δ,m∗2)× X+ with m2 = δ, or m2 = m∗2.

Suppose there exist m
(n)
2 → m∗2− and positive solution (Rn, Sn, B

(n)
1 , B

(n)
2 ) of (6)-(7) with

m2 = m
(n)
2 . Let B̂

(n)
i =

Bni
‖Bni ‖∞

. Since 0 ≤ fi(Rn) + gi(Sn) ≤ fi(R
∗) + gi(S

∗)(i = 1, 2), we can

assume fi(Rn) + gi(Sn)→ Fi(x) weakly in L2(0, 1). Here 0 ≤ Fi(x) ≤ fi(R∗) + gi(S
∗). Then

D(B̂
(n)
2 )xx − ν2(B̂

(n)
2 )x + [f2(Rn) + g2(Sn)− r2 −m(n)

2 ]B̂
(n)
2 = 0, x ∈ (0, 1),

D(B̂
(n)
2 )x(0)− ν2B̂

(n)
2 (0) = 0, D(B̂

(n)
2 )x(1)− ν2B̂

(n)
2 (1) = 0.

Integrating the above equation from 0 to x, we obtain

D(B̂
(n)
2 )x(x)− ν2B̂

(n)
2 (x) +

∫ x

0

(f2(Rn) + g2(Sn)− r2 −m(n)
2 )B̂

(n)
2 dx = 0,

which indicates (B̂
(n)
2 )x(x) is uniformly bounded since 0 < Rn < R∗, 0 < Sn < S∗ and ‖B̂(n)

2 ‖∞ =

1. Hence, (B̂
(n)
2 )xx is uniformly bounded. Passing to a sequence if necessary, we may assume

B̂
(n)
2 → B̂2 in C1[0, 1], and B̂2 is a weak solution to

D(B̂2)xx − ν2(B̂2)x + (F2(x)− r2 −m∗2)B̂2 = 0, x ∈ (0, 1),

D(B̂2)x(0)− ν2B̂2(0) = 0, D(B̂2)x(1)− ν2B̂2(1) = 0.

Here 0 ≤ F2(x) ≤ f2(R∗) + g2(S∗). It follows from the strong maximum principle that B̂2 > 0.
Moreover, r2 +m∗2 = −λ1(−F2(x), ν2) ≤ −λ1(−f2(R∗)− g2(S∗), ν2) = m∗2 + r2. The equality holds

if and only if F2(x) = f2(R∗) + g2(S∗). Similar arguments lead to B̂
(n)
1 → B̂1 in C1[0, 1], and B̂1

satisfies
D(B̂1)xx − ν1(B̂1)x + B̂1(F1(x)− r1 −m1) = 0, x ∈ (0, 1),

D(B̂1)x(0)− ν1B̂1(0) = 0, D(B̂1)x(1)− ν1B̂1(1) = 0,

where 0 ≤ F1(x) ≤ f1(R∗) + g1(S∗). By the strong maximum principle, we have B̂1 > 0. Hence,
r1 +m1 = −λ1(−F1(x), ν1) ≤ −λ1(−f1(R∗)− g1(S∗), ν1) = m∗1 + r1. Note that fi(Rn) + gi(Sn)→
Fi(x) weakly in L2(0, 1), F2(x) = f2(R∗) + g2(S∗), and a priori estimates 0 ≤ Rn ≤ R∗, 0 ≤ Sn ≤
S∗. It follows from the monotonicity of fi(R), gi(S) that F1(x) = f1(R∗) + g1(S∗), which deduce
m1 = m∗1, a contradiction.

Suppose there exist m
(n)
2 → 0+ and positive solution (Rn, Sn, B

(n)
1 , B

(n)
2 ) of (6)-(7) with m2 =

m
(n)
2 . At first, we show ‖B(n)

2 ‖∞ → ∞. If not, it follows from Lemma C.1 and (6)-(7) with

(R,S,B1, B2) = (Rn, Sn, B
(n)
1 , B

(n)
2 ) and m2 = m

(n)
2 that (Rn)xx, (Sn)xx, (B

(n)
1 )xx, (B

(n)
2 )xx are

uniformly bounded. By Lp estimates and Sobolev embedding theorem, we may assume by passing

to a subsequence that Rn → R, Sn → S, B
(n)
1 → B1, B

(n)
2 → B2 in C1[0, 1], and (R,S,B1, B2) is

a weak solution to (6)-(7) with m2 = 0. Let B̂
(n)
2 =

Bn2
‖Bn2 ‖∞

. Similar arguments lead to B̂
(n)
2 → B̂2

in C1[0, 1], and B̂2 satisfies

D(B̂2)xx − ν2(B̂2)x + B̂2(f2(R) + g2(S)− r2) = 0,

D(B̂2)x(0)− ν2B̂2(0) = 0, D(B̂2)x(1)− ν2B̂2(1) = 0.

respectively. It follows from the strong maximum principle that B̂2 > 0. Integrating the equation

for B̂2 over [0, 1], we deduce
∫ 1

0
(f2(R)−r2 +g2(S))B̂2dx = 0, which implies f2(R)−r2 +g2(S) = 0
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a.e in (0, 1) by Lemma C.1. It follows that S ≡ 0 in [0, 1], a contradiction. Hence, ‖B(n)
2 ‖∞ →∞.

By the same reasoning as in the proof of Lemma B.3, for given B
(n)
1 , B

(n)
2 > 0, we can show that

the following problem

D(Rn)xx + ωsSn − ωrRn − (f1(Rn)− r1)B
(n)
1 − (f2(Rn)− r2)B

(n)
2 = 0,

D(Sn)xx − ωsSn + ωrRn − g1(Sn)B
(n)
1 − g2(Sn)B

(n)
2 = 0,

−(Rn)x(0) + αRn(0) = αR̂, Rn(1) = R0, (Sn)x(0) = 0, Sn(1) = S0.

has a unique solution (Rn(x,B1, B2), Sn(x,B1, B2)), which satisfies fi(Rn)−ri → 0 and gi(Sn)→ 0

a.e. in (0, 1) by similar arguments as in Lemma B.3. Noting that the equation for B
(n)
1 , we have

−m1 = λ1(−f1(Rn) + r1 − g1(Sn)). Letting n→∞, we get m1 = 0, a contradiction.

Suppose Γ− {(m̂2, R̄1, S̄1, B̄1, 0)} 6⊆ X+. Then we can find a sequence of points

(m
(n)
2 , Rn, Sn, B

(n)
1 , B

(n)
2 ) ∈ Γ ∩ X+ with Rn, Sn, B

(n)
1 , B

(n)
2 > 0 on [0, 1],

which converges to (m2, R, S,B1, B2) ∈ (Γ − {(m̂2, R̄1, S̄1, B̄1, 0)}) ∩ ∂X+ in (0,+∞) × X. Since
(R,S,B1, B2) ∈ ∂X+ and R,S > 0, we obtain that either B1 ≥ 0, B1(x0) = 0 for some point x0 ∈
[0, 1] or B2 ≥ 0, B2(x0) = 0 for some point x0 ∈ [0, 1]. By the maximum principle, we have B1 ≡ 0
if B1(x0) = 0 for some point x0 ∈ [0, 1]. Similarly, we can show B2 ≡ 0 for the other case. There-
fore, we have the following alternatives: (a)(R,S,B1, B2) ≡ (R∗, S∗, 0, 0); (b)(R,S,B1, B2) ≡
(R̄1, S̄1, B̄1, 0); (c)(R,S,B1, B2) ≡ (R̄2, S̄2, 0, B̄2).

If (m
(n)
2 , Rn, Sn, B

(n)
1 , B

(n)
2 ) → (m̄2, R

∗, S∗, 0, 0), then m1 = −λ1(−f1(Rn) − g1(Sn)) − r1 →
m∗1, contradicting m1 ∈ [δ,m∗1). If (m

(n)
2 , Rn, Sn, B

(n)
1 , B

(n)
2 ) → (m̄2, R̄1, S̄1, B̄1, 0), −m(n)

2 =
λ1(−f2(Rn) − g2(Sn), ν2) + r2 → λ1(−f2(R̄1) − g2(S̄1), ν2) + r2 = −m̂2. Hence, m̄2 = m̂2, a
contradiction. Therefore, (c) necessarily happens and the global bifurcation Γ must meet the semi-
trivial branch Γ2 at the point (m̃2, R̄2, S̄2, 0, B̄2), that is, Γ ∩ Γ2 = {(m̃2, R̄2, S̄2, 0, B̄2)}. Hence

there exists a sequence (m
(n)
2 , Rn, Sn, B

(n)
1 , B

(n)
2 )→ (m̃2, R̄2, S̄2, 0, B̄2). By the equation for B

(n)
1 ,

we have m1 = −λ1(−f1(Rn)−g1(Sn), ν1)−r1. Taking the limit, we get m1 = −λ1(−f1(R̄2(m̃2))−
g1(S̄2(m̃2)), ν1)−r1. Namely, m̃2 is determined by m1 = −λ1(−f1(R̄2(m̃2))−g1(S̄2(m̃2)), ν1)−r1.
The proof is completed.

D. Some Well-known Lemmas

Finally, we state some well-known lemmas as appendix without proof, which is useful for obtaining
the main results in this paper.

Consider the linear eigenvalue problem

−Dϕxx + νϕx + q(x)ϕ = λϕ, 0 < x < 1
Dϕx(0)− νϕ(0) = 0, Dϕx(1)− νϕ(1) = 0,

(38)

where q(x) is a continuous function in [0, 1], D, ν are positive constants. Let ψ = e−
ν
D xϕ(x). Then

ψ satisfies
−D

(
e
ν
D xψx

)
x

+ q(x)e
ν
D xψ = λe

ν
D xψ, 0 < x < 1

ψx(0) = ψx(1) = 0.
(39)

Lemma D.1 (Courant and Hilbert 1953; Hsu and Lou 2010) All eigenvalues of (39) are real, and
the smallest eigenvalue λ1(q(x), ν) can be characterized as

λ1(q(x), ν) = inf
ψ 6=0,ψ∈H1(0,1)

∫ 1

0
e
ν
D x(Dψ2

x + q(x)ψ2)dx∫ 1

0
e
ν
D xψ2dx

,

which corresponds to a positive eigenfunction ψ1, and λ1(q(x), ν) is the only eigenvalue whose
corresponding eigenfunction does not change sign. Moreover,
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(i) q1(x) ≥ q2(x) implies λ1(q1(x), ν) ≥ λ1(q2(x), ν), and the equality holds only if q1(x) ≡
q2(x);

(ii) qn(x)→ q(x) in C[0, 1] implies λ1(qn(x), ν)→ λ1(q(x), ν).

Lemma D.2 (Parabolic Harnack inequality) (Evans 1998). Let Ω ⊂ Rn be an open set, QT =
Ω× (0, T ] and

Lu = −
n∑

i,j=1

aij(x)uxixj +

n∑
i=1

bi(x)uxi + c(x)u,

where the coefficients aij(x), bi(x), c(x) are continuous, and −L is uniformly elliptic in Ω. Assume
u ∈ C2,1(QT ) solves ut + Lu = 0 in QT , and u ≥ 0 in QT . Suppose K ⊂⊂ Ω is connected. Then
for each 0 < t1 < t2 ≤ T , there exists a constants C such that

sup
K
u(·, t1) ≤ C inf

K
u(·, t2).

The constant C depends only on K, t1, t2, and the coefficients aij(x), bi(x), c(x).

Lemma D.3 (Dancer 1983; Dancer 1984) Let F : W →W be a compact, continuously differentiable
operator, W be a cone in the Banach space E with zero Θ. Suppose that W −W is dense in E
and that Θ ∈W is a fixed point of F and A0 = F ′(Θ). Then the following results hold:

(i) indexW (F,Θ) = 1 if r(A0) < 1;

(ii) indexW (F,Θ) = 0 if A0 has eigenvalue greater than 1 and Θ is an isolated solution of
x = F (x), that is h 6= A0h if h ∈W −Θ.

Lemma D.4 (Wang 2010) Let Ω is a bounded domain in Rn with boundary surface ∂Ω ∈ C2+γ ,
q(x) ∈ C(Ω) and P be a positive constant such that P − q(x) > 0 on Ω. Let λ1(q(x)) be the
principal eigenvalue of the eigenvalue problem

−
n∑

i,j=1

Dj(aij(x)Diϕ) + q(x)ϕ = λϕ, x ∈ Ω,

n∑
i,j=1

aij(x)Diϕ cos($,xj) + b(x)ϕ = 0, x ∈ ∂Ω,

where ai,j(x), b(x) ∈ C(∂Ω), b(x) ≥ 0, and $ is the outward unit normal vector on ∂Ω. Then the
following conclusions hold

(i) if λ1(q(x)) < 0 then the spectral radius r[(P −Dj(aij(x)Di))
−1(P − q(x))] > 1;

(ii) if λ1(q(x)) > 0 then the spectral radius r[(P −Dj(aij(x)Di))
−1(P − q(x))] < 1;

(iii) if λ1(q(x)) = 0 then the spectral radius r[(P −Dj(aij(x)Di))
−1(P − q(x))] = 1.
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