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MODELING INTERVENTION MEASURES AND
SEVERITY-DEPENDENT PUBLIC RESPONSE DURING SEVERE

ACUTE RESPIRATORY SYNDROME OUTBREAK∗

SZE-BI HSU† AND YING-HEN HSIEH‡

Abstract. The 2003 severe acute respiratory syndrome (SARS) epidemic came and left swiftly,
resulting in more than 8,000 probable cases worldwide and 774 casualties. It is generally believed that
quarantine of those individuals suspected of being infected was instrumental in quick containment
of the outbreaks. In this work we propose a differential equation model that includes quarantine
and other intervention measures implemented by the health authority, including those to prevent
nosocomial infections and decrease frequency of contacts among the general public. We also consider
the possible behavior change by the general populace to avoid infection, in response to the severity
of the outbreak in general and to these intervention measures in particular. Complete analysis is
given for the model without quarantine. For the general model with quarantine, a basic reproduction
number is derived and full description of its dynamics is provided. We will show that introducing
quarantine measures in the model could produce bistability in the system, thus changing the basic
dynamics of the model. We give numerical examples of parameter values with which bistable steady
states, where one is disease-free and the other endemic, could exist. However, realistic parameter
values indicate that, assuming limited imported cases, the occurrence of the stable endemic steady
state or bistability is unlikely. The modeling results indicate that for an infectious disease with
infectivity and patterns of transmission typical of SARS, the outbreak can always be eradicated by
implementing border control of imported cases and limited quarantine, along with the public’s social
response to avoid infections. Moreover, the results also suggest that quarantine measures will be
effective in reducing infections only if the quarantined/isolated SARS patients and their potential
contacts can successfully reduce their contact rate and/or transmission probabilities. Hence the
effectiveness of quarantine for infectious diseases like SARS, for which no infection is being prevented
during the quarantine period, can only be indirect and therefore must be combined with other
intervention measures in order to quickly contain the outbreaks.
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1. Introduction. The worldwide severe acute respiratory syndrome (SARS)
epidemic outbreak of November 2002–July 2003 accounted for more than 8,000 in-
fections with 774 fatalities directly attributable to SARS [1]. It is generally be-
lieved [2] that the experience of affected regions showed that the transmission of
SARS-Coronavirus (SARS-CoV) can be effectively controlled by adherence to basic
public health measures, including rapid case detection, case isolation, contact trac-
ing, and good infection control such as hand-washing and use of personal protective
equipment. Another measure believed to be instrumental in breaking the transmis-
sion chain is the quarantine of well but potentially infective individuals to prevent
infections [3, 4, 5, 6]. During the outbreak in Taiwan from April to June 2003, the
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health authority attempted to quarantine more than 150,000 people who either had
possible contact with a suspected SARS case or had just arrived from an affected
area as determined by the World Health Organization (WHO). Of these quarantined
individuals, only 17 were later officially confirmed as SARS cases. Hence questions
remain as to the effectiveness of the quarantine.

During the outbreak, two distinct levels of quarantine were implemented in Tai-
wan. Level A quarantine, aimed at people suspected of having close contact with
a suspected SARS case, was implemented on March 18, 2003. Level B quarantine,
aimed at travelers from affected areas, was initiated on April 28 in the aftermath
of the first SARS fatality in Taiwan on April 26. Details of the implementation of
quarantine measures in Taiwan were described in [7]. By the end of the summer, a
total of more than 150,000 people had been quarantined during the SARS outbreak.

There were 346 officially confirmed SARS cases as defined by WHO during the
outbreak of 2003 in Taiwan, among which were 37 direct SARS casualties and 36
SARS-related deaths. In addition, 180 patients, who either had a previous negative
PCR or antibody test or had been suspected or ruled-out cases, tested SARS an-
tibody positive. However, Level B quarantine detected no confirmed SARS cases,
while Level A quarantined persons included 17 officially confirmed SARS cases and
7 suspected or ruled-out cases with positive antibody tests [8]. Using the case data
of the 480 laboratory-confirmed SARS cases, [8] showed that, compared to all other
patients, previously quarantined persons had a significantly shorter onset-to-diagnosis
time, i.e., the time it took a person with onset of symptoms to be diagnosed with sus-
pected SARS and hospitalized. Hence quarantine had at least been useful in attaining
more rapid detection and hospitalization of cases.

Rapid case definition also depends on knowledge regarding the clinical and molec-
ular aspect of the disease, an inherently difficult task when facing a newly emerging
disease like SARS. Contact tracing and quarantine of the traced contacts is another
effective but difficult measure especially in an established democratic society, due to
the ethical and legal ramifications [9]. Adherence to infection control, in the hospital
or in the community, by the health care workers or the general populace, depends very
much on the individual. The personal decision whether to diligently avoid contacts
and infection is often based on the circumstances, i.e., whether there is any perceived
cause for behavior change by the individual. The increasing severity of an outbreak
or the implementation of massive intervention measures, e.g., the images of everyone
wearing a face mask while in public places, is surely a cause for behavior change to
avoid infection. This perhaps critically important factor will also be considered in our
model.

In this work we will focus on three types of interventions evident during the past
SARS outbreak: quarantine of potential infectives, isolation of suspected cases, and
behavior change of the general public (including health care workers) in response to
the increasing severity of the outbreak in an effort to avoid contacts which might lead
to SARS infection. The focus is to study the roles played by intervention measures
and social response in the quick containment of the outbreak. Previous modeling work
of the SARS epidemic includes the early modeling of SARS by [10, 11] to obtain the
all-important basic reproduction number for SARS, [12] on modeling the community
and hospital transmission of SARS, and [13, 14] on models for data-fitting of SARS in
Taiwan. Also see [15] for a review of mathematical models of SARS. Recent modeling
work of epidemics with intervention measures (quarantine, vaccination, evacuation,
etc.) includes [16, 17, 18, 19, 20] on smallpox, [17] on flu, [21] on bubonic plague,
[22] on measles and whooping cough, [23] on optimal intervention strategies, and
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[18] on a class of infectious disease models with quarantine.
This article is organized as follows: In section 2 we describe the general model with

the intervention measures to be considered and the computation of basic reproduction
numbers. In section 3 we give the complete analysis of the model with severity-
dependent public response but without quarantine. Section 4 gives analytical results
for the full model with quarantine and full description of its dynamics. Finally in
section 5 we discuss the biological significance of our results.

2. The model. In this work, we propose a general model with Level A and B
quarantines, as well as imported cases who entered the exposed class upon their arrival
before April 28, but were quarantined (Level B) as they entered from the affected areas
after April 28. The model variables are given as follows; note that the time unit is in
days:

S—the number of susceptible individuals at time t;
E—the number of infected asymptomatic persons at time t;
QA—the number of asymptomatic infected persons at time t under Level A quar-

antine;
QB—the number of imported asymptomatic infected persons at time t (who were

under B quarantine if arriving from affected areas after April 28);
I—the number of infective persons with onset of symptoms not isolated or quar-

antined at time t;
P—the number of isolated probable SARS cases at time t;
D—the cumulative number of SARS deaths at time t;
R—the cumulative number of discharged SARS patients at time t.
The key assumptions used are as follows:
1. A SARS-infected person is infective after onset of symptoms.
2. A quarantined person is quarantined without symptoms (hence is not infective),

becoming infective with reduced contact rates due to quarantine, and is isolated upon
diagnosis.

3. An infected person can infect others unless quarantined or isolated as a probable
case with reduced contact rate depending on the effectiveness of the isolation. The
underlying assumption here is that once diagnosed as a probable SARS case and
hospitalized, a patient cannot infect others.

4. A probable case is removed from isolation either by death or discharge.
5. As behavior change by individuals occurs as a result of public response to the

severity of the outbreak, the infection rate (or the product of transmission probabil-
ity and contact rate) decreases with the increasing cumulative number of probable
cases. Similarly, the effectiveness of quarantine and isolation also increases with the
increasing number of probable cases, resulting in a decreased number of infections. To
account for this decrease, we make use of a rational function 1

1+a[P (t)+R(t)+D(t)] , where

P + R + D is the cumulative number of probable cases. We note that the decreasing
rational function used, which resembles Holling’s functional response in predator-prey
models [24], is not the only choice of function to portray the phenomenon in question.
A decreasing exponential function, for example, could do just as well.

6. We assume homogeneous mixing with quarantine-adjusted incidence.
7. Quarantine for Level A is proportionate to the number of infected asymptomatic

persons.
8. Imported cases are a function of time (Q(t) = 0, 1, or 2 as deduced from data),

with Level B quarantine after April 28.
The model parameters are as follows:
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λ—infection rate due to contact with infective class;
q1—proportion of recruitment of asymptomatic infected persons for Level A quar-

antine;
γ3—isolation rate of infectives not under quarantine;
μ—progression rate from exposure to onset of symptoms;
γi, i = 1, 2—isolation rates of QA and QB , respectively;
αA, αB , αP—the proportionate reduction in infectivity of quarantined persons

due to Level A and B quarantines (before isolation) and probable cases, respectively;
ρi, i = 1, 2—respective fatality rates of infective cases and isolated probable SARS

patients;
σi, i = 1, 2—respective discharge rates of infective cases and isolated probable

SARS patients;
c—contact rate in absence of an outbreak;
a—the effect of behavior change in reduction of contact due to the cumulative

number of probable cases;
β—transmission probability per effective contact.
The flowchart for the model is given in Figure 2.1.
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Fig. 2.1. Flowchart for the model.

Finally, the model equations with imported cases, Level A and B quarantines,
and behavior change are as follows:

S′ = −λ(S,E, I,QA, QB , P,R,D)S,(2.1)

E′ = λ(S,E, I,QA, QB , P,R,D)S − μE − q1E,(2.2)

Q′
A = q1E − γ1QA,(2.3)

Q′
B = Q(t) − γ2QB ,(2.4)

I ′ = μE + γ2QB − (σ1 + ρ1 + γ3)I,(2.5)

P ′ = γ1QA + γ3I − (σ2 + ρ2)P ,(2.6)

R′ = σ1I + σ2P ,(2.7)

D′ = ρ1I + ρ2P ,(2.8)

where the incidence of infection with quarantine is given by



A SARS MODEL WITH INTERVENTION MEASURES 631

λ(S,E, I,QA, QB , P,R,D) = β
c

1 + a(P + R + D)

× I + αAQA + αBQB + αPP

S + E + I + αAQA + αBQB + αPP
.

Note that S + E + QA + QB + I + P + R + D = S0 + I0, where S0 and I0 are
the initial susceptible population sizes. The system is nonautonomous, due to the
imported case term Q(t) in the right-hand side of the equation for Q′

B . Brauer and
van den Driessche [25] have shown that, if there is a positive flow of infectives into
the population, disease-free equilibrium might not exist. However, during the SARS
outbreak border control was implemented in Taiwan as well as all other affected areas.
Therefore we can reasonably assume that Q(t) has compact support and subsequently
the asymptotic properties of the nonautonomous system given in (2.1)–(2.8) are the
same as the corresponding autonomous system, i.e., with Q(t) = 0. Hence we need
only consider the autonomous system hereafter.

For the model without quarantine, the model equations become

S′ = −λ(S,E, I, P,D)S,(2.9)

E′ = λ(S,E, I, P,D)S − μE,(2.10)

I ′ = μE − (σ1 + ρ1 + γ3)I,(2.11)

P ′ = γ3I − (σ2 + ρ2)P ,(2.12)

R′ = σ1I + σ2P ,(2.13)

D′ = ρ1I + ρ2P ,(2.14)

where

λ(S,E, I, P,R,D) = β

[
c

1 + a(P + R + D)

]
I + αPP

S + E + I + αPP
.

The disease-free equilibrium (DFE) for the six-dimensional system in (S,E, I, P,R,D)
is (S∗, 0, 0, 0, R∗, D∗) with S∗ + R∗ + D∗ = S0 + I0; the endemic equilibrium is
(0, 0, 0, 0, R#, D#) with R# + D# = S0 + I0.

Making use of the method in [26], we obtain the expression for the basic repro-
duction number R0 of this case:

R0 =
βc

(σ1 + ρ1 + γ3)[1 + a(R∗ + D∗)]

+
βcαP γ3

(σ1 + ρ1 + γ3)[1 + a(R∗ + D∗)](σ2 + ρ2)
.(2.15)

Similarly as for the original model with quarantine, we have the more general
expression for the effective basic reproduction number with quarantine RQ, again
using the procedure developed in [26]:

RQ = β
c

[1 + a(R∗ + D∗)]

{
μ

(σ1 + ρ1 + γ3)[μ + q1]
+

αAq1
γ1[μ + q1]

}

+ β
c

[1 + a(R∗ + D∗)]

αP

(σ2 + ρ2)

{
γ3

(σ1 + ρ1 + γ3)

μ

[μ + q1]
+

q1
μ + q1

}
.(2.16)

Note that both R0 and RQ have very clear biological interpretations which will be
discussed in section 5.
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3. Analysis for model without quarantine. In this section we provide full
analysis for the model without quarantine. To simplify, we let αp = 0. That is,
hospitalized and isolated probable cases do not make a significant contribution to the
infections, as indicated by the result in a data-motivated modeling study of Taiwan’s
SARS outbreak in [27]. We note that while it is true that nosocomial infections
played a crucial role during the SARS outbreak in all affected, as confirmed by the
fact that nearly 80% of SARS infections in Taiwan occurred nosocomially [28], most
had occurred before the infective individuals had been diagnosed with SARS and
hospitalized with adequate isolation. Only a small number of infections in Taiwan as
well as in other affected areas have been documented as being caused by a confirmed
or probable SARS patient who most likely had been isolated.

Hence the system in (2.9)–(2.14) becomes

S′ = − βIS

E + I + S

c

1 + a(P + R + D)
,(3.1)

E′ =
βIS

E + I + S

c

1 + a(P + R + D)
− μE,(3.2)

I ′ = μE − (σ1 + ρ1 + γ3)I,(3.3)

P ′ = γ3I − (σ2 + ρ2)P ,(3.4)

R′ = σ1I + σ2P ,(3.5)

D′ = ρ1I + ρ2P ,(3.6)

with S(0) = S0 > 0, I(0) = I0 > 0, E(0) = P (0) = R(0) = D(0) = 0.
We first give the following lemma, the proof of which is in [29].
Lemma 3.1. Let f be continuously differentiable. If f(t) −→ constant as t → ∞

and |f ′′(t)| ≤ M for all t, then f ′(t) → 0 as t → ∞.
Theorem 3.2. We have the following asymptotic properties: S(t) −→ S∞ ≥ 0,

R(t) −→ R∞ > 0, D(t) −→ D∞ > 0, and limt→∞ I(t) = 0, limt→∞ E(t) = 0,
limt→∞ P (t) = 0.

Proof. Obviously S(t) is monotone decreasing and bounded below; hence limt→∞
S(t) = S∞ ≥ 0, 0 ≤ S∞ < S0. Moreover, (E + S)′ = −μE, and therefore E(t) + S(t)
is monotone decreasing for t ≥ 0. Hence E(t) −→ E∞ ≥ 0 as t → ∞. Since
S(t) + E(t) + I(t) + P (t) + R(t) + D(t) ≡ N = S0 + I0 for all t, R′ ≥ 0, D′ ≥ 0 =⇒
R(t) −→ R∞ > 0, D(t) −→ D∞ > 0. Obviously R′′ = σ1I

′ + σ2P
′, |I ′| and |P ′|

are bounded, and hence |R′′| ≤ M for some M > 0. Consequently by Lemma 3.1
I(t) −→ I∞ = 0, P (t) −→ P∞ = 0 as t → ∞.

Claim: E∞ = 0. Suppose E∞ > 0; then I ′ = μE− (σ1 +ρ1 +γ3)I ≥ μ(E∞−ε)−
(σ1 + ρ1 + γ3)ε > 0 for ε small, t large. It follows that I(t) becomes unbounded. This
is a contradiction.

Next, we let q = σ1 + ρ1 + γ3 and c = 1 (i.e., β denotes contact rate times
transmission probability) for the sake of simplicity. We also, for the moment, assume
a = 0, i.e., no behavior change. We will return to discuss the case with behavior change
later in this section. Subsequently, we consider the following simplified system:

S′ = − βIS

E + I + S
,(3.7)

E′ =
βIS

E + I + S
− μE,(3.8)

I ′ = μE − qI,(3.9)
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with S(0) = S0 > 0, I(0) = I0 > 0, E(0) = 0.
Now, we let W1 = S/I, W2 = E/I. Then (3.7)–(3.9) become

W ′
1 = − βW1

1 + W1 + W2
−W1(μW2 − q),(3.10)

W ′
2 =

βW1

1 + W1 + W2
− μW2 −W2(μW2 − q),(3.11)

with W1(0) > 0, W2(0) = 0.
To study the flow of (3.10)–(3.11) in the W2W1-phase plane, we first consider the

isoclines W ′
1 = 0 and W ′

2 = 0. Clearly, W ′
1 < 0 if W2 > q/μ. Moreover,

W ′
1 ≥ 0 ⇐⇒ q − μW2 ≥ β

1 + W1 + W2

⇐⇒ 1 + W1 + W2 ≥ β

q − μW2
for q − μW2 ≥ 0

⇐⇒ W1 ≥ β

q − μW2
− (1 + W2) = f(W2) for q − μW2 ≥ 0,

and

W ′
2 ≥ 0 ⇐⇒ βW1

1 + W1 + W2
≥ [μ + (μW2 − q)]W2

⇐⇒ βW1 ≥ [μ + (μW2 − q)]W2(1 + W1 + W2)

⇐⇒ β −W2[μ + (μW2 − q)]W1 > [μ + (μW2 − q)]W2(1 + W2)

⇐⇒ W1 >
W2(1 + W2)[μ + (μW2 − q)]

β −W2[μ + (μW2 − q)]
= g(W2).

Consequently, it is easy to verify that the curves W1 = f(W2) and W1 = g(W2) do
not intersect.

There are four cases to be considered:
1. q < β, q < μ.

Let W̃2 be the positive root of

h(W2) = β −W2[μ + (μW2 − q)] = 0.

Clearly h( q
μ ) = β − q > 0. Hence q

μ < W̃2. In the first quadrant of the

W2W1-phase plane, the isocline W1 = 0, (W1 = f(W2))0 ≤ W2 < q
μ , satisfies

f(0) = β
q − 1 > 0 and f(( q

μ )−) = ∞. The isocline Ẇ2 = 0(W1 = g(W2))

satisfies g(0) = 0, g(W̃2−) = ∞. We note that the isocline Ẇ1 = 0 is
above that of Ẇ2 = 0. Every trajectory converges to the endemic equilibrium
(S/I,E/I) = (0, 0) as t → ∞.

2. β > q, μ < q.
There are two equilibria (0, 0) and (W ∗

2 , 0), where W ∗
2 = q

μ − 1. Similar to

case 1, every trajectory converges to (W ∗
2 , 0).

3. β < q, μ < q.
Clearly f(W ∗

2 ) = f( q
μ−1) = β

μ−
q
μ < 0. Observe that h( q

μ ) = β−q < 0 and we

have W̃2 < q
μ . Since the isocline Ẇ2 = 0 is above that of Ẇ1 = 0, it follows

that, as t −→ ∞, h(W2(t)) −→ W̃2, the positive root of h(W2) = 0, and
W1(t) −→ ∞. Moreover, (W1(t),W2(t)) approaches the curve W1 = g(W2),
i.e., W2 = 0, as t → ∞.
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4. β < q, q < μ.
Obviously, this case is similar to the previous case with W2(t) → W̃2 and
W1(t) → ∞ as t → ∞.

We then have the following theorem.
Theorem 3.3. For system (3.7)–(3.9), if β > q, then S(t) → 0 as t → ∞. If

β < q, then S(t) → S∞ > 0 as t → ∞.

Proof. For cases 1 and 2 as described earlier, S(t)
I(t) = W1(t) → 0 as t → ∞. Since

I(t) −→ 0 and S(t) −→ S∞ ≥ 0, we have S∞ = 0. Hence, β > q implies S(t) −→ 0 as

t → ∞. If β < q, then, by cases 3 and 4, we have W1(t) −→ ∞ and W2(t) −→ W̃2 > 0
as t → ∞.

Claim: S∞ > 0. If S∞ = 0, then∫ ∞

0

1

1 + W1(t) + W2(t)
dt = ∞ and

∫ ∞

0

1

W1(t)
dt ≥

∫ ∞

0

1

1 + W1(t) + W2(t)
dt = ∞.

Therefore we have
∫∞
0

1
W1(t)

dt = ∞.

From (4.10),

W ′
1 =

−βW1

1 + W1 + W2
−W1(μW2 − q) ≥ −βW1

1 + W1 + W̃2 − ε
+ W1[q − μ(W̃2 + ε)],

where W̃2 − ε < W2(t) < W̃2 + ε for t ≥ t0.
For t ≥ t0,

W ′
1

W1
≥ −β

1 + W1 + W̃2 − ε
+ [q − μ(W̃2 + ε)].

Because W1(t) → ∞ as t → ∞,

W ′
1

W1
≥ 1

2
[q − μ(W̃2 + ε)] > 0 for t ≥ T, for some T large.

Therefore W1 → ∞ exponentially, and

W1(t) ≥ W1(T ) exp

{
1

2
[q − μ(W̃2 + ε)](t− T )

}
.

But

∞ =

∫ ∞

T

1

W1(t)
dt ≤

∫ ∞

T

1

W1(T ) exp{ 1
2 [q − μ(W̃2 + ε)(t− T )]}

dt < ∞.

This is a contradiction.
Now we return to consider system (3.1)–(3.6) with behavior change.

Theorem 3.4. Let β̃ = βc
1+aN , where N = R∗

∞ + D∗
∞.

(i) If q = σ1 + ρ1 + γ3 > β̃, then the solution of system (3.1)–(3.6) satisfies
S(t) −→ S∞ > 0 as t → ∞.

(ii) If q < β̃, then S(t) −→ 0 as t → ∞.

Note that the condition q < β̃ in the above theorem is equivalent to R0 > 1 with
R0 as defined in (2.15) and αP = 0. Hence with this theorem we have shown that the
asymptotic result for R0 is global.
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Proof. (i) Suppose not; then limt→∞ S(t) = S∗
∞ = 0. Consider the limiting

system of

S′ = − βIS

E + I + S

c

1 + a(P + R + D)
a ≥ 0,(3.12)

E′ =
βIS

E + I + S

c

1 + a(P + R + D)
− μE,(3.13)

I ′ = μE − (σ1 + ρ1 + γ3)I.(3.14)

Since P (t) −→ 0, R(t) −→ R∗
∞, and D(t) −→ D∗

∞ as t → ∞, we have the limiting
system as follows:

S′ = − βIS

E + I + S

c

1 + aN
, a ≥ 0,(3.15)

E′ =
βIS

E + I + S

c

1 + aN
− μE,(3.16)

I ′ = μE − (σ1 + ρ1 + γ3)I.(3.17)

From the analysis of system (3.7)–(3.9) with

β̃ =
βc

1 + aN
,

if q > β̃, then S(t) → S∞ > 0. This is a contradiction.

(ii) Assuming q < β̃, we want to show limt→∞ S(t) = 0. If not, then limt→∞ S(t)
= S∞ > 0. In this case, we have R∞ + D∞ + S∞ = N , where R∞ = limt→∞ R(t),
D∞ = limt→∞ D(t).

Since S∞ > 0, D∞ + R∞ < N . The limiting system of (3.12)–(3.14) is sys-
tem (3.15)–(3.17) with D∗

∞, R∗
∞ replaced by D∞, R∞. From the analysis of system

(3.7)–(3.9) and the assumption q < β̃, we have

β̂ =
cβ

1 + a(D∞ + R∞)
>

cβ

1 + aN
= β̃ > q;

hence S(t) −→ 0 as t → ∞. This is a contradiction.

4. Analysis for model with quarantine. We now give some analytical results
on the model with Level A quarantine only. We then have the system

S′ = −λ(S,E, I,QA, P,R,D)S,(4.1)

E′ = λ(S,E, I,QA, P,R,D)S − μE − q1E,(4.2)

Q′
A = q1E − γ1QA,(4.3)

I ′ = μE − (σ1 + ρ1 + γ3)I,(4.4)

P ′ = γ1QA + γ3I − (σ2 + ρ2)P ,(4.5)

R′ = σ1I + σ2P ,(4.6)

D′ = ρ1I + ρ2P ,(4.7)

where the incidence of infection with quarantine rates is given by

λ(S,E, I,QA, P,R,D) = β
I + αAQA

S + E + I + αAQA

c

1 + a(P + R + D)
.(4.8)
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Again S+E+QA+I+P +R+D = S0+I0 ≡ N , where S(0) = S0 > 0, I(0) = I0 > 0.

As in Theorem 3.2, we have S(t) −→ S∞ ≥ 0, R(t) −→ R∞ > 0, D(t) −→ D∞ >
0 and I(t) −→ 0, E(t) −→ 0, P (t) −→ 0, QA(t) −→ 0 as t −→ ∞.

Next we let q̃ = σ1 + ρ1 + γ3, c = 1, and a = 0 and consider the limiting system

S′ =
−β(I + αAQA)

S + E + I + αAQA
S,

E′ =
β(I + αAQA)

S + E + I + αAQA
S − μE − q1E,(4.9)

Q′
A = q1E − γ1QA,

I ′ = μE − q̃I.

Let W1 = S
I , W2 = E

I , W3 = QA

I . Then we have

W ′
1 = − β(1 + αAW3)

1 + W1 + W2 + αAW3
W1 − (μW2 − q̃)W1,

W ′
2 =

β(1 + αAW3)

1 + W1 + W2 + αAW3
W1 − (μ + q1)W2 − (μW2 − q̃)W2,(4.10)

W ′
3 = (q1W2 − γ1W3) − (μW2 − q̃)W3.

We note that if αA = 0, q1 > 0, then (4.10) is reduced to the two-dimensional
system

W ′
1 =

−βW1

1 + W1 + W2
− (μW2 − q̃)W1,

W ′
2 =

βW1

1 + W1 + W2
− (μ + q1)W2 − (μW2 − q̃)W2.

As in Theorem 3.4, it can be shown that (i) if β̃ < q̃(μ+q1
μ ), then S(t) → S∞ > 0 as

t → ∞ and (ii) if β̃ > q̃(μ+q1
μ ), then S(t) → 0 as t → ∞.

We give the following equilibria and their respective stability analyses:

1. E0 = (0, 0, 0) is an equilibrium of (4.10). Then the variational matrix at E0 is

M0 =

⎡
⎣ −β + q̃ 0 0

β −(μ + q1) + q̃ 0
0 q1 −γ1 + q̃

⎤
⎦.

We then have the following trivial lemma.

Lemma 4.1. E0 = (0, 0, 0) is locally asymptotically stable if β > q̃, μ + q1 > q̃,
γ1 > q̃.

2. E∗
23 = (0,W ∗

2 ,W
∗
3 ), where

W ∗
2 =

q̃ − (μ + q1)

μ
> 0 ⇐⇒ q̃ > μ + q1,

W ∗
3 =

q1W
∗
2

(μW ∗
2 − q̃) + γ1

> 0 ⇐⇒ γ1 > μ + q1.

Note that E∗
23 = (0,W ∗

2 ,W
∗
3 ) exists if q̃ > μ + q1, γ1 > μ + q1.
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The variational matrix at E∗
23 is

M∗ =

⎡
⎢⎣

−β(1+αAW∗
3 )

1+W∗
2 +αAW∗

3
− (μW ∗

2 − q) 0 0
β(1+αAW∗

3 )
1+W∗

2 +αAW∗
3

−(μ + q1) − (2μW ∗
2 − q̃) 0

0 q1 − μW ∗
3 −γ1 − (μW ∗

2 − q̃)

⎤
⎥⎦.

The local stability result is given below, the proof of which is also trivial.

Lemma 4.2. E∗
23 is locally asymptotically stable if β >

1+W∗
2 +αAW∗

3

1+αAW∗
3

(μ + q1).

3. E∞ = (+∞, W̃2, W̃3), where W̃2 < q
μ . From the first equation of (4.10), we

have
W ′

1

W1
≤ −(μW2− q̃). If limt→∞ W1(t) = ∞, then we must have W̃2 < q

μ . From the

second and third equations of (4.10) and limt→∞ W1(t) = ∞, it can be shown that

(W̃2, W̃3) is the solution of

β(1 + αAW3) − (μW2 − q̃)W2 − (μ + q1)W2 = 0,

(q1W2 − γ1W3) − (μW2 − q̃)W3 = 0.

By the Poincare transform, Z1 = 1
W1

, Z2 = W2

W1
, Z3 = W3

W1
. Consequently, system

(4.10) becomes

Z ′
1 = βZ1

Z1 + αAZ3

1 + Z1 + Z2 + αAZ3
+ μZ2 − q̃Z1,

Z ′
2 = (1 + Z2)

β(Z1 + αAZ3)

1 + Z1 + Z2 + αAZ3
− (μ + q1)Z2,(4.11)

Z ′
3 = q1Z2 − γ1Z3 + Z3

β(Z1 + αAZ3)

1 + Z1 + Z2 + αAZ3
.

The local stability of E∞ for system (4.10) is equivalent to the local stability of

Ê0 = (0, 0, 0) for system (4.11). The variational matrix of Ê0 for system (4.11) is
computed as ⎡

⎣ −q̃ μ 0
β −(μ + q1) βαA

0 q1 −γ1

⎤
⎦.

From the Routh–Hurwitz criterion, the stability conditions can be rewritten as

1. β < A1, A1 = γ1q̃+(μ+q1)(γ1+q̃)
μ+αAq̃ .

2. β < A2, A2 = (μ+q1)γ1q̃
μγ1+αAq1q̃

.

3. β < A3, A3 = (μ+q1)
2(γ1+q̃)+γ1q̃+(μ+q1)(γ1+q̃)2

μ(μ+q1)+μq̃+αAq1((μ+q1)+γ1)
.

We now have the following trivial results.
Lemma 4.3. E∞ is stable if β < A2.
Proof. By routine computation, we have A2 < A1, A2 < A3.
Lemma 4.4. If γ1 > q̃, then A2 > q̃.
Proof. Clearly, A2 > q̃ ⇐⇒ γ1 > αAq̃, 0 ≤ αA ≤ 1.
Thus, when γ1 > q̃, we have the stability of E0 and E∞ diagramed as in Figure 4.1.
We note that if q1 = 0, αA = 0, then A2 = q̃. If αA = 0, then A2 = q̃ μ+q1

μ . If
0 < αA < 1, then

A2 = γ1q̃
μ + q1

μγ1 + αAq1q̃
→ γ1

αA
as q1 −→ ∞.



638 SZE-BI HSU AND YING-HEN HSIEH
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Fig. 4.1. Stability of E0 and E∞ when γ1 > q̃.

Thus for the model with quarantine measure, there is a region of bistability. The
smaller αA and larger q1 give a large region of bistability. According to analysis, if
the contact rate β < q̃, we would have only the DFE no matter if the quarantine
measure is implemented or not. However, if β > A2, then we have the endemic case,
i.e., S(t) −→ 0 as t −→ ∞.

The following lemma is trivial to prove.
Lemma 4.5. If μ + q1 > q̃, γ1 > q̃, q̃ < β < A2, then both E0 and E∞ are

locally asymptotically stable. Furthermore, there exists a unique interior equilibrium
Ec = (W1c,W2c,W3c), 0 < W2c <

q̃
μ .

Remark. We conjecture that Ec is a saddle point with two-dimensional stable
manifold, although we are unable to give a rigorous proof. Instead we will give a full
description of the dynamics for the model with quarantine.

Next we consider the case q̃ > μ+ q1, γ1 > μ+ q1, which guarantees the existence
of E∗

23. The following inequality is also easy to obtain.

Lemma 4.6. A2 > (μ + q1)
1+W∗

2 +αAW∗
3

1+αAW∗
3

.

An illustration of the stability of E23 and E∞ in this case is given in Figure 4.2.
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∞E
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*
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*
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1 1

1
)(

W

WW
q

A

A

α
αμ

+  
+  +  

+  2A

β

stable

stable23

∞E

E

Fig. 4.2. Stability of E23 and E∞ when A2 > (μ + q1)
1+W∗

2 +αAW∗
3

1+αAW∗
3

.

We note that if αA = 0, q1 = 0, then

(μ + q1)
1 + W ∗

2 + αAW
∗
3

1 + αAW ∗
3

= q̃ and A2 = q̃.

It is also easy to show that

(μ + q1)
1 + W ∗

2 + αAW
∗
3

1 + αAW ∗
3

> q̃ ⇐⇒ 1

αA
>

q̃ − (μ + q1)

γ1 − (μ + q1)
.

Thus if 1
αA

> q̃−(μ+q1)
γ1−(μ+q1)

(e.g., if γ1 > q̃), we have a diagram for the relative sizes of

parameters in Figure 4.3.
Thus, for the model with the quarantine measures and the contact rate β, q̃ <

β < (μ + q1)(1 +
W∗

2

1+αAW∗
3
) yields the DFE. On the other hand, we would have the
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Fig. 4.3. Diagram for the relative sizes of parameters when 1
αA

> q̃−(μ+q1)
γ1−(μ+q1)

(e.g., if γ1 > q̃).

endemic steady state if no quarantine action is taken (i.e., β > q̃ =⇒ endemic steady

state in the case of no quarantine). The diagram for the case 1
αA

> q̃−(μ+q1)
γ1−(μ+q1)

, which

is possible if γ1 < q̃, has been deleted for brevity.

For the case (μ + q1)(1 +
W∗

2

1+αAW∗
3
) < β < q̃, E∗

23 and E∞ are both stable.

Consequently, having quarantine measures implemented might lead to an adverse
effect. More precisely, since β < q̃, we have the system approaching DFE when there
is no quarantine, but with quarantine, we would have the bistable case where the
system could approach an endemic steady state, given that the appropriate initial
population is in the stability region of the endemic equilibrium.

Remark. In the bistable case, we again conjecture that the interior equilib-
rium (Ec) exists and (Ec) is a saddle point with two-dimensional stable manifold.

Now we return to the original system (4.1)–(4.7). Consider the limiting system

S′ = − β(I + αAQA)

S + E + I + αAQA

cS

1 + a(D∞ + R∞)
,

E′ =
β(I + αAQA)

S + E + I + αAQA

cS

1 + a(D∞ + R∞)
− (μ + q1)E,(4.12)

Q′
A = q1E − γ1QA,

I ′ = μE − q̃I.

Letting β̂ = βc
1+a(D∗

∞+R∗
∞) , we have the following theorem, the proof of which is similar

to that of the case without quarantine.
Lemma 4.7. If W1(t) → ∞ as t → ∞, then we have W2(t) → W̃2 < ∞,

Z3 = W3

W1
→ 0, and S(t) → S∞ > 0.

We now have the main theorem.
Theorem 4.8. Let β̃ = βc

1+aN .

1. If W1(t) → ∞ as t → ∞, β̃ < A2, and E0, E
∗
23 are unstable, then S(t) →

S∞ > 0.
2. If W1(t) → 0 as t → ∞, β̃ > A2, and one of the two equilibria, E0 or E∗

23, is
asymptotically stable, then S(t) → 0 as t → ∞.

3. The bistable case occurs when q̃ < β̃ < A2, or (μ+q1)(1+
W∗

2

1+αAW 3
3
) < β̃ < A2.

Proof.
1. If not, S(t) → 0 as t → ∞, i.e., S∗

∞ = 0. Consider the limiting system (4.11)
where we have

β̂ =
βc

1 + a(D∗
∞ + R∗

∞)
=

βc

1 + aN
= β̃ < A2.

It follows that limt→∞ W1(t) = +∞ (assuming the convergence is global) =⇒
S(t) → S∞ > 0. Hence we have a contradiction.
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2. If not, assume S(t) → S∗
∞ > 0. Then S∗

∞ + D∗
∞ + R∗

∞ = N . Consequently,

β̂ =
βc

1 + a(D∗
∞ + R∗

∞)
>

βC

1 + a(S∗
∞ + D∗

∞ + R∗
∞)

=
βC

1 + aN
= β̃ > A2

and limt→∞ S(t) = S∞ = 0, again a contradiction.
Remark. It can be shown that the local stability condition for the effective repro-

duction number with quarantine RQ < 1 is equivalent to condition 1 of Theorem 4.8,

namely, β̃ = βc
1+a(S∗

∞+D∗
∞+R∗

∞) < A2.

We further consider the case where E0 = (0, 0, 0) is unstable and E∗
23 = (0,W ∗

2 ,W
∗
3 )

does not exist. We note that E0 = (0, 0, 0) is stable ⇐⇒ β > q̃, μ + q1 > q̃, γ1 > q̃
and E∗

23 exists ⇐⇒ μ + q1 < q̃, γ1 > μ + q1.
We consider the case W3(t) → ∞ as t → ∞. Let U1 = W1, U2 = W2, U3 = 1

W3
.

Then system (4.10) becomes

U ′
1 =

−β(U3 + αA)

U3(1 + U1 + U2) + αA
U1 − (μU2 − q̃)U1,

U ′
2 =

β(U3 + αA)

U3(1 + U1 + U2) + αA
U1 − (μ + q1)U2 − (μU2 − q̃)U2,(4.13)

U ′
3 = −q1U2U

2
3 + γ1U3 + U3(μU2 − q̃).

We give the equilibria and stability analysis of (4.13):

1. Ẽ0 = (0, 0, 0) always exists.

2. Ẽ2 = (0, Ũ2, 0), where Ũ2 satisfies −(μ+ q1)Ũ2 − (μŨ2 − q̃)Ũ2 = 0. Therefore

Ũ2 = q̃−(μ+q1)
μ > 0 ⇐⇒ q̃ > μ + q1. Subsequently, Ẽ2 exists if and only if

q̃ > μ + q1.

3. Ẽ12 = (U∗
1 , U

∗
2 , 0).

From the first equation of (4.13), U∗
2 > 0 satisfies −β − (μU∗

2 − q̃) = 0.

Therefore U∗
2 = q̃−β

μ > 0.

From the second equation of (4.13), U∗
1 satisfies βU∗

1 − (μ + q1)U
∗
2 − (μU∗

2 −
q̃)U∗

2 = 0. Therefore U∗
1 = 1

β ((μ + q1) − β)U∗
2 > 0.

It follows that Ẽ12 exists ⇐⇒ q̃ > β, μ + q1 > β.
(i) Stability of Ẽ0. The variational matrix of (4.13) at Ẽ0 is

M0 =

⎡
⎣ −β + q̃ 0 0

β −(μ + q1) + q̃ 0
0 0 γ1 − q̃

⎤
⎦.

Thus Ẽ0 is stable ⇐⇒ q̃ < β, q̃ < μ + q1, γ1 < q̃.
(ii) Stability of Ẽ2. The variational matrix of (4.13) at Ẽ2 is⎡

⎣ −β + (μ + q1) 0 0
β −q̃ + (μ + q1) 0
0 0 γ1 − (μ + q1)

⎤
⎦.

Thus Ẽ2 is stable ⇐⇒ μ + q1 < β, q̃ > μ + q1, γ1 < μ + q1.

(iii) Stability of Ẽ12. The variational matrix of (4.13) at Ẽ12 is⎡
⎣ 0 −μU∗

1 ∗
β −(μ + q1) − 2μU∗

2 + q̃ ∗
0 0 γ1 + (μU∗

2 − q̃)

⎤
⎦.



A SARS MODEL WITH INTERVENTION MEASURES 641

The eigenvalue λ satisfies

(λ− (γ1 + (μU∗
2 − q̃)))(λ2 + (μ + q1 + 2μU∗

2 − q̃)λ + βμU∗
1 ) = 0,(4.14)

γ1 + μU∗
2 − q̃ = γ1 − β implies μ + q1 + 2μU∗

2 − q̃ = q̃ + (μ + q1) − 2β.

Since Ẽ12 exists =⇒ q̃ > β, μ + q1 > β, we have μ + q1 + 2μU∗
2 − q̃ > 0 and Ẽ12 is

stable ⇐⇒ γ1 < β, q̃ > β, μ + q1 > β.
Now, when we assume that E0 = (0, 0, 0) is unstable and E∗

23 does not exist, there
are three cases:

Case 1. q̃ > μ + q1 > γ1, and we have three subcases:
Subcase 1. A2 > q̃ ⇐⇒ γ1 > αAq̃.
Subcase 2. A2 > γ1 ⇐⇒ (q̃ − γ1) + q̃q1 > αAq1q̃.
Subcase 3. A2 > μ + q1 ⇐⇒ γ1(q̃ − μ) > αAq1q̃.

Figure 4.4 illustrates the possibilities for the stability of Ẽ12 and E∞ in Case 1.

Fig. 4.4. Stability of Ẽ12 and E∞ when q̃ > μ + q1 > γ1.

Case 2. q̃ < μ + q1, γ1 < μ + q1, and we have two subcases:
Subcase (i). γ1 < q̃. The stability of Ẽ0, Ẽ12, and E∞ is as follows.

• γ1 < q < A2 < μ + q1.
If β < γ1, then E∞ is an attractor; if γ1 < β < q̃, then E∞, Ẽ12 are

stable; if q̃ < β < A2, then E∞, Ẽ0 are stable; if β > A2, then Ẽ0 is an
attractor.

• γ1 < q̃ < μ + q1 < A2.
Same as above.

• γ1 < A2 < q̃ < μ + q1.
If β < γ1, then E∞ is an attractor; if γ1 < β < A2, then Ẽ12, E∞ are

stable; if A2 < β < q̃, then Ẽ12 is an attractor; if β > q̃, then Ẽ0 is an
attractor.

Subcase (ii). γ1 > q̃. Then A2 > q̃. If β < q̃, then E∞ is an attractor. If

q̃ < β < A2, then Ẽ0 and E∞ are stable. If β > A2, then Ẽ0 is an attractor.
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Case 3. q̃ < μ + q1 < γ1, and γ1 > q̃. Then A2 > q̃, and we have a result similar
to that in Subcase (ii).

5. Concluding remarks. For the model without quarantine but with behavior
change due to public response to the severity of the disease, we have shown that the
local stability condition in Theorem 3.4 is equivalent to the condition that the basic
reproduction number R0 given in (2.15) with αP = 0 is less than 1. If βc > σ1+ρ1+γ3,
the epidemic would persist without public response; however, if the magnitude of
public response, as measured by the parameter a, is sufficiently large so that R0 < 1,
the reduction of infections through public response will be large enough to drive the
epidemic down to a disease-free state.

For the model with both quarantine and behavior change, the dynamics is much
more complicated. The effective reproduction number with quarantine RQ in (2.16)
gives local stability of DFE when RQ < 1. However, there are ranges of the parameters
which would lead to bistable steady states, i.e., one locally stable DFE and another
locally stable endemic equilibrium. In such cases, we conjecture that there is a saddle
point with two-dimensional stable manifold. As an illustration, we give the following
numerical example.

We let αA = 0.1, β̃ = 0.5, q̃ = 0.3, γ1 = 0.4, q1 = 0.2, μ = 0.2, and use the initial
values of S(0) = 1, E(0) = 0, QA(0) = 0, I(0) = 1, i.e., one infective case entering
a totally susceptible population of one individual so that (W1(0),W2(0),W3(0)) =
(1, 0, 0). The result is given in Figure 5.1, where the system goes to the endemic
equilibrium.

Fig. 5.1. Numerical example with αA = 0.1, β̃ = 0.5, q̃ = 0.3, γ1 = 0.4, q1 = 0.2, μ = 0.2,
and initial population S(0) = 1, E(0) = 0, QA(0) = 0, I(0) = 1, where system approaches endemic
equilibrium. X(t) is W1(t) = S(t)/I(t), which goes to zero.

However, if we let the initial values be S(0) = 10, E(0) = 0, QA(0) = 0, I(0) = 1,
i.e., 10 infective cases entering a totally susceptible population of 100 individuals, so
that (W1(0),W2(0),W3(0)) = (10, 0, 0), the system will approach DFE as shown in
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Figures 5.2 and 5.3. Note that for this set of parameters, A2 = 0.56 > β̃ = 0.5 >
q̃ = 0.3, μ + q1 = 0.2 + 0.2 > q̃ = 0.3, γ1 = 0.4 > q̃ = 0.3. Moreover, Case 3 of The-
orem 4.8 holds for this data. Therefore we have bistability where both E0 = (0, 0, 0)
and E∞ are locally stable.

Fig. 5.2. Numerical example with αA = 0.1, β̃ = 0.5, q̃ = 0.3, γ1 = 0.4, q1 = 0.2, μ = 0.2, and
initial population S(0) = 10, E(0) = 0, QA(0) = 0, I(0) = 1, where the system approaches DFE.
X(t) is W1(t) = S(t)/I(t), which goes to a nonzero equilibrium, and S(t) → 14.58322.

Fig. 5.3. Numerical example with αA = 0.1, β̃ = 0.5, q̃ = 0.3, γ1 = 0.4, q1 = 0.2, μ = 0.2, and
initial population S(0) = 10, E(0) = 0, QA(0) = 0, I(0) = 1, where the system approaches DFE.
W (t) is I(t), which goes to zero.

The epidemiological interpretation is most interesting. In an epidemic where there
is public response to the increasing severity of the epidemic to cut down infections
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through individual behavior change, sufficient decrease of the infection rate through
the parameter a would be enough to contain the epidemic, regardless of the initial
population sizes at the onset of outbreak.

Suppose that, in addition to the severity-dependent public response, quarantine is
implemented. If the adherence to quarantine to decrease contact rate c and transmis-
sion probability β is satisfactory, the effective infection rate β̃ = βc

1+aN is sufficiently

lowered. Case 1 in Theorem 4.8 will be satisfied along with β̃ < q̃, and the epidemic
can be successfully contained, again regardless of the initial population sizes at the
onset of outbreak. If, on the other hand, β̃ is not sufficiently lowered and we have
Case 2 of Theorem 4.8, the epidemic will persist and the susceptible population S(t)

will be depleted eventually. There is the third scenario, where β̃ is decreased but not
sufficiently so, to less than A2 but greater than q̃. Then the system could approach
either the DFE or the endemic steady state, depending on the initial values of the
system.

In the worst case scenario, if the quarantine were not adhered to faithfully, the
false sense of security brought about by the quarantine that all infective persons were
in quarantine could lead to increased β̃. Thus the quarantine might in fact have an
adverse effect by contributing to the persistence of the epidemic. For illustration,
we consider the hypothetical case where β < q̃ = σ1 + ρ1 + γ3. Since β > β̃ when
c = 1, from Theorem 3.4 we know the system goes to DFE with no quarantine
implemented. However, for Case 1 (Figure 4.4), Subcase 3, when μ + q1 < β < q̃ the
system will converge to the endemic equilibrium. This demonstrates the (distinct)
possibility that, under appropriate parameter values, a quarantine program which is
not sufficiently comprehensive (q1 < β − μ) could have the adverse effect of causing
a system which would have approached DFE without quarantine to converge to the
endemic equilibrium instead.

We should note, however, that β̃ = βc
1+aN , where N is the constant total pop-

ulation size, which numbers in at least millions whether in Hong Kong, Singapore,
Taipei, Beijing, or Toronto. In [27], it was determined that a = 0.0013 and cβ = 0.429

for Taiwan’s SARS outbreak. Subsequently the real value for β̃ is of the order
0.429/(1+0.0013∗106) 
 1, making it most unlikely for either Case 2 (asymptotically
stable endemic equilibrium) or Case 3 (bistability) in Theorem 4.8 to prevail. In other
words, the modeling results indicate that for an infectious disease with infectivity and
patterns of transmission typical of SARS, the outbreak can always be eradicated by
implementing border control of imported cases and limited quarantine, along with the
public’s social response to avoid infections.

It is also interesting to note that if αA = 0, the stability condition for E∞ becomes
β < q̃μ/(μ + q1). Hence quarantine is always beneficial and an effective Level A
quarantine is always helpful in containing the epidemic. However, if for some disease
unlike SARS in its ability to infect during the asymptomatic stage, some fraction
of the quarantined population is not fully isolated and can still infect others (i.e.,
αA > 0), then quarantine might also affect the outbreak adversely. A numerical
example of this scenario is as follows: Let αA = 0.1, β = 0.5, μ = 0.5, q̃ = 0.7,
q1 = 0.1, γ1 = 0.01, A2 = 0.35. Here Ẽ12 = (0.08, 0.4,+∞) is a global attractor as
in Case 1, Subcase 3 in Figure 4.4. However, if there is no quarantine (i.e., q1 = 0
and hence αA = 0), DFE is the global attractor. Additional examples of this type

can be observed in Case 1, Subcases 2 and 3 (Figure 4.4), where Ẽ2 can become
the global attractor for the appropriate parameter range of β, as well as in Case 2,
Subcase (i), where again it is possible for Ẽ12 to become a global attractor. Note that
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a condition for these cases to emerge is q̃ > A2 or, equivalently, γ1/q̃ < αA. Hence if
there is a nonzero reduction in the infection rate of the quarantined class αA which
is larger than the ratio of the progression rate of the quarantined persons γ1 to the
removal rate of the unquarantined infectives q̃, an adverse effect could take place with
implementation of quarantine. To keep this possibility from occurring, one would need
either (i) significant reduction of infection by the quarantined individuals (small αA)
or (ii) quick isolation of quarantined persons at onset (large γ1) compared to the
removal of the infective class (small q̃). Similar possible adverse effects of intervention
measures have also been observed in other theoretical models of infectious diseases
(e.g., [30, 31]).

Going back to the quarantine for SARS, we assume that αP = αA = 0. If all other
pertinent parameters remain the same, we have RQ = R0μ/(μ+q1) from (2.15)–(2.16).
That is, the implementation of quarantine would give the mean reproduction number
of an infective individual a factor of μ/(μ + q1), where q1 is the effective quarantine
rate. That is, through quarantine alone, the mean reproduction number of an infective
individual is reduced by a factor of 1 − μ/(μ + q1).

In a data-based modeling study where the pertinent parameters were estimated
from the Taiwan SARS data [27], the quarantine rate q1 was estimated to be 0.0277.
It was reported by Donnelly et al. [32] that the maximum likelihood estimate for
the mean time from exposure to onset of symptoms is 6.37 days. Hence the mean
progression rate from exposure to onset is approximately μ = 1/6.37 = 0.157. Making
use of the two estimates, we conclude that if all other parameters remain unchanged,
the quarantine in Taiwan would result in a reduction of 15% (μ/(μ+q1) = 0.850) in the
mean reproduction number by an infective individual. Given that current studies of
SARS indicate that the basic reproduction numbers R0 in all the SARS-affected areas
were greater than 2 at the beginning of the outbreak in 2003, one can conclude that
quarantine alone would not have been able to contain the epidemic (i.e., reduce R0 to
less than 1) in Taiwan. For a given affected area with a basic reproduction number R0,
we need to have an effective quarantine rate of q1 > q∗1 = 0.157(R0 − 1) for RQ to be
less than 1. Using the estimated values of R0 for Hong Kong, Toronto, and Taiwan in
current literature, we give in Table 5.1 the effective quarantine rate q∗1 needed in the
affected areas to reduce the reproduction number to less than 1, if all else remains the
same. Note that the estimate for Taiwan [13] assumes that a symptomatic patient is
infective from onset to classification as a probable case followed by isolation. If we
assume the patient is not infective during the first two days of onset as suggested by
some studies (see [2]), the reproduction number is reduced to 3.56 and subsequently
q∗1 = 0.402.

Table 5.1

Affected area Reproduction number Effective quarantine rate q∗1
[literature cited] needed to contain outbreak

Hong Kong 2.7 [32] 0.267

3 [10] 0.314

Toronto 3.3 [33] 0.361

Taiwan 4.23 [13] 0.507

Since the SARS-CoV virus does not appear to be infective before onset of symp-
toms [2], quarantine does not directly prevent infections by the exposed individuals
during the quarantine period. However, studies on SARS quarantine data in Tai-
wan [8] indicate that quarantined persons are significantly more quickly diagnosed
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and hospitalized as compared to the unquarantined individuals. Hence the effective-
ness of quarantine for infectious diseases like SARS, for which no infection is being
prevented during the quarantine period, can only be indirect and therefore must be
combined with other intervention measures in order to fully contain the outbreaks.
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