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SINGLE PHYTOPLANKTON SPECIES GROWTH WITH LIGHT
AND ADVECTION IN A WATER COLUMN∗

SZE-BI HSU† AND YUAN LOU‡

Abstract. We investigate a nonlocal reaction-diffusion-advection equation which models the
growth of a single phytoplankton species in a water column where the species depends solely on light
for its metabolism. We study the combined effect of death rate, sinking or buoyant coefficient, water
column depth, and vertical turbulent diffusion rate on the persistence of a single phytoplankton
species. Under a general reproductive rate which is an increasing function of light intensity, we
establish the existence of a critical death rate; i.e., the phytoplankton survives if and only if its death
rate is less than the critical death rate. The critical death rate is a strictly monotone decreasing
function of the sinking or buoyant coefficient and water column depth, and it is also a strictly
monotone decreasing function of the turbulent diffusion rate for buoyant species. In contrast to
the critical death rate, a critical sinking or buoyant velocity, a critical water column depth, and a
critical turbulent diffusion rate may or may not exist. For instance, if the death rate is suitably
small with respect to the water column depth, the phytoplankton can persist for any sinking or
buoyant velocity; i.e., there is no critical sinking or buoyant velocity under such a situation. We
further show that a critical water column depth, a critical sinking or buoyant velocity, and a critical
turbulent diffusion rate for both buoyant species and species with large sinking rates can exist for
some intermediate range of phytoplankton death rates and, whenever they exist, are always unique.
In strong contrast, there may exist two critical turbulent diffusion rates for species with small sinking
rates. The phytoplankton forms a thin layer at the surface of the water column for large buoyant
rates, and it forms a thin layer at the bottom of the water column for large sinking rates. Precise
characterizations of these thin layers are also given.
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1. Introduction. Phytoplankton are microscopic plant-like organisms that drift
in the water column of lakes and oceans. They grow abundantly around the world
and are the foundation of the marine food chain. Nutrients and light are the essen-
tial resources for the growth of phytoplankton. In phytoplankton communities species
compete for nutrients and light in three possible ways. At one extreme, in oligotrophic
ecosystems with an ample supply of light, species compete for limiting nutrients [18,
20]. At the other extreme, in eutrophic ecosystems with ample nutrient supply, species
compete for light [10, 13]. In some aquatic ecosystems the species compete for both nu-
trients and light, which are complementary resources for their growth [6, 7, 15, 17, 24].
In the water column the phytoplankton are not only diffused by water turbulence, but
they are also sinking or buoyant. Most phytoplankton are heavier than water and thus
have a tendency to sink. On the other hand, some species, like some cyanobacteria,
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green algae, have a lower density than water and will float and be called buoyant [10].
In this article we shall restrict our attention to study the growth of a single species in
a water column in a eutrophic ecosystem where the species depends solely on light for
its metabolism. The model equation is a nonlocal reaction-diffusion-advection equa-
tion proposed and studied by Shigesada and Okubo in [23], Huisman et al. in [10, 12],
and others. We study the combined effect of death rate, vertical turbulent diffusion
coefficient, advection (sinking or buoyant) coefficient, and water column depth on the
survival of the single species (bloom development). Our approach is different from
that in [10]. Under a general reproductive rate which is an increasing function of light
intensity, we completely determine the necessary and sufficient conditions for the sur-
vival of the phytoplankton species in terms of turbulent diffusion coefficient, advection
coefficient, water column depth, and death rate of the phytoplankton species.

The rest of the paper is organized as follows: In section 2, we present the math-
ematical model and discuss some previous related works. In section 3, we state our
main results, which exclusively focus on the steady states of the model. In section 4,
we establish the existence and uniqueness of positive steady states in terms of the
death rate of the phytoplankton species. Sections 5, 6, and 7 are devoted to study-
ing qualitative properties of critical death rate and to determining the critical water
column depth, the critical sinking or buoyant coefficient, and the critical turbulent
diffusion rate, respectively. In section 8, for large advection coefficients we show that
the limiting profile of the steady state solution is a δ-function. Section 9 is the dis-
cussion section, where we focus on qualitative properties of the critical water column
depth, the critical advection coefficient, and the critical turbulent diffusion rate.

2. The mathematical model and previous works. In [10, 12], Huisman
et al. analyzed the following reaction-diffusion-advection equation, which describes
the population dynamics of a single phytoplankton species in a water column:

(2.1) Pt = DPxx − vPx + P [g(I(x, t)) − d] , 0 < x < L, t > 0,

with zero flux boundary conditions at x = 0 and x = L,

(2.2)
DPx(0, t)− vP (0, t) = 0,

DPx(L, t)− vP (L, t) = 0,

and with the initial condition

(2.3) P (x, 0) = P0(x), 0 ≤ x ≤ L,

where P = P (x, t) is the population density of the phytoplankton species, D > 0
is the vertical turbulent diffusion coefficient, v is the sinking velocity (v > 0) or the
buoyant velocity (v < 0), L > 0 is the depth of the water column, and d > 0 is the
death rate; by the Lambert–Beer law the light intensity I is given by

(2.4) I = I(x, t) = I0 exp

(
−k0x− k1

∫ x

0

P (s, t)ds

)
,

where I0 is the incident light intensity, k0 is the background turbidity, and k1 is the
absorption coefficient of phytoplankton. g(I) is the specific growth rate of phyto-
plankton as a function of light intensity I(x, t). Here we assume all nutrients are in
amply supply so that only the light intensity limits the growth rate. We assume that
g(I) satisfies

(2.5) g(0) = 0, g′(I) > 0 for I > 0, g(I) ≥ aIγ for I ∈ [0, I0],
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where a > 0 and γ > 0. The simplest example is

(2.6) g(I) = aIγ , 0 < γ ≤ 1.

Typical examples for the reproduction rate becoming saturated due to high light
intensities include functions of Monod type,

(2.7) g(I) =
mI

h+ I
,

or alternatively by

(2.8) g(I) = m
1− e−cI

c
.

The model (2.1) was first proposed by Shigesada and Okubo in [23], where the self-
shading case (i.e., k0 = 0) for the infinite long water column (L = ∞) was analyzed.
In particular, the existence, uniqueness, and global stability of the steady state have
been established in [16, 23]. More recently, among other things it is shown in [19]
that the self-shading model has a unique positive steady state, which is also stable, for
any finite water column depth. In particular, this means that the self-shading model
has no critical water column depth beyond which the phytoplankton cannot persist.
This is very different from the case of k0 > 0, where the critical depth exists for some
intermediate range of phytoplankton death rate. See the next and last sections for
more detailed discussions on the critical depth.

For the case k0 > 0, it is shown in [10] that the conditions for phytoplankton
bloom development can be characterized by critical water column depth and some
critical values of the vertical turbulent diffusion coefficient. In [10] the authors also
investigated the phase transition from bloom to no bloom extensively by numerical
simulations. They also analyzed in depth the phase transition curve for the case
g(I) = aIγ , 0 < γ ≤ 1, by means of reducing the equation to a Bessel equation. In [25]
the authors studied the asymptotic behaviors of the eigenvalues and eigenfunctions
associated with the linearized operator of (2.1) when D is small and v > 0 is of the
order

√
D. In [8] the authors study both single species and two species competing for

light in a eutrophic ecosystem with no advection, and the dynamics of single species
growth is also completely analyzed in [8]. In this paper, we will use several critical
rates to give a complete classification of the phase transition from bloom to no bloom
for the general single phytoplankton species model (2.1)–(2.5).

3. Main results. Consider the equation

(3.1)

{
Pt = DPxx − vPx + P [g(I(x, t)) − d] , 0 < x < L, t > 0,

DPx(0, t)− vP (0, t) = DPx(L, t)− vP (L, t) = 0,

where D > 0, v ∈ R, g(I) satisfies (2.5), with typical examples (2.6)–(2.8), and I(x, t)
takes the form (2.4).

Our first main result concerns the existence and uniqueness of positive steady
states of (3.1) in terms of the death rate d. Consider the linear eigenvalue problem

(3.2)

{
−Dϕxx + vϕx + a(x)ϕ = λϕ, 0 < x < L,

Dϕx(0) = vϕ(0), Dϕx(L) = vϕ(L).
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Set ψ(x) := e−(v/D)xϕ(x). Then ψ satisfies

(3.3)

⎧⎨
⎩−D

(
e(v/D)xψx

)
x
+ a(x)e(v/D)xψ = λe(v/D)xψ, 0 < x < L,

ψx(0) = ψx(L) = 0.

It is well known [4] that all eigenvalues of (3.3) are real, and the smallest eigenvalue,
denoted by λ1(a), can be characterized as

(3.4) λ1(a) = inf
ψ �=0,ψ∈H1(0,L)

∫ L
0 e(v/D)x(Dψ2

x + aψ2)dx∫ L
0
e(v/D)xψ2dx

,

where H1(0, L) is the closure of C1[0, L] under the norm

‖u‖ =

(∫ L

0

u2 dx

)1/2

+

(∫ L

0

u2x dx

)1/2

.

For every v ∈ R, L > 0, and D > 0, set

d∗(v, L,D) := −λ1(−g(I0e−k0x)).
It is easy to show that d∗(v, L,D) is positive. Our following result shows that d∗

is the critical death rate; i.e., the phytoplankton survive if and only if its death rate
is less than d∗.

Theorem 3.1. If 0 < d < d∗(v, L,D), then (3.1) has a unique positive steady
state. If d ≥ d∗(v, L,D), then zero is the only nonnegative steady state of (3.1).

A natural question is whether there also exist a critical water column depth, a
critical sinking/buoyant velocity, and a critical turbulent diffusion rate. To address
these issues, we need to understand the dependence of d∗ on the parameters D, v, L.
The following result shows that d∗ is monotone deceasing in v.

Theorem 3.2. For any D > 0 and L > 0, d∗(v, L,D) is strictly monotone
decreasing for v ∈ R. Moreover,

lim
v→−∞ d∗(v, L,D) = g(I0), lim

v→∞ d∗(v, L,D) = g(I0e
−k0L).

We apply Theorem 3.2 to study the existence of a critical sinking/buoyant ve-
locity. By Theorem 3.2, for every d ∈ (g(I0e

−k0L), g(I0)), there exists a unique
v∗ := v∗(d, L,D) such that d = d∗(v∗, L,D). Moreover,

v∗

⎧⎪⎨
⎪⎩

> 0 if g(I0e
−k0L) < d < d∗(0, L,D),

= 0 if d = d∗(0, L,D),

< 0 if d∗(0, L,D) < d < g(I0).

As a consequence of Theorems 3.1 and 3.2 and the definition of v∗, we have the
following theorem.

Theorem 3.3. Given any D > 0 and L > 0, the following hold:
(a) If 0 < d < g(I0e

−k0L), (3.1) has a unique positive steady state, denoted as
P (x), for any v ∈ R. Moreover,

(3.5)

∫ L

0

P (x) dx >
1

k1
ln
I0e

−k0L

g−1(d)
> 0.
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(b) If d ∈ (g(I0e
−k0L), g(I0)), (3.1) has a unique positive steady state for every

v ∈ (−∞, v∗); if v > v∗, zero is the only nonnegative steady state of (3.1).
(c) If d > g(I0), zero is the only nonnegative steady state of (3.1) for v ∈ R.
Theorem 3.3 implies that a critical sinking/buoyant velocity may or may not exist,

and is unique whenever it exists. If d is suitably small, the phytoplankton can always
bloom for any sinking/buoyant velocity; i.e., there is no critical sinking/buoyant ve-
locity for this case. Only when the death rate falls into some intermediate range does
there exist a critical sinking/buoyant velocity v∗ such that the phytoplankton can
bloom if and only if the sinking/buoyant velocity is smaller than v∗. For large death
rates, the phytoplankton simply cannot bloom.

We now turn to the existence of critical water column depth. First, we study how
d∗ qualitatively depends on L.

Theorem 3.4. For any D > 0 and v ∈ R, d∗(v, L,D) is strictly monotone
decreasing for L ∈ (0,∞). Moreover,

lim
L→0+

d∗(v, L,D) = g(I0), lim
L→∞

d∗(v, L,D) = d∞(v,D),

where d∞(v,D) is a nonnegative monotone decreasing function of v ∈ R, and there
exists some v0 > 0 such that d∞(v,D) > 0 for v < v0.

We now apply Theorem 3.4 to study the existence of a critical water column depth.
By Theorem 3.4, given any v ∈ R and D > 0, for every d ∈ (d∞(v,D), g(I0)), there
exists a unique L∗ := L∗(d, v,D) > 0 such that d = d∗(v, L∗, D). As a consequence
of Theorems 3.1 and 3.4 and the definition of L∗, we have the following theorem.

Theorem 3.5. Given any v ∈ R and D > 0, the following hold:
(a) If 0 < d < d∞(v,D), (3.1) has a unique positive steady state for any L > 0.
(b) If d ∈ (d∞(v,D), g(I0)), (3.1) has a unique positive steady state for every

L ∈ (0, L∗); if L > L∗, zero is the only nonnegative steady state.
(c) If d > g(I0), zero is the only nonnegative steady state of (3.1) for any L > 0.
Theorem 3.5 also implies that a critical water column depth may or may not exist,

and is unique whenever it exists. If d is suitably small, there may be no critical water
column depth as the phytoplankton can bloom for any water column depth. For some
intermediate range of death rates, there exists a critical water column depth L∗ such
that the phytoplankton can persist if and only if the water column depth is less than
L∗. In a recent preprint [9], Du and Mei showed that for any D > 0, there exists
a unique v∗ > 0 such that d∞(v,D) > 0 if and only if v < v∗. This together with
Theorems 3.4 and 3.5 gives a rather complete answer to the question on existence and
uniqueness of a critical water column depth.

Finally, we address the existence of a critical turbulent diffusion coefficient. This
case is much more subtle as the numerical simulations in [10] suggest that there
may exist two critical turbulent diffusion coefficients for sinking species. Similarly as
before, we first study how the critical death rate d∗ depends on turbulent diffusion
coefficient D. It turns out that the sinking case (v > 0) is indeed more subtle than
the buoyant case (v < 0).

Theorem 3.6. For any v ∈ R and L > 0,

lim
D→∞

d∗(v, L,D) =
1

L

∫ L

0

g(I0e
−k0x) dx.

(a) For any v ≤ 0 and L > 0, d∗(v, L,D) is strictly monotone decreasing in D,
and limD→0+ d∗(v, L,D) = g(I0).
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(b) For any v > 0 and L > 0, limD→0+ d∗(v, L,D) = g(I0e
−k0L). Moreover,

given any L > 0, there exists some v1 > 0 such that for every 0 < v < v1,

(3.6) sup
0<D<∞

d∗(v, L,D) > lim
D→∞

d∗(v, L,D) > lim
D→0+

d∗(v, L,D).

In particular, for L > 0 and 0 < v < v1, d∗(v, L,D) is not monotone in D.
(c) If v > g(I0)L, d∗(v, L,D) is strictly monotone increasing in D.

By Theorem 3.6, given any v ≤ 0 and L > 0, for every d ∈ ( 1
L

∫ L
0 g(I0e

−k0x), g(I0)),
there exists a unique D∗ := D∗(d, v, L) > 0 such that d = d∗(v, L,D∗). By Theo-
rem 3.1, part (a) of Theorem 3.6, and the definition of D∗, we have the following
theorem.

Theorem 3.7. Given any v ≤ 0 and L > 0, the following hold:

(a) If 0 < d < 1
L

∫ L
0 g(I0e

−k0x), (3.1) has a unique positive steady state for any
D > 0.

(b) If d ∈ ( 1
L

∫ L
0 g(I0e

−k0x), g(I0)), (3.1) has a unique positive steady state for
every D ∈ (0, D∗); if D > D∗, zero is the only nonnegative steady state.

(c) If d > g(I0), zero is the only nonnegative steady state of (3.1).
Similar to other critical rates, a critical turbulent diffusion rate depth may or may

not exist for buoyant species, and whenever it exists, it is unique. However, the story
is quite different for sinking species. Let v1 be as given in Theorem 3.6 such that (3.6)
holds for 0 < v < v1. Set

d := sup
0<D<∞

d∗(v, L,D).

By Theorem 3.6, we see that d ∈ ( 1
L

∫ L
0 g(I0e

−k0x), g(I0)). Note that for v > 0,

inf
0<D<∞

d∗(v, L,D) = g(I0e
−k0L)

since d∗(v, L,D) ∈ (g(I0e
−k0L), g(I0)) and limD→0+ d∗(v, L,D) = g(I0e

−k0L). The
following result shows that, in strong contrast to buoyant species, there may exist
two or more critical turbulent diffusion rates for sinking species with small sinking
velocity.

Theorem 3.8. Given L > 0 and 0 < v < v1, the following hold:
(a) If 0 < d < g(I0e

−k0L), (3.1) has a unique positive steady state for any D > 0.

(b) If d ∈ ( 1
L

∫ L
0
g(I0e

−k0x), d), there exist 0 < Dmin < D ≤ D < Dmax such that
(3.1) has no positive steady state for any D ∈ (0, Dmin) ∪ (Dmax,∞), and (3.1) has
a unique positive steady state for any D ∈ (Dmin, D) ∪ (D,Dmax).

(c) If d > d, zero is the only nonnegative steady state of (3.1).
Theorem 3.8 follows from Theorem 3.1, part (b) of Theorem 3.6, and the definition

ofD∗. However, if the sinking velocity is suitably large, there exists at most one critical
turbulent diffusion rate as shown by the following result, which is a consequence of
Theorem 3.1, part (c) of Theorem 3.6, and the definition of D∗.

Theorem 3.9. Given L > 0 and v ≥ g(I0)L, the following hold:
(a) If 0 < d < g(I0e

−k0L), (3.1) has a unique positive steady state for any D > 0.

(b) For every d ∈ (g(I0e
−k0L), 1

L

∫ L
0 g(I0e

−k0x)), there exists a unique D∗ such
that d = d∗(v, L,D∗), and (3.1) has no positive steady state for any D < D∗ and
(3.1) has a unique positive steady state for any D > D∗.

(c) If d > 1
L

∫ L
0
g(I0e

−k0x), zero is the only nonnegative steady state of (3.1).
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From these results we can conclude that a critical death rate always exists and
is unique. In contrast, there are either zero or one critical water column depth, zero
or one critical sinking/buoyant velocity, and zero or one critical turbulent diffusion
rate for buoyant species. Interestingly, there may exist two critical turbulent diffusion
rates for sinking species, which was first shown numerically in [10]. These theoretical
findings may shed some new insight into the combined effects of death rate, water
column depth, sinking/buoyant velocity, and turbulent diffusion rate in the persistence
of single phytoplankton species.

The rest of this section concerns qualitative properties of the unique positive
steady state P (x; v) of (2.1)–(2.2) when the advection coefficient v varies, assuming
that other parametersD, d, L, k0, k1 are all fixed. For simplicity of notation and clarity
of the presentation, we perform the following scaling for (2.1)–(2.2). Let

(3.7)

x̃ =
x

L
, t̃ =

D

L2
t, k̃0 = k0L, k̃1 = k1L, d̃ =

L2

D
d, ṽ =

v

D
L,

P̃ (x̃, t̃) = P (x, t), Ĩ(x̃, t̃) = I(x, t) = I0e
−k̃0x̃ exp

(
−k̃1

∫ x̃

0

P̃ (s, t̃)ds

)
,

g̃(Ĩ)(x̃, t̃) =
L2

D
g(I(x, t)).

Then (2.1)–(2.2) becomes

(3.8)

⎧⎨
⎩ P̃t̃ = P̃x̃x̃ − ṽP̃x̃ +

(
g̃(Ĩ)− d̃

)
P̃ , 0 < x̃ < 1, t̃ > 0,

P̃x̃(0, t̃)− ṽP̃ (0, t̃) = 0, P̃x̃(1, t̃)− ṽP̃ (1, t̃) = 0.

If we drop the ∼ sign, (3.8) becomes

(3.9)

{
Pt = Pxx − vPx + (g(I)− d)P, 0 < x < 1, t > 0,

Px(0, t)− vP (0, t) = 0, Px(1, t)− vP (1, t) = 0,

where I is still given by (2.4).
Let P (x; v) denote the unique positive steady state of (3.9). By Theorem 3.3, if

0 < d < g(I0e
−k0), P (x; v) exists for any v ∈ R. The following result describes the

asymptotic profiles of P (x; v) for large positive v.
Theorem 3.10. Suppose that 0 < d < g(I0e

−k0).
(a) If v ≥ 2

√
g(I0)− d, then P (x; v) is strictly increasing in [0, 1].

(b) As v → ∞, P (x; v) → 0 uniformly in any compact subset of [0, 1), P (1; v)/v →
κ∗, and P (·; v) → κ∗δ(1), where κ∗ > 0 is uniquely determined by

(3.10)

∫ 1

0

g(I0e
−k0−k1κ∗z) dz = d.

Moreover,

(3.11) lim
v→∞

∥∥∥P (x; v) − P (1; v)e−v(1−x)
∥∥∥
L∞(0,1)

= 0

and

(3.12) lim
v→∞

∥∥∥∥ P (x; v)

ve−v(1−x)
− κ∗

∥∥∥∥
L∞(0,1)

= 0.
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Remark 3.1. δ(1) denotes the Dirac measure at x = 1, and P (·; v) → κ∗δ(1) as
v → ∞ means that for any continuous function f in [0, 1],

lim
v→∞

∫ 1

0

f(x)P (x; v) dx = κ∗f(1).

Similarly, the asymptotic profiles of P (x; v) for large negative v can be character-
ized as follows.

Theorem 3.11. Suppose that 0 < d < g(I0).
(a) If v ≤ 0, then P (x; v) is strictly decreasing in [0, 1].
(b) As v → −∞, P (x; v) → 0 uniformly in any compact subset of (0, 1], P (0; v)/

v → κ∗, and P (·; v) → −κ∗δ(0), where κ∗ < 0 is uniquely determined by

(3.13)

∫ 1

0

g(I0e
k1κ∗(1−z)) dz = d.

Moreover,

(3.14) lim
v→−∞ ‖P (x; v) − P (0; v)evx‖L∞(0,1) = 0

and

(3.15) lim
v→−∞

∥∥∥∥P (x; v)vevx
− κ∗

∥∥∥∥
L∞(0,1)

= 0.

By Theorem 3.11, the buoyant species is always monotone decreasingly distributed
in the water column, and the phytoplankton form a thin layer at the surface of the
water column when the buoyant coefficient is sufficiently large. On the other hand, by
Theorem 3.10, P (x; v) is monotone increasing in the water column when the sinking
velocity is suitably large, and the phytoplankton form a thin layer at the bottom of
the water column.

4. Proof of Theorem 3.1. Consider the steady state equation

(4.1)

{
DPxx − vPx + P [g(I)− d] = 0, 0 < x < L,

DPx(0)− vP (0) = 0, DPx(L)− vP (L) = 0,

where

(4.2) I = I(x) = I0e
−k0x exp

(
−k1

∫ x

0

P (s)ds

)
.

The proof of Theorem 3.1 is similar to that of case v = 0, which was studied
in [8], with some modifications. For the sake of completeness we give the proof here
in detail.

Lemma 4.1. Equation (4.1) has no positive solution when d �∈ (0, d∗).
Proof. We note that the first equation in (4.1) can be rewritten as

(4.3) −DPxx + vPx + (−g(I))P = −dP.
If (d, P ) is a positive solution of (4.1), from (4.2), (4.3), and the comparison principle
of the smallest eigenvalue [11],

−d = λ1(−g(I(x))) > λ1(−g(I0e−k0x)) = −d∗(v, L,D).

That is, d < d∗.
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Integrating (4.1) in (0, L) and applying the boundary condition in (4.1), we obtain∫ L

0

P [g(I)− d] dx = 0,

which implies that d > 0. Therefore, (4.1) has no positive solution when d �∈
(0, d∗).

Lemma 4.2. Given any η > 0, there exists some positive constant C(η) such that
every positive solution P of (4.1) with η < d < d∗ satisfies ‖P‖L∞(0,L) ≤ C(η).

Proof. We argue by contradiction. If not, suppose that there exists a sequence
dn ∈ (η, d∗), n = 1, 2, . . . , and positive solution Pn of (4.1) with d = dn such that
‖Pn‖L∞(0,L) → ∞ as n → ∞. Passing to a subsequence if necessary, we may assume

that dn → d ∈ [η, d∗]. Set P̃n = Pn/‖Pn‖L∞(0,L). Then P̃n satisfies ‖P̃n‖L∞ = 1 and

(4.4)

{
DP̃n,xx − vP̃n,x + P̃n [g(In)− dn] = 0, 0 < x < L,

DP̃n,x(0)− vP̃n(0) = 0, DP̃n,x(L)− vP̃n(L) = 0,

where

(4.5) In(x) = I0e
−k0x exp

(
−k1

∫ x

0

Pn(s)ds

)
.

Integrating the first equation of (4.4) from 0 to x, we have

DP̃n,x(x)− vP̃ (x) +

∫ x

0

P̃n [g(In)− dn] = 0.

As g(In) and P̃n are uniformly bounded, P̃n,x is uniformly bounded. By (4.4), P̃n,xx is

uniformly bounded. Passing to a sequence if necessary, we may assume that P̃n → P̃
in C1[0, L], P̃ ≥ 0, ‖P̃‖L∞ = 1. As 0 ≤ g(In) ≤ g(I0) in [0, L], we may assume that
g(In) → q(x) weakly in L2(0, L) for some function q satisfying 0 ≤ q ≤ g(I0). Hence,
P̃ is a weak solution of

(4.6)

{
DP̃xx − vP̃x + P̃ [q(x) − d] = 0, 0 < x < L,

DP̃x(0)− vP̃ (0) = 0, DP̃x(L)− vP̃ (L) = 0.

As P̃ ≥ 0, P̃ �≡ 0, and q ∈ L∞(0, L), by the strong maximum principle we have P̃ > 0
in (0, L). As P̃n → P̃ > 0 in (0, L) and ‖Pn‖L∞(0,L) → ∞,

(4.7) In(x) = I0e
−k0x exp

(
−k1‖Pn‖L∞([0,L])

∫ x

0

P̃n(s)ds

)
→ 0

for every x ∈ (0, L) as n → ∞. This implies that q ≡ 0. Integrating (4.6) in (0, L),
we obtain d = 0, which is a contradiction.

Proof of Theorem 3.1. By a standard bifurcation argument of Crandall and Rabi-
nowitz [5] and Rabinowitz [22], (4.1) has an unbounded connected branch of positive
solutions, denoted by Γ = {(d, P )} ⊂ R×C1([0, L]), which bifurcates from the trivial
branch {(d, 0)} at (d∗(v, L,D), 0). Since (4.1) has no positive solution when d �∈ (0, d∗)
(Lemma 4.1) and all positive solutions of (4.1) are uniformly bounded when d is pos-
itive and bounded away from zero (Lemma 4.2), we see that Γ can only become
unbounded as d→ 0+. As Γ is connected, (4.1) has at least one positive solution for
every d ∈ (0, d∗).
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It remains to show uniqueness. Let U(x) = e−(v/D)xP (x). Then (4.1) becomes

(4.8)

{
DUxx + vUx + [g(I)− d]U = 0, 0 < x < L,

Ux(0) = 0, Ux(L) = 0,

where

(4.9) I = I(x) = I0e
−k0x exp

(
−k1

∫ x

0

e(v/D)sU(s)ds

)
.

Equation (4.8) can be rewritten as

(4.10)

{
D(e(v/D)xUx)x + [g(I)− d]Ue(v/D)x = 0, 0 < x < L,

Ux(0) = 0, Ux(L) = 0.

The proof of the uniqueness of a positive solution of (4.1) basically follows from
the argument in [8] applying to (4.10). By the strong maximum principle [21], all
nonnegative and not identically zero solutions of (4.8) must be strictly positive in
[0, L]. Suppose that (4.8) has two positive solutions U1 �≡ U2. If U1 ≤ U2, then we
deduce

−d = λ1

[
−g
(
I0e

−k0x exp
(
−k1

∫ x

0

e(v/D)sU1(s)ds

))]

< λ1

[
−g
(
I0e

−k0x exp
(
−k1

∫ x

0

e(v/D)sU2(s)ds

))]
= −d,

a contradiction. Therefore U1 − U2 changes sign in (0, L). We claim that U1(0) �=
U2(0). Otherwise, for i = 1, 2, we denote Vi(x) =

∫ x
0 Ui(s)e

(v/D)sds, Wi(x) =

U ′
i(x)e

(v/D)x, and we find that (Ui, Vi,Wi) is a solution of the initial value problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U ′ =We−(v/D)x,

V ′ = e(v/D)xU,

DW ′ = −[g(I0e
−k0x exp(−k1V ))− d]e(v/D)xU,

(U(0), V (0),W (0)) = (U(0), 0, 0).

By the uniqueness of the ODE, we conclude that (U1, V1,W1) = (U2, V2,W2), a con-
tradiction. Therefore U1(0) �= U2(0).

For definiteness we assume U1(0) < U2(0). Since U1 − U2 changes sign in (0, L),
there exists x0 > 0 such that U2(x) > U1(x) in [0, x0), U1(x0) = U2(x0), and U

′
1(x0) ≥

U ′
2(x0). From (4.10) we have

−D

∫ x0

0

(
U ′
1e

(v/D)x
)
x
U2

=

∫ x0

0

[
g

(
I0e

−k0x exp
(
−k1

∫ x

0

e(v/D)sU1(s)ds

))
− d

]
U1U2e

(v/D)x.

Using integration by parts, we deduce

−DU ′
1(x0)e

(v/D)x0U2(x0) +D

∫ x0

0

e(v/D)xU ′
1U

′
2dx

=

∫ x0

0

[
g

(
I0e

−k0x exp
(
−k1

∫ x

0

e(v/D)sU1(s)ds

))
− d

]
U1U2e

(v/D)xdx.
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Similarly,

−DU ′
2(x0)e

(v/D)x0U1(x0) +D

∫ x0

0

e(v/D)xU ′
1U

′
2dx

=

∫ x0

0

[
g

(
I0e

−k0x exp
(
−k1

∫ x

0

e(v/D)sU2(s)ds

))
− d

]
U1U2e

(v/D)xdx.

Therefore

De(v/D)x0U1(x0) [U
′
2(x0)− U ′

1(x0)]

=

∫ x0

0

[
g

(
I0e

−k0x exp
(
−k1

∫ x

0

e
v
D sU1(s)

))

− g

(
I0e

−k0x exp
(
−k1

∫ x

0

e
v
D sU2(s)

))]
U1U2e

v
D x.

The right-hand side of the above equality is positive, while the left-hand side is non-
positive, a contradiction. Thus we complete the proof of Theorem 1.

5. Dependence of d∗(v, L,D) on v: Proofs of Theorems 3.2 and 3.3.
This section is devoted to the proofs of Theorems 3.2 and 3.3.

Recall that d∗(v, L,D) satisfies

(5.1)

{
−Dϕxx + vϕx − g(I0e

−k0x)ϕ = −d∗(v, L,D)ϕ in (0, L),

Dϕx(0) = vϕ(0), Dϕx(L) = vϕ(L), ϕ > 0, in (0, L).

Set ψ = e−(v/D)xϕ. Then ψ satisfies

(5.2)

{
−Dψxx − vψx − g(I0e

−k0x)ψ = −d∗(v, L,D)ψ in (0, L),

ψx(0) = ψx(L) = 0, ψ > 0, in (0, L).

Lemma 5.1. ψx < 0 in (0, L).
Proof. Multiplying (5.2) by e(v/D)x, we rewrite the resulting equation as

(5.3)

{
−D(e(v/D)xψx)x − e(v/D)xg(I0e

−k0x)ψ = −d∗(v, L,D)ψe(v/D)x in (0, L),

ψx(0) = ψx(L) = 0.

Integrating (5.3) in (0, L), we have∫ L

0

e(v/D)xψ[g(I0e
−k0x)− d∗] dx = 0,

which implies that g(I0e
−k0x)− d∗ changes sign in (0, L). Since g(I0e

−k0x) is strictly
decreasing in (0, L), there exists a unique x0 ∈ (0, L) such that g(I0e

−k0x) > d∗
for 0 < x < x0 and g(I0e

−k0x) < d∗ for x0 < x < L. Hence, by (5.3) we see
that (e(v/D)xψx)x < 0 for 0 < x < x0 and (e(v/D)xψx)x > 0 for x0 < x < L; i.e.,
e(v/D)xψx is strictly decreasing in (0, x0) and strictly increasing in (x0, L). Since
ψx(0) = ψx(L) = 0, we have ψx < 0 in (0, L).

Lemma 5.2. d∗(v, L,D) is strictly monotone decreasing in v.
Proof. Recall that d∗(v, L,D) satisfies

(5.4)

{
Dψxx + vψx + g(I0e

−k0x)ψ = d∗(v, L,D)ψ in (0, L),

ψx(0) = ψx(L) = 0.
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We normalize ψ such that
∫ L
0
ψ2 = 1. It can be shown that d∗ and ψ are smooth

functions of v (see, e.g., [1, 2]). For simplicity of notation, we denote ∂ψ/∂v by ψ′,
etc. Differentiating (5.4) with respect to v, we have

(5.5)

{
Dψ′

xx + vψ′
x + ψx + g(I0e

−k0x)ψ′ = d′∗ψ + d∗ψ′ in (0, L),

ψ′
x(0) = ψ′

x(L) = 0.

Multiplying (5.5) by e(v/D)x, we rewrite the result as
(5.6)
D(e(v/D)xψ′

x)x+e
(v/D)xψx+e

(v/D)xg(I0e
−k0x)ψ′ = d′∗ψe

(v/D)x+d∗ψ′e(v/D)x in (0, L).

Multiplying (5.6) by ψ and integrating the resulting equation in (0, L), we have

(5.7)

−D
∫ L

0

e(v/D)xψxψ
′
x +

∫ L

0

e(v/D)xψψx +

∫ L

0

e(v/D)xψ′ψg(I0e−k0x)

= d′∗

∫ L

0

ψ2e(v/D)x + d∗
∫ L

0

ψψ′e(v/D)x.

Multiplying (5.4) by e(v/D)x, we write the result as

(5.8) D(e(v/D)xψx)x + e(v/D)xg(I0e
−k0x)ψ = d∗e(v/D)xψ.

Multiplying (5.8) by ψ′ and integrating it in (0, L), we have

(5.9) −D
∫ L

0

e(v/D)xψxψ
′
x +

∫ L

0

e(v/D)xψ′ψg(I0e−k0x) = d∗
∫ L

0

ψψ′e(v/D)x.

It follows from (5.7) and (5.9) that

(5.10) d′∗ =

∫ L
0
e(v/D)xψψx dx∫ L
0
e(v/D)xψ2

.

This together with Lemma 5.1 and the positivity of ψ implies that d′∗ < 0.
To study the asymptotic behavior of d∗ for sufficiently large v (either positive or

negative), we first recall the following result [3, Theorem 1].
Lemma 5.3. Let λ(v) denote the smallest eigenvalue of

(5.11)

{
−Δψ − v∇m · ∇ψ + c(x)ψ = λψ in Ω,

∇ψ · n|∂Ω = 0,

where Ω is a domain in R
N with smooth boundary ∂Ω and n is the outward unit

normal vector on ∂Ω. Suppose that m ∈ C2(Ω̄) and c ∈ C(Ω̄), and all critical points
of m are nondegenerate. Then

lim
v→∞λ(v) = min

M
c,

where M is the set of local maxima of m(x).
Lemma 5.4. We have

lim
v→∞ d∗(v, L,D) = g(I0e

−k0L), lim
v→−∞ d∗(v, L,D) = g(I0).
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Proof. Applying Lemma 5.3 with Ω = (0, L) and m(x) = x, we see that M = {L}
and

lim
v→∞(−d∗(v, L,D)) = min

M
(−g(I0e−k0x)) = −g(I0e−k0L).

Similarly, applying Lemma 5.3 with Ω = (0, L) and m(x) = −x, we see that
M = {0} and

lim
v→−∞(−d∗(v, L,D)) = min

M
(−g(I0e−k0x)) = −g(I0),

which completes the proof.
Lemma 5.5. Suppose that 0 < d < g(I0e

−k0L). Then for any v ∈ R,

∫ L

0

P (x; v) dx >
1

k1
ln
I0e

−k0L

g−1(d)
> 0.

Proof. Integrating the equation of P (x; v) in (0, L), we have

∫ L

0

P (x; v) [g(I(x)) − d] dx = 0.

Hence, g(I(x))−d changes sign in (0, L). Since I(x) is strictly decreasing, g(I(x))−d
must be negative at x = L. That is,

g(I0e
−k0Le−k1

∫L
0
P (x;v) dx) < d,

which is equivalent to

∫ L

0

P (x; v) dx >
1

k1
ln
I0e

−k0L

g−1(d)
> 0,

where the last inequality follows from 0 < d < g(I0e
−k0L).

Proofs of Theorems 3.2 and 3.3. Theorem 3.2 follows from Lemmas 5.2 and 5.4.
Theorem 3.3 follows from Theorems 3.1 and 3.2 and Lemma 5.5.

6. Dependence of d∗(v, L,D) on L: Proofs of Theorems 3.4 and 3.5.
In this section we investigate the dependence of d∗ on L. First, we establish the
monotonicity of d∗ in L.

Lemma 6.1. d∗(v, L,D) is strictly monotone decreasing in L.
Proof. Given any 0 < L1 < L2, we show that d∗(v, L1, D) > d∗(v, L2, D).

For simplicity, we write d∗(v, Li, D) as di, and denote corresponding eigenfunctions
ψ(x; v, Li, D) as ψi, i = 1, 2. Rewrite the equations of ψi as

(6.1)

{
D(e(v/D)xψi,x)x + g(I0e

−k0x)e(v/D)xψi = diψie
(v/D)x in (0, Li),

ψi,x(0) = ψi,x(Li) = 0.

Multiplying the equation of ψ1 by ψ2, the equation of ψ2 by ψ1, and subtracting,
we have

(d1 − d2)ψ1ψ2e
(v/D)x = D

[
(e(v/D)xψ1,x)xψ2 − (e(v/D)xψ2,x)xψ1

]
.
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Integrating the above equation in (0, L1) and applying boundary conditions of ψ1, ψ2

at x = 0, we have

(d1 − d2)

∫ L1

0

ψ1ψ2e
(v/D)x dx = −De(v/D)L1ψ2,x(L1)ψ1(L1).

Since ψi > 0 for i = 1, 2 and ψ2,x(L1) < 0 (Lemma 5.1), we see that d1 > d2.
The next two results concern the limiting behaviors of d∗ for small and large L.
Lemma 6.2. limL→0+ d∗(v, L,D) = g(I0).
Proof. Set x = Ly and w(y) = ψ(x). Then w satisfies

(6.2)

{
Dwyy + vLwy + L2g(I0e

−k0Ly)w = d∗(v, L,D)L2w in (0, 1),

wy(0) = wy(1) = 0.

We normalize w such that max[0,1]w = 1. It is easy to show that as L → 0+,
passing to a subsequence if necessary, w → w0 in C2[0, 1], where w0 satisfies w0,yy = 0
in (0, 1), w0,y(0) = w0,y(1) = 0, and max[0,1]w0 = 1. Hence, w0 ≡ 1; i.e., w → 1 in
C2[0, 1].

Multiplying (6.2) by e(v/D)Ly, we can rewrite (6.2) as
(6.3)⎧⎨
⎩
D
(
e(v/D)Lywy

)
y
+ L2e(v/D)Lyg(I0e

−k0Ly)w = d∗(v, L,D)L2e(v/D)Lyw in (0, 1),

wy(0) = wy(1) = 0.

Integrating (6.3) in (0, 1) and dividing the result by L2, we have

(6.4)

∫ 1

0

e(v/D)Lyg(I0e
−k0Ly)w dy = d∗

∫ 1

0

e(v/D)Lyw dy.

By letting L → 0 in (6.4) and applying w → 1, we see that d∗ → g(I0) as L →
0+.

Lemma 6.3. limL→∞ d∗(v, L,D) = d∞, where d∞ := d∞(v,D) ≥ 0, and is a
monotone decreasing function of v ∈ R1. Moreover, there exists some v0 > 0 such
that d∞(v,D) > 0 for v < v0.

Proof. Since d∗ is monotone decreasing in L and since d∗ > 0, we see that
limL→∞ d∗(v, L,D) = d∞(v,D) for some d∞ = d∞(v,D) ≥ 0. It remains to show
that d∞(v,D) > 0 for v ∈ (−∞, v0) for some v0 > 0. Since d∗ is monotone decreasing
in v, we see that d∞(v,D) is also monotone decreasing in v. Hence, it suffices to show
that d∞(v,D) > 0 for v ∈ (0, v0) for some v0 > 0. Recall that

−d∗ = inf
ϕ∈H1((0,L))

∫ L
0
e(v/D)x

[
Dϕ2

x − g(I0e
−k0x)ϕ2

]
dx∫ L

0
e(v/D)xϕ2

≤ inf
ϕ∈H1((0,L))

∫ L
0
e(v/D)x(Dϕ2

x − aIγ0 e
−k0γxϕ2) dx∫ L

0 e(v/D)xϕ2
,

where the last inequality follows from assumption g(I) ≥ aIγ for I ∈ [0, I0]. Choose
the test function ϕ(x) = e−(v/D)x. By direct calculation,

−d∗ ≤ v2

D
− aIγ0 (v/D)

k0γ + v/D

1− e−(v/D+k0γ)L

1− e−(v/D)L
.
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By letting L→ ∞ in the above inequality, we have

−d∞ ≤ v2

D
− aIγ0 (v/D)

k0γ + v/D
< 0,

where the last inequality holds provided that v(k0γ + v/D) < aIγ0 . Clearly, if

v0 := min
{
aIγ0 /(2k0γ),

√
aIγ0D/2

}
,

then d∞(v,D) > 0 for 0 < v < v0.

Proofs of Theorems 3.4 and 3.5. Theorem 3.4 follows from Lemmas 6.1, 6.2,
and 6.3; Theorem 3.5 follows from Theorems 3.1 and 3.4.

7. Dependence of d∗(v, L,D) on D: Proofs of Theorems 3.6, 3.7, 3.8,
and 3.9. In this section we investigate the dependence of d∗ on D. The proof of the
following result is similar to that of Lemma 5.2.

Lemma 7.1. For any v ≤ 0 and L > 0, d∗(v, L,D) is strictly monotone decreasing
in D. If L > 0 and v ≥ g(I0)L, then d∗(v, L,D) is strictly monotone increasing in D.

Proof. For simplicity of notation, we denote ∂ψ/∂D by ψ′, etc., where ψ satisfies
(5.4). Differentiating (5.4) with respect to D, we have

(7.1)

{
Dψ′

xx + ψxx + vψ′
x + g(I0e

−k0x)ψ′ = d′∗ψ + d∗ψ′ in (0, L),

ψ′
x(0) = ψ′

x(L) = 0.

Multiplying (7.1) by e(v/D)xψ and integrating the resulting equation in (0, L), we
have

(7.2)

−D
∫ L

0

e(v/D)xψxψ
′
x +

∫ L

0

e(v/D)xψψxx +

∫ L

0

e(v/D)xψ′ψg(I0e−k0x)

= d′∗

∫ L

0

ψ2e(v/D)x + d∗
∫ L

0

ψψ′e(v/D)x.

Similarly, multiplying (5.4) by e(v/D)xψ′ and integrating it in (0, L), we have

(7.3) −D
∫ L

0

e(v/D)xψxψ
′
x +

∫ L

0

e(v/D)xψ′ψg(I0e−k0x) = d∗
∫ L

0

ψψ′e(v/D)x.

It follows from (7.2) and (7.3) that

(7.4) d′∗ =

∫ L
0
e(v/D)xψψxx∫ L

0
e(v/D)xψ2

.

By Lemma 5.1, ψx < 0 in (0, L). Hence, if v ≤ 0,
(7.5)∫ L

0

e(v/D)xψψxx = −
∫ L

0

ψx

(
e(v/D)xψ

)
x
= −

∫ L

0

e(v/D)x[ψ2
x + (v/D)ψψx] < 0.

Hence, d′∗ < 0 for any v ≤ 0 and D,L > 0.
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For the remaining part, we first claim that if v ≥ g(I0)L, Dψx + vψ > 0 in [0, L].
To establish this assertion, integrating (5.4) in [0, x], we have

Dψx(x) + vψ(x) = vψ(0)−
∫ x

0

g(I0e
−k0s)ψ ds+ d∗

∫ x

0

ψ

> vψ(0)−
∫ x

0

g(I0e
−k0s)ψ ds

> vψ(0)−
∫ L

0

g(I0e
−k0s)ψ ds

> vψ(0)− g(I0)

∫ L

0

ψ(s) ds.

Since ψx < 0 in (0, L), we see that

Dψx(x) + vψ(x) > vψ(0)− g(I0)ψ(0)L ≥ 0,

provided that v ≥ g(I0)L. This proves our assertion. Hence, since ψx < 0 and
Dψx + vψ > 0 in (0, L), by (7.5) we have

(7.6)

∫ L

0

e(v/D)xψψxx = −
∫ L

0

e(v/D)xψx[ψx + (v/D)ψ] > 0.

This shows that if v ≥ g(I0)L, then d∗ is strictly monotone increasing in D.
Lemma 7.2. Given any v ∈ R and L > 0,

(7.7) lim
D→∞

d∗(v, L,D) =
1

L

∫ L

0

g(I0e
−k0x) dx.

Proof. Recall that ψ satisfies (5.4). We normalize ψ such that max[0,L] ψ = 1.
By standard elliptic regularity and the Sobolev embedding theorem, ψ is uniformly
bounded in C2[0, L] for all D ≥ 1. Therefore, passing to some sequence if necessary,
we may assume that ψ → Ψ in C1, where Ψ satisfies Ψxx = 0 in [0, L], Ψx(0) =
Ψx(L) = 0, and max[0,L]Ψ = 1. Therefore, Ψ ≡ 1; i.e., ψ → 1 in C1[0, L]. Integrating
(5.4) in [0, L], we have

D[ψx(L)− ψx(0)] + v[ψ(L)− ψ(0)] +

∫ L

0

g(I0e
−k0x)ψ dx = d∗

∫ L

0

ψ.

Since ψx(0) = ψx(L) = 0 and ψ → 1 as D → ∞, by letting D → ∞ in the above
equation, we obtain (7.7).

Lemma 7.3. Suppose that v ≤ 0. Then

lim
D→0+

d∗(v, L,D) = g(I0).

Proof. Recall that

(7.8) −d∗ = inf
ψ∈H1(0,L)

∫ L
0 e(v/D)x

[
Dψ2

x − g(I0e
−k0x)ψ2

]
dx∫ L

0 e(v/D)xψ2dx
.

For ε ∈ (0, L/4), set

ψ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, 0 ≤ x ≤ ε,

2− x

ε
, ε ≤ x ≤ 2ε,

0, 2ε ≤ x ≤ L.
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Hence,

−d∗ ≤ D
∫ 2ε

ε
e(v/D)xψ2

x∫ 2ε

0 e(v/D)xψ2
−
∫ 2ε

0
e(v/D)xg(I0e

−k0x)ψ2∫ 2ε

0 e(v/D)xψ2

≤ D

ε2
e2vε/D − evε/D

evε/D − 1
− g(I0e

−2k0ε).

By letting D → 0+, as v ≤ 0, we have lim infD→0+ d∗ ≥ g(I0e
−2k0ε). By letting

ε → 0, we obtain lim infD→0+ d∗ ≥ g(I0). As d∗ < g(I0), we see that limD→0+ d∗ =
g(I0).

Lemma 7.4. Suppose that v > 0. Then

lim
D→0+

d∗(v, L,D) = g(I0e
−k0L).

Proof. Recall that d∗(v, L,D) satisfies

(7.9)

{
Dϕxx − vϕx + g(I0e

−k0x)ϕ = d∗ϕ in (0, L),

Dϕx(0) = vϕ(0), Dϕx(L) = vϕ(L), ϕ > 0, in (0, L).

Set w(x) = e−(v/D)ηxϕ, where η is some constant which will be chosen differently
for different purposes. Then w satisfies
(7.10)⎧⎪⎨
⎪⎩
Dwxx + v(2η − 1)wx + w

[
v2

D
η(η − 1) + g(I0e

−k0x)− d∗

]
= 0 in 0 < x < L,

Dwx = v(1− η)w at x = 0, L.

Set η = 1−C1D/v
2, where C1 is some positive constant to be chosen later. Then

w satisfies
(7.11)⎧⎪⎨
⎪⎩
Dwxx + v

(
1− 2C1D

v2

)
wx + w

[
−C1

(
1− C1D

v2

)
+ g(I0e

−k0x)− d∗

]
=0, 0 < x < L,

wx = (C1/v)w at x = 0, L.

Let x∗ ∈ [0, L] such that w(x∗) = max0≤x≤Lw(x). Since wx(0) > 0, x∗ �= 0. If
x∗ ∈ (0, L), then wxx(x

∗) ≤ 0 and wx(x
∗) = 0. By (7.11) we have

−C1(1− C1D/v
2) + g(I0e

−k0x∗
)− d∗ ≥ 0,

which is impossible if we choose C1 = 2g(I0) and D < v2/(4g(I0)). Therefore, x
∗ = L;

i.e., w(x) ≤ w(L) for every x ∈ [0, L]. Hence,

ϕ(x)

ϕ(L)
≤ e−

v
D (1−C1D

v2
)(L−x).

Next, we choose η = 1 + C2D/v
2, where C2 > 0 is to be chosen later. By (7.10),

w satisfies
(7.12)⎧⎪⎨
⎪⎩
Dwxx + v

(
1 +

2C2D

v2

)
wx + w

[
C2

(
1 +

C2D

v2

)
+ g(I0e

−k0x)− d∗

]
= 0, 0 < x < L,

wx = −(C2/v)w at x = 0, L.
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Let x∗ ∈ [0, L] such that w(x∗) = min0≤x≤Lw(x). Since wx(0) < 0, x∗ �= 0. If
x∗ ∈ (0, L), then wxx(x∗) ≥ 0 and wx(x∗) = 0. By (7.12) we have

C2(1 + C2D/v
2) + g(I0e

−k0x∗)− d∗ ≤ 0,

which implies that d∗ > C2. Choose C2 = g(I0). As d∗ < g(I0), we must have x∗ = L;
i.e., w(x) ≥ w(L) for every x ∈ [0, L]. Therefore,

ϕ(x)

ϕ(L)
≥ e−

v
D (1+

C2D

v2
)(L−x).

Integrating (7.9) in (0, L) and dividing the result by ϕ(L), we have

(7.13)

∫ L

0

ϕ(x)

ϕ(L)

[
g(I0e

−k0x)− d∗
]
dx = 0.

Set y = (L − x)/D. Then ϕ satisfies

(7.14) e−v(1+
C2D

v2
)y ≤ ϕ(L−Dy)

ϕ(L)
≤ e−v(1−

C1D

v2
)y.

We can rewrite (7.13) as

(7.15)

∫ L/D

0

ϕ(L −Dy)

ϕ(L)

[
g(I0e

−k0(L−Dy))− d∗
]
dy = 0.

By (7.14), we can apply the Lebesgue dominant convergent theorem and pass to the
limit in (7.15) to obtain

lim
D→0+

d∗ =
limD→0+

∫ L/D
0

ϕ(L−Dy)
ϕ(L) g(I0e

−k0(L−Dy)) dy

limD→0+

∫ L/D
0

ϕ(L−Dy)
ϕ(L) dy

=

∫∞
0
e−vyg(I0e−k0L) dy∫∞

0
e−vy dy

= g(I0e
−k0L).

This completes the proof.
Lemma 7.5. For any L > 0, there exists some v1 > 0 such that if v < v1, then

(7.16) d∗(v, L,D) >
1

L

∫ L

0

g(I0e
−k0x) dx

for sufficiently large D.
Proof. Let ψ1 be the unique solution of

(7.17)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ψ1,xx =

1

L

∫ L

0

g(I0e
−k0x) dx− g(I0e

−k0x), 0 < x < L,

ψ1,x(0) = ψ1,x(L) = 0,

∫ L

0

ψ1(x) dx = 0.

In particular, multiplying the first equation of (7.17) by ψ1 and integrating the result
in (0, L), we have

(7.18)

∫ L

0

g(I0e
−k0x)ψ1(x) dx =

∫ L

0

ψ2
1,x dx > 0,

where the last strict inequality follows from the fact that g(I0e
−k0x) is nonconstant.
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Setting ψ = 1 + ψ1/D in (7.8), we have

(7.19) d∗ ≥
∫ L
0
e(v/D)x

[−Dψ2
x + g(I0e

−k0x)ψ2
]
dx∫ L

0
e(v/D)xψ2dx

.

By direct calculations,∫ L

0

e(v/D)x
[−Dψ2

x + g(I0e
−k0x)ψ2

]
dx

=

∫ L

0

g +
1

D

[
v

∫ L

0

xg(I0e
−k0x) dx−

∫ L

0

ψ2
1,x + 2

∫ L

0

g(I0e
−k0x)ψ1

]
+O(1/D2)

=

∫ L

0

g +
1

D

[
v

∫ L

0

xg(I0e
−k0x) dx+

∫ L

0

ψ2
1,x

]
+O(1/D2),

where the last equality follows from (7.18). Similarly,∫ L

0

e(v/D)xψ2dx = L+
v

2D
L2 +O(1/D2).

Hence,
(7.20)

d∗ − 1

L

∫ L

0

g(I0e
−k0x)

≥ 1

DL+ vL2/2

[∫ L

0

ψ2
1,x − v

(
L

2

∫ L

0

g(I0e
−k0x)−

∫ L

0

xg(I0e
−k0x)

)]
+O(1/D2).

We claim that

(7.21) Λ :=
L

2

∫ L

0

g(I0e
−k0x)−

∫ L

0

xg(I0e
−k0x) > 0.

To establish this assertion, note that

(7.22)

Λ =

∫ L

0

g(I0e
−k0x)

(
L

2
− x

)

=

∫ L

0

[g(I0e
−k0x)− g(I0e

−k0L/2)]
(
L

2
− x

)
,

where the last equality follows from∫ L

0

g(I0e
−k0L/2)

(
L

2
− x

)
= g(I0e

−k0L/2)
∫ L

0

(
L

2
− x

)
= 0.

Since functions g(I0e
−k0x)−g(I0e−k0L/2) and L/2−x are strictly monotone decreasing,

and both vanish at x = L/2, we see that [g(I0e
−k0x) − g(I0e

−k0L/2)](L2 − x) > 0 for
any x �= L/2. This together with (7.22) implies that Λ > 0, i.e., (7.21) holds.

Set

v1 :=

∫ L
0 ψ2

1,x

L
2

∫ L
0
g(I0e−k0x)−

∫ L
0
xg(I0e−k0x)

.
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By (7.21), v1 > 0. Hence, by (7.20) and the definition of v1 we see that, for any
v < v1, (7.16) holds for sufficiently large D.

Proofs of Theorems 3.6, 3.7, and 3.9. Theorem 3.6 follows from Lemmas 7.1, 7.2,
7.3, 7.4, and 7.5. In particular, (3.6) follows from Lemmas 7.2, 7.4, and 7.5 and the

fact that g(I0e
−k0L) < 1

L

∫ L
0
g(I0e

−k0x). Theorems 3.7 and 3.9 follow from Theorems
3.1 and 3.6.

Proof of Theorem 3.8. Parts (a) and (c) follow from Theorem 3.1 and the defi-
nitions of d. Hence, it suffices to show part (b). Given L > 0 and 0 < v < v1. Set
f(D) = d− d∗(v, L,D). By Lemma 7.4 we have

lim
D→0+

f(D) = d− g(I0e
−k0L) > 0,

where the last inequality follows from assumption on d. Choose D̃ such that d∗(v, L, D̃)
= sup0<D<∞ d∗(v, L,D). By our assumption d < sup0<D<∞ d∗(v, L,D), f(D̃) < 0.

Let Dmin ∈ (0, D̃) be such that f(Dmin) = 0, f(D) ≥ 0 for D ∈ (0, Dmin), and there
exists some δ > 0 such that f(D) < 0 forD ∈ (Dmin, Dmin+δ). ChooseD = Dmin+δ.
By the definition of f , we have d ≥ d∗(v, L,D) for 0 < D ≤ Dmin and d < d∗ for
d ∈ (Dmin, D). By Theorem 3.1, (3.1) has no positive steady state for 0 < D ≤ Dmin

and a unique positive steady state for d ∈ (Dmin, D). Similarly, we can show that
there exist Dmax and D such that D ≤ D < Dmax and (3.1) has no positive steady
state for D ≥ Dmin and a unique positive steady state for d ∈ (D,Dmax).

8. Asymptotic behaviors of steady states P (x; v) for large |v|. This
section is devoted to the proofs of Theorems 3.10 and 3.11. Let P (x; v) denote the
unique positive steady state of (3.9), i.e.,

(8.1)

{
Pxx − vPx + (g(I)− d)P = 0, 0 < x < 1,

Px(0)− vP (0) = Px(1)− vP (1) = 0,

where I is given by (2.4).
Lemma 8.1. If v ≤ 0, then Px < 0 in (0, 1).
Proof. Integrating the equation of P (x; v) in (0, 1), we have∫ 1

0

P [g(I(x))− d] dx = 0.

Since I(x) is strictly deceasing in (0, 1), there exists some x0 ∈ (0, 1) such that
g(I(x)) > d in (0, x0) and g(I(x)) < d in (x0, 1). By the equation of P , Pxx−vPx < 0
in (0, x0) and Pxx−vPx > 0 in (x0, 1). Hence, Px−vP is strictly monotone decreasing
in (0, x0) and strictly increasing in (x0, 1). As Px = vP at x = 0, 1, Px − vP < 0 in
(0, 1). Since v ≤ 0 and P > 0, Px < 0 in (0, 1).

Set

w(x) = e−vηxP (x; v),

where η is some constant which will be chosen differently for different purposes.
Clearly,

Px = evηx(vηw + wx)

and

Pxx = evηx(v2η2w + 2vηwx + wxx).
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Then w satisfies

(8.2)

{
wxx + v(2η − 1)wx + w

[
v2η(η − 1) + g(I(x))− d

]
= 0 in 0 < x < 1,

wx = v(1 − η)w at x = 0, 1.

Lemma 8.2. If v > 2
√
g(I0)− d, then Px > 0 for 0 ≤ x ≤ 1.

Proof. Set η = 1/2. Then w satisfies

(8.3)

⎧⎪⎨
⎪⎩
wxx + w

[
−v

2

4
+ g(I(x))− d

]
= 0 in 0 < x < 1,

wx =
v

2
w at x = 0, 1.

If v > 2
√
g(I0)− d, then

v2

4
− g(I(x)) + d > 0

in (0, 1); i.e., wxx > 0 in (0, 1). Since wx(0) > 0, we have wx > 0 in [0, 1]. This implies
that

Px = e(v/2)x [(v/2)w + wx] > 0

in [0, 1].
Lemma 8.3. There exist positive constants Ci (i = 1, 2), both independent of v,

such that
(a) if v ≥ C1,

e−
C2
v (1−x) ≤ P (x; v)

P (1; v)e−v(1−x)
≤ e

C2
v (1−x)

for every x ∈ [0, 1];
(b) if v ≤ −C1, then

e
C2
v x ≤ P (x; v)

P (0; v)evx
≤ e−

C2
v x

for every x ∈ [0, 1].
Proof. We first set η = 1−C3/v

2, where C3 is some positive constant to be chosen
later. Then w satisfies
(8.4){

wxx + v(1 − 2C3/v
2)wx + w[−C3(1− C3/v

2) + g(I(x)) − d] = 0 in 0 < x < 1,

wx = (C3/v)w at x = 0, 1.

Let x∗ ∈ [0, 1] such that w(x∗) = max0≤x≤1 w(x). If x
∗ ∈ (0, 1), then wxx(x

∗) ≤ 0
and wx(x

∗) = 0. By (8.4) we have

−C3(1− C3/v
2) + g(I(x∗)) − d ≥ 0,

which is impossible if we choose C3 = 2g(I0) and v > 2
√
g(I0). Hence, for such

choices of C3 and v, x∗ = 0 or x∗ = 1. We consider two cases.
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Case 1. v > 0. For this case, since wx(0) > 0, x∗ �= 0. Therefore, x∗ = 1; i.e.,
w(x) ≤ w(1) for every x ∈ [0, 1]. Therefore,

P (x; v) ≤ P (1; v)e−v(1−C3/v
2)(1−x),

which can be written as

P (x; v)

P (1; v)e−v(1−x)
≤ e

C3
v (1−x).

Case 2. v < 0. Since wx(1) < 0, x∗ �= 1. Therefore, x∗ = 0; i.e., w(x) ≤ w(0) for
every x ∈ [0, 1], which can be written as

P (x; v)

P (0; v)evx
≤ e−

C3
v x.

For the other side of the inequalities, set η = 1 + C4/v
2, where C4 > 0 is to be

chosen later. By (8.2), w satisfies
(8.5){

wxx + v(1 + 2C4/v
2)wx + w[C4(1 + C4/v

2) + g(I(x))− d] = 0 in 0 < x < 1,

wx = −(C4/v)w at x = 0, 1.

Let x∗ ∈ [0, 1] such that w(x∗) = min0≤x≤1w(x). If x∗ ∈ (0, 1), wxx(x∗) ≥ 0 and
wx(x∗) = 0. By (8.5) we have

C4(1 + C4/v
2) + g(I(x∗))− d ≤ 0,

which implies that d > C4. Hence, if C4 = d, we must have x∗ = 0 or x∗ = 1. Next
we consider two cases.

Case 1. v > 0. Since wx(0) < 0, x∗ �= 0. That is, x∗ = 1; i.e., w(x) ≥ w(1) for
every x ∈ [0, 1]. Therefore,

P (x; v) ≥ P (1; v)e−v(1+C4/v
2)(1−x),

which can be written as

P (x; v)

P (1; v)e−v(1−x)
≥ e−

C4
v (1−x).

Case 2. v < 0. Since wx(1) > 0, x∗ �= 1. That is, x∗ = 0; i.e., w(x) ≥ w(0) for
every x ∈ [0, 1], which can be written as

P (x; v)

P (0; v)evx
≥ e

C4
v x.

This completes the proof.
Lemma 8.4. For any y ≥ 0,

lim
v→∞

v

P (1; v)

∫ 1−y/v

0

P (s; v) ds = e−y

and

lim
v→−∞

v

P (0; v)

∫ −y/v

0

P (s; v) ds = e−y − 1.
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Proof. First of all, we establish the first limit. By part (a) of Lemma 8.3,

P (s; v)

P (1; v)
≤ eC2/ve−v(1−s).

Hence, ∫ 1−y/v

0

P (s; v)

P (1; v)
ds ≤ eC2/v

∫ 1−y/v

0

e−v(1−s) ds = eC2/v
e−y − e−v

v
,

which can be written as

v

P (1; v)

∫ 1−y/v

0

P (s; v) ds ≤ eC2/v[e−y − e−v].

Similarly, by part (a) of Lemma 8.3,

P (s; v)

P (1; v)
≥ e−C2/ve−v(1−s).

Hence,

v

P (1; v)

∫ 1−y/v

0

P (s; v) ds ≥ e−C2/v[e−y − e−v].

This proves the first limit.
For the proof of the second limit, by part (b) of Lemma 8.3, for v ≤ −C1,

eC2/vevs ≤ P (s; v)

P (0; v)
≤ e−C2/vevs.

Hence,

eC2/v
e−y − 1

v
≤
∫ −y/v

0

P (s; v)

P (0; v)
ds ≤ e−C2/v

e−y − 1

v
,

which can be written as

eC2/v[1− e−y] ≤ −v
P (0; v)

∫ −y/v

0

P (s; v) ds ≤ e−C2/v[1− e−y].

This completes the proof.
Lemma 8.5. Suppose that d ∈ (0, g(I0e

−k0)). Then

lim
v→∞

P (1; v)

v
= κ∗,

where κ∗ > 0 is uniquely determined by∫ 1

0

g(I0e
−k0−k1κ∗z) dz = d.

Proof. Dividing (3.1) by P (1; v), integrating in (0, 1), and applying the boundary
condition in (3.1), we have∫ 1

0

P (x; v)

P (1; v)
[g(I(x))− d] dx = 0.
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Set x = 1− y/v. We can rewrite the above equation as

(8.6)

∫ v

0

P (1− y/v; v)

P (1; v)

[
g(Ĩ(y))− d

]
dy = 0,

where

Ĩ(y) = I0e
−k0(1−y/v)−k1

∫ 1−y/v
0 P (s;v)ds.

We claim that P (1; v)/v is uniformly bounded for all v. To establish this assertion,
we argue by contradiction: If not, passing to a sequence if necessary, we may assume
that P (1; v)/v → ∞ as v → ∞. Then by Lemma 8.4,

∫ 1−y/v

0

P (s; v)ds =
P (1; v)

v
· v

P (1; v)

∫ 1−y/v

0

P (s; v) ds→ ∞

pointwisely in y as v → ∞. Hence, Ĩ(y) → 0 pointwisely as v → ∞. As

e−C2/ve−y ≤ P (1− y/v; v)

P (1; v)
≤ eC2/ve−y

for every y ∈ (0, v), we see that

P (1− y/v; v)

P (1; v)
→ e−y

pointwisely in y as v → ∞. Moreover,

P (1− y/v; v)

P (1; v)

∣∣∣g(Ĩ(y))− d
∣∣∣ ≤ eC2/ve−y[g(I0) + d]

for every y ∈ (0, v). Hence, we can apply the Lebesgue dominant convergent theorem
and let v → ∞ in (8.6) to conclude that∫ ∞

0

e−y(g(0)− d) = 0,

which is a contradiction as g(0) = 0 and d > 0.
Hence, P (1; v)/v is bounded uniformly for large v. Passing to a sequence if

necessary, we may assume that P (1; v)/v → κ as v → ∞ for some constant κ ≥ 0.
For this case,

∫ 1−y/v

0

P (s; v)ds =
P (1; v)

v
· v

P (1; v)

∫ 1−y/v

0

P (s; v) ds→ κe−y.

Hence,

Ĩ(y) → I0e
−k0−k1κe−y

pointwisely in y as v → ∞. Following the same argument as before, we can apply the
Lebesgue dominant convergent theorem and let v → ∞ in (8.6) to conclude that

(8.7)

∫ ∞

0

e−y[g(I0e−k0−k1κe
−y

)− d] dy = 0.
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We claim that κ > 0: if κ = 0, then from (8.7) we obtain g(I0e
−k0) = d, which

contradicts our assumption d < g(I0e
−k0). By the new variable z = e−y, (8.7) can be

rewritten as F (κ) = d, where

F (κ) :≡
∫ 1

0

g(I0e
−k0−k1κz) dz.

Since F (0) = g(I0e
−k0) > d, limκ→∞ F (κ) = 0, and F is strictly decreasing in (0,∞)

we see that there exists a unique κ∗ such that F (κ∗) = d. Since κ∗ is independent of
the choice of sequence, we see that P (1; v)/v → κ∗ as v → ∞.

Lemma 8.6. Suppose that d ∈ (0, g(I0)). Then

lim
v→−∞

P (0; v)

v
= κ∗,

where κ∗ < 0 is uniquely determined by∫ 1

0

g(I0e
k1κ∗(1−z)) dz = d.

Proof. Dividing (3.1) by P (0; v), integrating in (0, 1), and applying the boundary
condition in (3.1), we have∫ 1

0

P (x; v)

P (0; v)
[g(I(x))− d] dx = 0.

Set x = −y/v. We can rewrite the above equation as

(8.8)

∫ −v

0

P (−y/v; v)
P (0; v)

[
g(Î(y))− d

]
dy = 0,

where

Î(y) = I0e
k0y/v−k1

∫ −y/v
0 P (s;v)ds.

We claim that P (0; v)/v is uniformly bounded for all large negative v. If not, we
may assume that P (0; v)/v → ∞ as v → −∞. Then by Lemma 8.4,

∫ −y/v

0

P (s; v)ds =
P (0; v)

v
· v

P (0; v)

∫ −y/v

0

P (s; v) ds→ ∞

pointwisely in y as v → −∞. Hence, Ĩ(y) → 0 pointwisely as v → −∞. As

eC2/ve−y ≤ P (−y/v; v)
P (0; v)

≤ e−C2/ve−y

for every y ∈ (0,−v), we see that P (−y/v; v)/P (0; v) → e−y pointwisely in y as
v → −∞. Moreover,

P (−y/v; v)
P (0; v)

∣∣∣g(Î(y))− d
∣∣∣ ≤ e−C2/ve−y[g(I0) + d]

for every y ∈ (0,−v). By the Lebesgue dominant convergent theorem and letting
v → −∞ in (8.8) we have that

∫∞
0
e−y(g(0) − d) = 0, which is a contradiction as
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g(0) = 0 and d > 0. Hence, P (0; v)/v is bounded uniformly for large negative v.
Passing to a sequence if necessary, we may assume that P (0; v)/v → κ∗ as v → −∞
for some constant κ∗ ≤ 0. For this case,∫ −y/v

0

P (s; v)ds =
P (0; v)

v
· v

P (0; v)

∫ −y/v

0

P (s; v) ds→ κ∗[e−y − 1].

Hence, Î(y) → I0e
k1κ∗[1−e−y ] pointwisely in y as v → −∞. Following the same

argument as before, we can let v → −∞ in (8.8) to conclude that

(8.9)

∫ ∞

0

e−y[g(I0ek1κ∗[1−e−y ])− d] dy = 0.

We claim that κ∗ < 0: if κ∗ = 0, from (8.9) we obtain g(I0) = d, which contradicts
our assumption d < g(I0). By the new variable z = e−y, (8.9) can be rewritten as
G(κ∗) = d, where

G(κ) :≡
∫ 1

0

g(I0e
k1κ(1−z)) dz.

Since G(0) = g(I0) > d, limκ→−∞G(κ) = 0, and G is strictly increasing in (−∞, 0)
we see that there exists a unique κ∗ < 0 such that G(κ∗) = d. Since κ∗ is independent
of the choice of sequence, we see that P (0; v)/v → κ∗ as v → −∞.

Lemma 8.7. There exist positive constants C5, C6, both independent of v, such
that

(a) if v ≥ C5, ∣∣∣∣P (x; v)P (1; v)
− e−v(1−x)

∣∣∣∣ ≤ C6

v2

for every x ∈ [0, 1];
(b) if v ≤ −C5, ∣∣∣∣P (x; v)P (0; v)

− evx
∣∣∣∣ ≤ C6

v2

for every x ∈ [0, 1].
Proof. We first establish part (a). By part (a) of Lemma 8.3 we have

g1(x; v) ≤ P (x; v)

P (1; v)
− e−v(1−x) ≤ g2(x; v),

where gi(x; v) (i = 1, 2) are given by

g1(x; v) = (e−C2(1−x)/v − 1)e−v(1−x)

and

g2(x; v) = (eC2(1−x)/v − 1)e−v(1−x).

It is easy to check that

∂g1(x; v)

∂x
= ve−v(1−x)[e−C2(1−x)/v(1 + C2/v

2)− 1].



2968 SZE-BI HSU AND YUAN LOU

For large v, the only critical point (denoted by x1) of g1 in [0, 1] is determined by

eC2(1−x1)/v = 1 + C2/v
2,

which implies that x1 = 1− (1/v)(1 + o(1)) for large v. Hence,

g1(x1; v) ≥ −C2

v2
e−v(1−x1) ≥ −C7

v2

for some positive constant C7 independent of v. As g1 attains the global minimum at
x = x1 in [0, 1], we see that

P (x; v)

P (1; v)
− e−v(1−x) ≥ −C7

v2
.

For g2 we have

∂g2(x; v)

∂x
= (v − C2/v)e

−v(1−x)
[
eC2(1−x)/v − 1

1− C2/v2

]
.

For large v, the only critical point (denoted by x2) of g2 in [0, 1] is determined by

eC2(1−x2)/v =
1

1− C2/v2
,

which implies that x2 = 1− (1/v)(1 + o(1)) for large v. Hence,

g2(x2; v) =
C2/v

2

1− C2/v2
e−v(1−x2) ≤ C8

v2
,

where C8 is some positive constant independent of v. As g2 attains the global maxi-
mum at x = x2 in [0, 1], we see that

P (x; v)

P (1; v)
− e−v(1−x) ≤ C8

v2

for every x ∈ [0, 1]. This establishes (a).
For the proof of part (b), by part (b) of Lemma 8.3 we have

h1(x; v) ≤ P (x; v)

P (0; v)
− evx ≤ h2(x; v),

where hi(x; v) (i = 1, 2) are given by

h1(x; v) = (eC2x/v − 1)evx

and

h2(x; v) = (e−C2x/v − 1)evx.

It is easy to check that

∂h1(x; v)

∂x
= vevx[eC2x/v(1 + C2/v

2)− 1].
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For large negative v, the only critical point (denoted by x3) of h1 in [0, 1] is determined
by

eC2x3/v = 1/(1 + C2/v
2),

which implies that x3 = −(1/v)(1 + o(1)) for large negative v. Hence,

h1(x3; v) = (−C2/v
2)/(1 + C2/v

2)evx3 ≥ −C9

v2

for some positive constant C9 independent of v. As h1 attains the global minimum at
x = x3 in [0, 1], we see that

P (x; v)

P (0; v)
− evx ≥ −C9

v2
.

For h2 we have

∂h2(x; v)

∂x
= (v − C2/v)e

vx

[
e−C2x/v − 1

1− C2/v2

]
.

For large negative v, the only critical point (denoted by x4) of h2 in [0, 1] is determined
by

e−C2x4/v =
1

1− C2/v2
,

which implies that x4 = −(1/v)(1 + o(1)) for large negative v. Hence,

h2(x2; v) =
C2/v

2

1− C2/v2
evx4 ≤ C10

v2
,

where C10 is some positive constant independent of v. As h2 attains the global
maximum at x = x4 in [0, 1], we see that

P (x; v)

P (1; v)
− evx ≤ C10

v2

for every x ∈ [0, 1]. This completes the proof.
Corollary 8.8. There exists some positive constants C11 and C12, both inde-

pendent of v, such that
(a) if v ≥ C11, ∣∣∣P (x; v) − P (1; v)e−v(1−x)

∣∣∣ ≤ C12

v

for every x ∈ [0, 1];
(b) if v ≤ −C11,

|P (x; v)− P (0; v)evx| ≤ C12

v

for every x ∈ [0, 1].
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Proof. For part (a), as P (1; v)/v → κ∗ > 0 as v → ∞, by (a) of Lemma 8.7 we
have ∣∣∣P (x; v)− P (1; v)e−v(1−x)

∣∣∣ = P (1; v)

∣∣∣∣P (x; v)P (1; v)
− e−v(1−x)

∣∣∣∣ ≤ C12

v
.

The proof of (b) is similar to that of part (a) and is thus omitted.
Proofs of Theorems 3.10 and 3.11. For the proof of Theorem 3.10, part (a)

follows from Lemma 8.2. For the proof of part (b), it follows from Lemma 8.5 that
P (1; v)/v → κ∗ as v → ∞ and the existence and uniqueness of κ∗ are also established
in Lemma 8.5. The limit (3.11) is established in Corollary 8.8, from which it follows
that P (x; v) → 0 uniformly in any compact subset of [0, 1). It also follows from
Lemma 8.5 and Corollary 8.8 that P (·; v) → κ∗δ(1) as v → ∞. Finally, it follows
from Lemma 8.3 that

P (x; v)

P (1; v)e−v(1−x)
→ 1

in L∞(0, 1) as v → ∞. This together with Lemma 8.5 implies that (3.12) holds. This
completes the proof of Theorem 3.10.

For the proof of Theorem 3.11, part (a) follows from Lemma 8.1. The proof of
part (b) is similar to that of part (b) of Theorem 3.10 and is thus omitted.

9. Discussion. In this paper we studied a mathematical model on the growth of
a single phytoplankton species in a water column where the species depends solely on
light for its metabolism. The model was described by a nonlocal reaction-diffusion-
advection equation, proposed and studied by Shigesada and Okubo [23], Huisman
et al. [10, 12], and others. We focused on the combined effect of death rate, advection
(sinking or buoyant) coefficient, water column depth, and turbulent diffusion rate
on the persistence of the single species. Under a general reproductive rate which
is an increasing function of light intensity, we established the existence of a critical
death rate; i.e., the phytoplankton species survives if and only if its death rate is
less than the critical death rate. We show that the critical death rate is a strictly
monotone decreasing function of the advection coefficient and water column depth
and is also a strictly monotone decreasing function of the vertical turbulent diffusion
rate for buoyant species. We also determine the asymptotic behaviors of the critical
death rate for a sufficiently large sinking or buoyant rate, for shallow or deep water
columns and for poorly mixing water columns (small turbulent diffusion rate) and
well-mixing water columns (large turbulent diffusion rate). These results enabled us
to investigate a critical advection rate, a critical water column depth, and a critical
turbulent diffusion rate, which may or may not exist. For example, if the death rate
is suitably small (with fixed water column depth), the phytoplankton can persist for
any sinking/buoyant velocity; i.e., there is no critical sinking/buoyant velocity under
such a situation. Similarly, if the death rate is suitably small (with fixed sinking
or buoyant rate), the phytoplankton can persist for any water column depth; i.e.,
there is no critical water column depth. Our analysis shows that these critical values
for water column depth, sinking/buoyant velocity, and diffusion rate exist for some
intermediate range of phytoplankton death rates. In short summary, we have shown
the following:

• Critical death rate always exists and is unique.
• Critical sinking or buoyant rate and critical water column depth exist only
for intermediate values of death rates. They are unique whenever they exist.
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• A critical turbulent diffusion rate exists only for intermediate values of death
rates. Whenever it exists, it is unique for buoyant species. However, there
may exist two critical turbulent diffusion rates for sinking species.

9.1. Critical water column depth. In 1953 Sverdrup introduced the concept
of a critical depth of the mixed layer beyond which the phytoplankton growth would
be impossible [12]. In [10] the authors introduced an interesting way to define the
critical water column depth. They considered the positive steady state problem of the
same model (2.1)–(2.4) satisfying (2.5). When the positive steady state exists, they
proved the following nontrivial properties of steady states:

• Let p0 be the plankton population density at the surface of the water column.
If we treat the depth L as a function of p0, then

L = L(p0) =
M

p0
+O

(
1

p20

)

as p0 → ∞, where M > 0 is some positive constant.
• L(p0) is a monotonically decreasing function of p0: L(p0,1) > L(p0,2) if p0,1 <
p0,2.

As a consequence, the critical water column depth is defined in [10] as

(9.1) L∗ = lim
p0→0+

L(p0).

In this paper, we define the critical water column depth L∗ by the equation
d = d∗(v, L∗, D), where d∗ is the critical death rate. We conjecture that L∗ = L∗

whenever they are finite; i.e., our definition of the critical depth is equivalent to that
given by (9.1).

We establish here some lower bound of L∗ in terms of d. For a fixed death rate
satisfying d < g(I0), we define the depth Lb as

Lb :=
1

k0
ln

I0
g−1(d)

or, equivalently,

d = g(I0e
−k0Lb).

It follows that

0 < d < g(I0e
−k0L) ⇔ 0 < L < Lb.

Thus if the water column depth is less than Lb, it follows from part (a) of Theorem 3.3
that plankton bloom for any sinking/buoyant rate and any turbulent diffusion rate.
In particular, this implies that

L∗ ≥ Lb :=
1

k0
ln

I0
g−1(d)

.

Interestingly, this implies that L∗ → ∞ as k0 → 0+; i.e., if k0 is very small (close
to the self-shading situation), the critical depth will become sufficiently large. This
is consistent with the result from [19] that the self-shading model has positive steady
state for any finite water column depth.
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9.2. Monotonicity of critical rates. By Theorem 3.2, the critical death rate
d∗(v, L,D) is strictly monotone decreasing for v and L, which is biologically intuitive:
the larger v and L are, the greater the tendency is for the species to sink and the
deeper the water column is, which leaves the species less susceptible to the light and
makes it harder for the phytoplankton to persist. It is natural to inquire how other
critical rates L∗, α∗, and D∗ depend on their parameters.

• L∗ = L∗(d, v,D) is monotone decreasing in d and v and monotone decreasing
in D when v ≤ 0. To see this, differentiating d = d∗(v, L∗, D) with respect
to d,

∂d∗
∂L

· ∂L∗
∂d

= 1.

As ∂d∗/∂L ≤ 0, ∂L∗/∂d < 0 (and also ∂d∗/∂L < 0); differentiating d =
d∗(v, L∗, D) with respect to v, we have

∂d∗
∂L

· ∂L∗
∂v

+
∂d∗
∂v

= 0.

As ∂d∗/∂L < 0 and ∂d∗/∂v < 0, ∂L∗/∂v < 0. Similarly, we can show that
∂L∗/∂D < 0, provided that v ≤ 0.

• By a similar argument as before, we can show that the critical rate v∗ =
v∗(d, L,D) is also monotone decreasing in d and L, and monotone decreasing
in D when v ≤ 0. Similarly, D∗ = D∗(d, v, L) is also monotone decreasing in
d, v, and L when v ≤ 0, i.e, the buoyant situation.

It will be of interest to understand the asymptotic behaviors of the critical rates
L∗, α∗, and D∗ for large sinking/buoyant rates and poorly and well-mixed water
columns.

9.3. Future directions. In the case in which there is no sinking/buoyancy, it
has been illustrated numerically in [14] that if the turbulent diffusion rate is less
than a critical value, the phytoplankton can persist irrespective of the water column
depth. The role of a vertical turbulent diffusion coefficient becomes more complicated
if we include the advection of the phytoplankton species in the water column. The
analysis in [10] suggests that there might exist two critical vertical turbulent diffusion
coefficients for sinking phytoplankton [10, Figure 5]. When the sinking velocity is
suitably small, the existence of two critical turbulent diffusion rates is confirmed by
part (b) of Theorem 3.8, in strong contrast with both the buoyant case and the case
with a large sinking rate, for which there is at most one critical turbulent diffusion
rate, as shown by Theorems 3.7 and 3.9, respectively. It will be of interest to further
investigate in more detail how the critical death rate depends upon vertical turbulent
diffusion.

Regarding phytoplankton density distributions in the water column, we show
that the species forms a thin layer at the surface of the water column for a sufficiently
large buoyant rate, and it forms a thin layer at the bottom of the water column for
a sufficiently large sinking rate. It will be of interest to understand the asymptotic
behaviors of positive steady states for poorly mixed water columns and for shallow
and deep water columns; see [9] for recent progress in this direction.

Regarding multiple consumer and/or multiple resource problems, we plan to build
upon the current work and further study two species competing for light and/or
nutrients in a water column with advection. We will also investigate the competition
of two species for two complementary nutrients in the oligotrophic ecosystem where
light is amply supplied.
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